Cosmic Dawn (CoDa) III Galaxy formation during the Epoch of Reionization — An update —

P. Ocvirk and Cosmic Dawn collaboration https://coda-simulation.github.io/ Observatoire astronomique de Strasbourg Universite de Strasbourg

Observatoire astronomique de Strasbourg

Cosmic Dawn Collaborators

0	P. Ocvirk, D. Aubert , (Observatoire astronomique de Strasbourg)	0	Н
0	J. Lewis (Zentrum für Astronomie, Heidelberg)	0	P. (U
0	J. Sorce (ICs, CLUES, CRISTAL Lille)	0	I. Su
0	L. Keating (Univ. Edinburgh)	0	S.
0	R. Teyssier , (Princeton) (code + sci. exp.)		
0	Y. Dubois (IAP) (SN feedback, dust model)	0	G Au Cl
0	F. Roy, Y. Rasera (Observatoire de Paris) (large scale deployment, pfof)	0	Y. Jer
0	M. Gronke (MPA Garching) (sci exp)		
-			

. Park (sci exp)

R. Shapiro, J. Lee, T. Dawoodbhoy, Iniversity of Texas, Austin) (sci. exp.)

lliev, **L. Conaboy** (University of Issex) (sci. exp.)

Gottloeber (Leibniz Institute for strophysics, Potsdam) (ICs + sci. exp., **LUES**)

 Yepes, A. Knebe (Universidad utonoma de Madrid) (ICs + sci. exp., LUES)

Hoffmann (Hebrew University of rusalem) (ICs, **CLUES**)

Dark ages / EoR open questions

- OWhen did dark ages / reionization start / finish?
- Ionising sources? Galaxies (high/low mass?) / BHs (stellar / 0 supermassive)
- Ionising UV Escape fraction? Impact of dust? 0
- Radiative feedback on early galaxies? mass limit for star formation?
- Impact on reionization history? 0

Addressing these questions numerically is extremely challenging:

- **COUPLED** radiation hydrodynamics galaxy formation code, costly 0
- $^{\circ}$ High mass resolution (to account for all sources down to at least 10⁸ M $_{\odot}$ haloes)
- Large volume (bright-end galaxy MF, galaxy clusters) => L~ 100 Mpc 0

=> COSMIC DAWN SIMULATIONS

I - Fully coupled Radiation-hydro with RAMSES-CUDATON (Ocvirk+2016)

- o gravity (PM) + hydrodynamics
- o star formation + SN thermal + kinetic feedback o chemical enrichment, dust production + destruction (Lewis+2022)

- T, phi, stars, pdust

II - The tyranny of scales

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

Strong, non-linear coupling of physical processes over a vast (>10¹³) range of scales

Molecular clouds sub-pc to pc scales

Protostars au scales

(Inspired from J. Rosdahl's slide)

The "main sequence" of galaxy formation simulations Volume $[cMpc^3]$ 10⁸

Pierre OCVIRK - Cosmic Dawn at high oftified 2024 Ang-project.org)

o trade-off between size and resolution

o <u>highlighted</u> = recent EoR, fully coupled Radiation-hydrodynamical sims

o Cosmic Dawn sims stands out due to:

o raw power

o GPU optimization

• Intermediate resolution:

o Large volume

106

o ~coarse description of low mass haloes

The "main sequence" of galaxy formation simulations

Figure: D. Nelson FOGGIE (z=2)

- o EoR sims footprints are shown for z=6
- o trade-off between size and resolution
- o inclined tracks = AMR/ SPH sims
- o AMR/SPH sims can reach very high res
- o but use a reduced speed of light c=0.2-0.02
 - Again, CoDa sims stands out as very large, intermediate resolution, fixed grid sims.

(plot from <u>tng-project.org</u>)

(Cosmic Dawn II)

4 h⁻¹ Mpc

Galaxy populations LFs & rad. FeedBack

galaxies

Reionization history of galaxies/pairs/LG

IGM transmission (Ly α , LyC)

Ocvirk 2016,2020, Dawoodbhoy 2018, 2023, Lewis 2020, Aubert 2018, Sorce 2022, Gronke 2020, Park 2021, Park 2022, Lewis 2022, Gillet 2021, Conaboy+2023(in prep.)

21cm

Photon budget of

II - Cosmic Dawn III setup

Run parameters									
	Box size (h ⁻³ cMpc ³)	64 ³		Emissivity (ph/s/)	BPASSv2.2.1				
Domain	Grid size	8192 ³	Ionizing radiation	Lifetime (Myr)					
	Cell size dx(z=6)	1.65 pkpc		sub-grid f _{esc}	1				
	DM particle mass	5 x 104	Octore	Computer	Summit				
Mass resolution (M _{sun})	Stellar particle mass	~104		Number of nodes	4096				
(ourly	Minimum halo mass	3.10 ⁷		Number of CPUs	131072				
	Density threshold (rho/rho_average)	50	Setup	Number of GPUs	24576				
Star formation	Efficiency	0.03		Total data	20 PetaBytes				
	Temperature threshold	2x104 K		End redshift	4.6				

- o Main improvement in spatial and mass resolution (x2 and x8)
 - o => improved description of galaxies and sinks
- o > I trillion particles+cells
- o Huge parallelism
- o Updated physics: BPASS, metals & dust (Lewis+ 2022), SFT threshold

Summit Oak Ridge Leadership Computing Facility

https://coda-simulation.github.io/

Cosmic Dawn III - 16/h cMpc sub-region

Cosmic Dawn III - 16/h cMpc sub-region

CoDa III luminosity functions

Lewis et al. 2024, in prep.

- Dust affects galaxies
 brighter than -19
- O Dust crucial to reconcile bright-end UVLF (prevents overshooting as in CoDall)
- Slight overproduction in -18,-20 range?
- Dust is important at all redshifts
- Fair agreement with pre-JWST observed LFs
- No agreement on highest z
 JWST detections
- O Even dust-free galaxies do not match z>=12 JWST

lonizing escape fractions and dust

- Absorption from dust becomes important for M= a few times $10^{10}M_{\odot}$
- At such masses the HI fesc is already very low => HI absorption dominates

Lewis, Ocvirk et al. 2023 From DUSTiER = Cosmic Dawn III calibration sim

CoDa III LFs + literature update

o Due to redshift errors, JWST high-z LFs have been very uncertain

- Litterature follow-up by T. Dawoodbhoy.
- o => mild tension at z=10-12

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

courtesy T. Dawoodbhoy

CoDa III LFs + literature update

O Due to redshift errors, JWST high-z LFs have been very uncertain

- Litterature follow-up by T. Dawoodbhoy.
- o => less tension at z=10-12, but tension at z=15 remains

courtesy T. Dawoodbhoy

Cosmic Dawn III - State of the IGM

- CoDa II run failed hard in neutral fraction evolution and ionization rate
- O CoDa III gives much better agreement. (also in mfp) Why?
- Observational estimates have been revised, but thats not all

Lewis et al. 2022

Cosmic Dawn III reionization history

Reionization history fully compatible with current observational constraints Ο Reionization finishes at z=5.5 (vs 6.1 in Cosmic Dawn II) Ο

Despite late reionization, good agreement with Planck electron-scattering τ Ο

Lewis et al. 2022

CoDa III: Lyman alpha opacities PDF

Cumulative τ_d^{eff} distribution

CoDa III: The ionizing mean free path

Lewis+2022

- Becker 2021 mfp significantly below models at the time.
- But very good agreement with CoDa III.
- Very strong evolution with z, different estimates:
- o AT: Average Transmission
- o Neutral mode not observable
- o => Mean/median ionized mode
- o shaded: 25-75 percentile

The rise and fall of cosmic emissivity Drop at z>6 occurs naturally in **Emissivity evolution** Cosmic Dawn III as: <u>1e50</u> Strict, low mass Strict, high mass o Low mass $(2x10^9 M_{\odot})$ haloes: 8 Strict, total Kulkarni+19, totaL O have high fesc n_{esc} (ph/s/cMpc³) w b u 9 o are radiatively suppressed Total • High mass haloes: o have low f_{esc} o have slow build-up .ow mass o => can not compensate High mass $T < T_{sf} = 2 \times 10^{4} K$ for star formation is key to obtain this behaviour 0 12 10 4 6 8 Z Ocvirk et al. 2021 Sharp drop = small box effect? 8 h⁻¹Mpc CoDa III calibration

- - o => drive reionization at z>6

Cosmic ionizing emissivity

• Other studies find ~similar-ish bump/drop? o In CoDa III calibrations, non-monotonic N requires decreasing $f_{esc}(M)$ and strong-ish rad suppression below $10^9\,M_{\odot}$

The rise and fall of cosmic emissivity

- Drop at z>6 occurs naturally in Cosmic Dawn III as:
 - O Drop at z=6 confirmed in Cosmic Dawn III full box (~100Mpc)³
 - o Large variance
 - o Drop still visible despite larger volume and patchy reionization
 - o compatible with semi-analytical literature

Summary

- o **Cosmic Dawn III** simulation is the largest fully coupled Radiation-Hydrodynamics EoR galaxy formation simulation ever made.
- o Good match with galactic and IGM observables, pre-JWST Luminosity functions, reionization history, τ , Hydrogen ionizing rate, LyC mean free path, and now also neutral fraction at z < 6.
- O Dust has a strong impact on LF but not necessarily on escape fractions
- o 'Vanilla' high-z galaxy pop, tension with JWST at z>10
- o bump/drop/break in cosmic ionising emissivity \dot{N} persists in full box
 - o Potentially linked to rad suppression and $f_{esc}(M)$ (in CoDa sims)
 - o but not only...
- o Can we test rad suppression ? requires reaching M_{AB1600} =-11 at z=6-5

• Coming up: revisiting photon budget, escape mechanism, Tr(R) (cf. Kashino) work in progress: new methods for RT, beyond MI Ο

pierre.ocvirk@astro.unistra.fr

The bump/drop/break in \dot{N} : alternatives

- Suppression mass is poorly constrained, but many other aspects of high-z universe modelling are uncertain:
 - o high-z IMF / PopIII properties and transition to PopII?
 - Missing IGM structure? (clumping, Cain et al. 2021)
 - Impact of dust? (see below, DUSTiER, Lewis et al 2023)

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

- o average f_{esc} weighted by L_{intr}
- O Decreases with z driven by:
 - o suppression of high f_{esc} galaxies (low mass)
 - High mass haloes with low f_{esc} increasingly dominating star formation budget (=> L_{intr})
- Accounting for dust absorption makes little difference

Smoking gun for rad. suppression a - high z (requires JWST)

- Rad suppression causes drop in high-z faint-end LF
- Very large obs. uncertainties due to cluster mass model
- JWST should improve thanks to getting redshifts in these fields
- o => How much the error bars will shrink?
- O => How robust is our prediction to changes in:
 - Physics: source model (hardness),
 B fields, baryon drift, ...
 - o Numerics: dx, RT method

Work in progress

o segmentation / halo finding overhaul

o New methods for radiative transfer

Segmentation / structure detection in very large simulations

- Halo detection / catalog is a significant fraction of a simulation compute budget
- o With CoDalll (8192³) we tried:
 - o PHEW => OOM
 - o ROCKSTAR => OOM
 - o pfof (Roy & Rasera) => runs but
 stripped down (vxyz)
- Main drawback: overlinking: one fof structure can contain many haloes
- > need to postprocess fof structures with rockstar, SoD/ HaloMaker, in progress

Accuracy of radiative transfer methods in reio simulations?

- Most galaxy formation sims use MI for RT. in MI photons are collisional ! => artefacts
 - o pseudo-sources in crossing beams
 - o Dark rings around sources
 - Missing small scale power in radiation fields (overly smooth)
 - o over-ionized absorbers
 - o ... (Wu et al. 2021)
 - o Gaikwad+ 2023

Towards new methods for radiative transfer in astro sims

M1 vs Pn: Continuous regime

Continuous response comparison profiles of 3D M1 and P3

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

Single wave front for both models • Same amplitude for both models • Same integral for both models

- No pseudo source for P3
- Slight oscillation for P3
- No negative energy for P3 •

courtesy Mei Palanque, 2nd year PhD

The Pn model

Towards new methods for radiative transfer in astro sims

MI: 4 moments (E, Fxyz)

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

courtesy Mei Palanque, 2nd year PhD

Towards new methods for radiative transfer in astro sims

Pierre OCVIRK - Cosmic Dawn at high latitude 2024

- $o P_9 cost = 25 times MI$
- o =>GPU optimization:
- o On top of RKMS: Reduced Kinetic Model Solver
- o Collaboration with P. Gerhard (maths Strasbourg)
- Implemented chemistry into RKMS + dim/adim of fields
- o OpenCL:
 - o more general than CUDA (i.e. not limited to NVIDIA)

o <= Strongren sphere with P9 RKMS

courtesy Mei Palanque, 2nd year PhD

Summary

- o **Cosmic Dawn III** simulation is the largest fully coupled Radiation-Hydrodynamics EoR galaxy formation simulation ever made.
- o Good match with galactic and IGM observables, pre-JWST Luminosity functions, reionization history, τ , Hydrogen ionizing rate, LyC mean free path, and now also neutral fraction at z < 6.
- o 'Vanilla' high-z galaxy pop, tension with JWST at z>10
- o bump/drop/break in cosmic ionising emissivity \dot{N} required?
 - o Potentially linked to rad suppression and $f_{esc}(M)$ (in CoDa sims)
 - o but not only...
- o Can we test rad suppression ? requires reaching MABI600=-11 at z=6-5

 Coming up: revisiting photon budget, escape mechanism, Tr(R) (cf. Daichi) work in progress: new methods for RT, beyond MI Ο

pierre.ocvirk@astro.unistra.fr

CoDa III: The ionizing mean free path

Lewis+2022

- Mean free path at 912 Å measured along 4096 LoSs
- o Strong evolution with z
- o Unimodal vs bimodal
- O Bimodality reflects coexistence of neutral vs ionized regions
- method of averaging affects the estimate

Summary

- **Cosmic Dawn III** simulation is the largest fully coupled Radiation-Hydrodynamics EoR galaxy formation simulation ever made.
- Good match with currently available observables, pre-JWST Luminosity functions, reionization history, τ , Hydrogen ionizing rate, LyC mean free path, and now also neutral fraction at z<6.
- o 'Vanilla' high-z galaxy pop (as compared to e.g. JWST)
- Newfound agreement in x_{HI} involves late $z_{rei}=5.5$ and non-monotonic cosmic ionising emissivity \dot{N} (bump/drop/break?)
 - o Potentially linked to rad suppression and $f_{esc}(M)$ (in CoDa sims)
 - o but not only...
- o Rad suppression can be tested: M_{AB1600} =-11 at z=6-5 or at z=0 with LSST
- o Work in progress on lots of topics

O Interested in using CoDallI data? => pierre.ocvirk@astro.unistra.fr

The average neutral fraction and the speed of light

- o Reduced speed of light approximation (RSL):
 - o Code much faster
 - Easy to implement
- o Impact on results?
- **o** RAMSES-CUDATON uses c=1 thanks to GPU
- o => good testbed for RSL
- o Reducing the speed of light increases XHI
- The good agreement at c=5% vanishes for c=l

"Observing" Cosmic Dawn III galaxies with JWST

- At z=7, 1500 Angstrom falls into NIRCAM/FII5W filter (0.031 arcsec)
- Make stellar flux map at JWST resolution at z=7
- o (convolve with JWST PSF)
- o Add noise, sigma=0.04 n/y per pixel
- Detect sources with python photutils, threshold=3*sigma
- o (Deblend)
- o UVLF? M-R relation?

Size-luminosity relation at z=7

- o Half-light radius vs MAB₁₅₀₀
- O Almost perfect agreement with observations (Yang2022)???
- Considering measured sizes are
 3-10 times smaller than CoDa III force resolution
- o => To do:
 - o convolve with PSF
 - o deblend
 - perform Sersic fitting to get effective radius

Key results summary

- o Cosmic Dawn III simulation is the largest fully coupled Radiation-Hydrodynamics EoR galaxy formation simulation ever made.
- o Good match with currently available observables, Luminosity functions, reionization history, τ , Hydrogen ionizing rate, and now also neutral fraction at z < 6.
- o Newfound agreement involves a drop in cosmic ionising emissivity
- o **DUSTIER**'s UV LFs, slopes and evolution compatible with observations
- O Dust affects UVLFs for M<-18, and already at z=10-8
- o Dust is required to match bright end UV LF (prevent overshoot)
- O Dust does not affect much photon budget of galaxies during EoR

O Stay tuned for more results (<u>https://coda-simulation.github.io/</u>) O Interested in using the data? Get in touch! pierre.ocvirk@astro.unistra.fr

DUSTiER: Dust in the Epoch of Reionization (Lewis+ 2023)

o SMHM and Mass-Z already in place at z=6 almost no evolution of Z(M) with redshift

Metallicity slightly low compared to observational constraints

DUSTiER: dust vs stellar mass

- O Dust model calibrations
- 0 not trivial
- o Obs. constraints at >10 $^{8}M_{\odot}$
- o good match at massive end
- O No constraints at lower mass
- Saturated behaviour due to:
 - o fairly low dust condensation from SN
 - O fast increase through grain growth
 - **O** inefficient destruction

DUSTiER: UV slopes

DUSTiER: UV slope evolution

- Different ways of evaluating average slope:
 - o Bouwens: intercept
 - O Bhatawdekar, median of bright-ish M_{AB1600}<-18 galaxies
- CoDa III: slow but steady evolution
- Suprisingly, CoDa III matches well both methods

DUSTiER: Impact of dust on UV galaxy luminosity functions

- O Dust affects the UV LF at ALL redshifts
- O Mostly for MABI600<-18</p>
- O Prevents overshooting at bright end (CoDa II)
- o => reconciles predictions with observations
- o Fair agreement with pre-JWST observed LFs
- o Full Cosmic Dawn III analysis ongoing

CoDallI: Impact of dust on UV galaxy luminosity functions, z=8

- O Dust affects the UV LF at ALL redshifts
- O Mostly for MABI600<-18</p>
- O Prevents overshooting at bright end (CoDa II)
- > reconciles predictions
 with observations
- o Fair agreement with pre-JWST observed LFs
- o Full Cosmic Dawn III analysis ongoing

CoDallI: Impact of dust on UV galaxy luminosity functions, z=8

- ; the UV LF at ts
- **M**_{AB1600}<-18
- ershooting at CoDa II)
- es predictions vations
- ent with prerved LFs
- : Dawn III ;oing

DUSTiER: Fraction of obscured star formation

- Obtained as $f = L^{ext} / L^{int}$
- o f increases with time
- o driven by dust build-up
- o => strong dependence on sample selection
- o (=>) large dispersion in observational estimates
- o rough match at z=5-6

lonizing escape fractions and dust

- Absorption from dust becomes important for M= a few times $10^{10}M_{\odot}$
- At such masses the HI fesc is already very low => HI absorption dominates

Lewis, Ocvirk et al. 2023 From DUSTiER = Cosmic Dawn III calibration sim

Impat of dust on cosmic ionizing escape fraction

- o DUSTiER: DUST in the Epoch of Reionization (Lewis+2023)
- o average f_{esc} weighted by L_{intr}
- Decreases with z driven by:
 - O suppression of high f_{esc} galaxies (low mass)
 - High mass haloes with low f_{esc} increasingly dominating star formation budget (=> L_{intr})
- Accounting for dust absorption makes little difference

Key results summary

- o Cosmic Dawn III simulation is the largest fully coupled Radiation-Hydrodynamics EoR galaxy formation simulation ever made.
- o Good match with currently available observables, Luminosity functions, reionization history, τ , Hydrogen ionizing rate, and now also neutral fraction at z < 6.
- o Newfound agreement involves a drop in cosmic ionising emissivity
- o **DUSTIER**'s UV LFs, slopes and evolution compatible with observations
- O Dust affects UVLFs for M<-18, and already at z=10-8
- o Dust is required to match bright end UV LF (prevent overshoot)
- O Dust does not affect much photon budget of galaxies during EoR

O Stay tuned for more results (<u>https://coda-simulation.github.io/</u>) O Interested in using the data? Get in touch! pierre.ocvirk@astro.unistra.fr