Anatomy of an ionized bubble

Alberto Torralba-Torregrosa, Jorryt Matthee, Rohan Naidu, Ruari Mackenzie, Gabriele Pezzulli, Anne Hutter, Pablo Arnalte-Mur, Siddhartha Gurung-López, Sandro Tacchella, Pascal Oesch, Daichi Kashino, Charlie Conroy, David Sobral

Vniver§itat @ València

Observatori Astronòmic Vniversitat d'Valencia

COLA1: An unusual Ly α emitter at z = 6.6

COLA1, a double-peaked
 Lyα emitter in the COSMOS field (Hu+16)

COLA1: An unusual Ly α emitter at z = 6.6

Dijkstra 2017

Hu+2016

At z = 6.6 reionization is incomplete:

Significantly neutral IGM absorbs blue Lyα peak

Does COLA1 live inside a bubble?

Matthee+2018

Does COLA1 live inside a bubble?

If it does, can COLA1 power the bubble?

Matthee+2018

JWST COLA1 field

- Program JWST GO-1933 (PIs: Matthee & Naidu)
- NIRCam imaging: F115W, F150W, F200W, F356W
- NIRCam grism spectroscopy in F356W

JWST COLA1 field

- Program JWST GO-1933 (PIs: Matthee & Naidu)
- NIRCam imaging: F115W, F150W, F200W, F356W
- NIRCam grism spectroscopy in F356W

NIRCam Wide Field Slitless Spectroscopy

Matthee+2023

140 [OIII] emitters found in the COLA1 field

COLA1's optical lines

COLA1's optical lines

Systemic redshift

VLT/X-shooter Lya spectrum

- Confirmed systemic Lyα redshift!

Systemic redshift

VLT/X-shooter Lya spectrum

 $z_{[OIII]} = 6.5917 \text{ (module A)}$

Matthee+2018

Extent of the ionized bubble

-Δv_{min}≈-250 km/s

Accounting for the contribution of a Lyα damping wing, the size of the bubble must be **at least**

~0.7 pMpc

Uniform bubble

Neutral fraction $\propto r^2$

Mason & Gronke 2020

Unresolved in the NIRCam imaging!

Unresolved in the NIRCam imaging!

Star formation surface density Σ_{SFR}

Table 2: The physical properties of COLA1.

Property	Value
z^a	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	$25.45_{-0.05}^{+0.04}$
$f_{\rm esc}({\rm Ly}\alpha)^c$	$81 \pm 5\%$
$M_{ m UV}{}^d$	$-21.35_{-0.08}^{+0.07}$
$eta_{\mathrm{UV}}{}^e$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^{g}	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$EW_0([O III]+H\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (O/H)_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{ m UV}{}^j$	<0.26 kpc
$SFR_0(UV)^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Table 2: The physical properties of COLA1.

Property	Value
z.ª	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	$25.45^{+0.04}_{-0.05}$
$f_{\rm esc}({\rm Ly}\alpha)^c$	$81 \pm 5\%$
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$\mathrm{EW}_0(\mathrm{[Om]}+\mathrm{H}\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (\text{O/H})_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{\rm UV}{}^j$	<0.26 kpc
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Moderately high ionizing photon production efficiency

Table 2: The physical properties of COLA1.

Property	Value
z^a	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04}
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%
$M_{ m UV}{}^d$	$-21.35_{-0.08}^{+0.07}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$EW_0([O III]+H\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (O/H)_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{ m UV}{}^{j}$	<0.26 kpc
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Moderately high ionizing photon production efficiency

<u>High</u> f_{esc}(Lya)

Table 2: The physical properties of COLA1.

Property	Value
z.ª	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04}
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$EW_0([Om]+H\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (\text{O/H})_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{\rm UV}{}^j$	<0.26 kpc
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Moderately high ionizing photon production efficiency

<u>High</u> $f_{\rm esc}$ (Lya)

Bright UV continuum

Table 2: The physical properties of COLA1.

Property	Value
z. ^a	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04}
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$EW_0([O m]+H\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (\text{O/H})_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{\rm UV}{}^j$	<0.26 kpc
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

 Moderately high ionizing photon production efficiency

 High f_{esc}(Lyα)

 Bright UV continuum

 Very steep UV slope

Table 2: The physical properties of COLA1.

Property	Value
z^a	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04}
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$\mathrm{EW}_0(\mathrm{[OII]} + \mathrm{H}\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (\text{O/H})_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{ m UV}{}^{j}$	<0.26 kpc
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5}~M_{\odot}~{ m yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Moderately high ionizing photon production efficiency

Bright UV continuum

<u>High</u> $f_{esc}(Lya)$

Very steep UV slope

No dust attenuation

Table 2: The physical properties of COLA1.

Property	Value
z^a	6.59165
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04}
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$
$\beta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$
$EW_0([O m]+H\beta)^h$	870_{-80}^{+90}
$12 + \log_{10} (O/H)_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$
$R_{ m UV}{}^j$	<0.26 kpc
$SFR_0(UV)^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36

Moderately high ionizing photon production efficiency <u>High</u> f_{esc} (Lya)

Bright UV continuum

Very steep UV slope

No dust attenuation

Extremely compact

Table 2: The physical properties of COLA1.

Property	Value	Lich f (Lyca)
z^a	6.59165	<u>Πιζιι</u> / _{esc} (Ľyα)
$\log_{10}(\xi_{\text{ion},0}/\text{Hz}\text{erg}^{-1})^b$	25.45 ^{+0.04} _{-0.05}	
$f_{\rm esc}({\rm Ly}\alpha)^c$	81 ± 5%	Bright UV
$M_{ m UV}{}^d$	$-21.35^{+0.07}_{-0.08}$	J
$eta_{\mathrm{UV}}{}^{e}$	-3.2 ± 0.4	
$E(B-V)^f$	$0.00^{+0.02}_{-0.00}$	Very sto
T_e^g	$1.7^{+0.4}_{-0.3} \times 10^4 \text{ K}$	
$\mathrm{EW}_0(\mathrm{[OIII]}+\mathrm{H}\beta)^h$	870_{-80}^{+90}	No dust
$12 + \log_{10} (O/H)_{T_e}^{i}$	$7.88^{+0.33}_{-0.30}$	
$R_{ m UV}{}^j$	<0.26 kpc	Extremely
$\mathrm{SFR}_0(\mathrm{UV})^k$	$9.6^{+1.7}_{-0.8} M_{\odot} \mathrm{yr}^{-1}$	
$SFR_0(H\beta)^l$	$10.1^{+0.9}_{-0.5} M_{\odot} \mathrm{yr}^{-1}$	X
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm UV})^m$	>1.31	Moderate
$\log_{10}(\Sigma_{\rm SFR}/M_{\odot}{\rm yr}^{-1}{\rm kpc}^{-2})({\rm H}\beta)^n$	>1.36	

Moderately high ionizing photon production efficiency

Bright UV continuum

Very steep UV slope

No dust attenuation

Extremely compact

Moderately high SFR

[OIII] emitters in the C1 Field

- 140 [OIII] emitters found in the COLA1 field (5.3 < z < 7)

Some examples:

Torralba-Torregrosa+2024

Mock based on Uuchu DM simulation (Ishiyama+21) & Behroozi+19 UniverseMachine; $M_{UV} \lesssim -17.5$

Mock based on Uuchu DM simulation (Ishiyama+21) & Behroozi+19 UniverseMachine; $M_{UV} \lesssim -17.5$

[OIII] emitters in the C1 Field

- 140 [OIII] emitters found in the COLA1 field

COLA1 lives in an overdensity, but not a particularly large one

- C

Can COLA1 ionize its bubble?

- LyC escape fraction?

$f_{\rm esc}({\rm LyC})$	Method	Reference
$28^{+10}_{-6}\%$	Ly α peak separation	Izotov et al. (2018)
$12 \pm 4\%^{\dagger}$	$f_{\rm esc}({\rm Ly}\alpha)$	Begley et al. (2024)
$56 \pm 7\%$	$f_{\rm esc}({\rm Ly}\alpha)$	Maji et al. (2022)
$45\pm10\%$	$f_{\rm esc}({\rm Ly}\alpha)$	Kimm et al. (2022)
> 20%	$f_{\rm cen}({\rm Ly}\alpha)$	Naidu et al. (2022a)
> 44%	$\Sigma_{ m SFR}$	Naidu et al. (2020)
$84^{+277}_{-65}\%^{\dagger}$	$eta_{ m UV}$	Chisholm et al. (2022)

Every indicator suggests high f_{esc}!

Can COLA1 ionize its bubble?

- LyC escape fraction?

$f_{\rm esc}({\rm LyC})$	Method	Reference
$28^{+10}_{-6}\%$	Ly α peak separation	Izotov et al. (2018)
$12 \pm 4\%^{\dagger}$	$f_{\rm esc}({\rm Ly}\alpha)$	Begley et al. (2024)
$56 \pm 7\%$	$f_{\rm esc}({\rm Ly}\alpha)$	Maji et al. (2022)
$45\pm10\%$	$f_{\rm esc}({\rm Ly}\alpha)$	Kimm et al. (2022)
> 20%	$f_{\rm cen}({\rm Ly}\alpha)$	Naidu et al. (2022a)
> 44%	$\Sigma_{ m SFR}$	Naidu et al. (2020)
$84^{+277}_{-65}\%^\dagger$	$eta_{ m UV}$	Chisholm et al. (2022)

Every indicator suggests high f_{esc}!

Takeaways

- COLA1 has an unusual double-peaked Lyα at z = 6.6, which can be explained by the presence of an <u>ionized region</u>.
- It has all the signs of an **extremely luminous LyC leaker**.
- Extreme properties cannot be attributed to a particularly large overdensity.
- We could be witnessing a luminous galaxy directly ionizing its surroundings

COLA1's neighbors

Is COLA1 powered by an AGN?

- Narrow Lya, Hβ

Hβ broad+narrow component fit

Broad Hβ component can only explain <30% of UV luminosity

Backup slides

NIRCam Wide Field Slitless Spectroscopy

Torralba-Torregrosa et al. 2024

Backup slides

Matthee et al. 2018

Torralba-Torregrosa et al. 2024

