

The impact of mergers on the Lyman **Continuum photons escape in galaxies** during the epoch of reionization Sara Mascia, <u>sara.mascia@inaf.it</u>

Supervisor: L. Pentericci Collaborators: A. Calabrò, L. Napolitano

26/02/2024, Cosmic Dawn at High Latitudes Conference

Finanziato dall'Unione europea NextGenerationEU

lonizing budget during reionization

- We need to know how many sources we are considering
- We need to measure how many LyC photons they are producing
- What we still need to understand is how many photons manage to escape

[integrated on Muv]

lonizing budget during reionization $\dot{n}_{ion} = f_{esc} \xi_{ion} \rho_{UV}$

- Faint, low-mass galaxies are thought to be responsible for cosmic reionization
- From empirical data and models, a Lyman continuum (LyC) escape fraction of ~10-20% is needed

[integrated on Muv]

Lyman Continuum emission

The LyC flux can be measured via photometry or spectroscopy at $\lambda < 912$ Å.

lon2, z=3.218, in GOODS-S/CANDELS, $f_{esc} > 60\%$

However, at $z \ge 4.5$ it is impossible to detect LyC photons

Lyman Continuum emission in the EoR?

S/N

855-910

007400

lon2,

The LyC flux can be measured via photometry or spectroscopy at $\lambda < 912$ Å.

However, at $z \ge 4.5$ it is impossible

The Low-Redshift Lyman Continuum Survey

The most systematic and complete study of low redshift LyC leaking galaxies and indirect diagnostics comes from the Low-Redshift Lyman **Continuum Survey** (LzLCs, PI Jaskot)

- [III 0]	fe2 –	he1r -	01	n21 –	Ηα –	n22 –	s21 –	s22 –	- Lyα -	log(O32) -	$-(\beta H/[IIIO])$	$EW(H\beta) -$	EW([O III])-	III]+EWH β))–	$\Gamma(H\beta)$	Γ(Ηα)-	$-\beta$ -VU	1550-β –	$M_{1500} -$	SFR(UV) -	ΣSFR(UV)-	f ^{Lyα} –	ne_S2 -	ne_02 -	Te_03 -	OH_12 -	log(Mass) -
														log(EW([O						а	da	pte	d f	ror	n F	lury	y+22

Predicting fesc of EoR galaxies from multiple indicators

Significant efforts have been made to predict the fesc values using the most promising indirect indicators from LzLCs (see Chisholm+22, Mascia+23b,24, Jaskot+24a,b)

Model	Variables						
	Dust	$Ly\alpha$	Nebular	Luminos			
TopThree	$E(B-V)_{UV}$		$\log_{10}(O32)$				
LAE	$E(B-V)_{UV}$	$EW(Ly\alpha)$		M_{1500}			
LAE-O32	$E(B-V)_{UV}$	$EW(Ly\alpha)$	$\log_{10}(O32)$	M_{1500}, \log_1			
LAE-O32-nodust		$EW(Ly\alpha)$	$\log_{10}(O32)$	M_{1500}			
ELG-EW	$E(B-V)_{UV}$		$\log_{10}(\text{EW}([\text{O III}]+\text{H}\beta))$	M_{1500}, \log_1			
ELG-O32	$E(B-V)_{UV}$		$\log_{10}(O32)$	M_{1500}, \log_1			
ELG-O32- β	β_{1550}		$\log_{10}(O32)$	M_{1500}			
ELG-O32- β -Ly α	eta_{1550}	$f_{ m esc,Lylpha}$	$\log_{10}(O32)$	M_{1500}, \log_1			
R50- β	eta_{1550}			M_{1500}, \log_1			
β -Metals	eta_{1550}		$12 + \log_{10}(O/H)$	M_{1500}, \log_1			

Jaskot+24b

High-redshift spectroscopic sample

436 spectroscopically confirmed sources at z = 5-7 from JWST NIRSpec and NIRCAM/WFSS

436 sources at z = 5-7

- stellar population properties using Prospector
- emission lines using LiMe
- re from F115W for z<5.5 and F150W for z>5.5 with galight

Matching EoR galaxies and leakers at low and intermediate redshift

We selected a subsample of the \sim 50 LzLCs that are analogs of EoR sources

Indirect indicators at low redshift for the "analogs"

- ELG-EW (Concordance=0.79):
- E(B-V)
- $\log_{10}(O[III]+H\beta)$ EWs
- **M**1500
- log₁₀(M*)

ELG-O32 (Concordance=0.83):

- E(B-V)
- log₁₀(O32)
- M1500
- log₁₀(M*)

Residuals

Predicted f^{LyC}-UVfit

Predictions applied to z = 3 leakers

Predicted f^{LyC}-UVfit

Residuals

Predictions are effective

BUT

we still need to increase the statistics of known leakers at intermediate redshifts.

Predictions applied to our z = 5-7 sample

Predictions applied to our z = 5-7 **sample**

dependence with the M_{1500}

Mergers in low redshift leakers

Haro11

Komarova+24

Mergers and interactions could significantly influence star formation burst: the subsequent outflows can favour the formation of channels that allow the LyC radiation to escape.

Some low-z leakers appear indeed to be mergers (e.g., Haro11).

We aim to investigate whether this holds true during the EoR as well.

Mergers in low redshift leakers

F182M

The Gini-M20 statistics (Lotz et al. 2008) classify z19863 as a merger based on the stellar emission (F182M)

Gupta+24

See Anshu's talk on Friday!

New confirmed leaker at z=3.088 with a spatially offset Lyman continuum emission.

Mergers during the EoR

From the F115W imaging, we are measuring:

- M20
- Gini structural parameter
- concentration of light (C)
- Shape asymmetry (A)
- clumpiness / smoothness parameter

Mergers identification following Dalmasso+24:

$f(G, M_{20}) = G + 0.14M_{20} > 0.33$ $A \ge 0.35$

See also Treu+23

Mergers during the EoR

Mergers identification following Dalmasso+24:

$$f(G, M_{20}) = G + 0.14M_{20} >$$

Mergers during the EoR

Mergers and fesc during the EoR

our sample now color codedby inferred f_{esc}

The candidate leakers (f_{esc} >0.2) are evenly distributed in the f,A space

The candidate leakers (f_{esc} >0.2) are evenly distributed in the f,A space

Is this an indication of different mechanisms of LyC escape at different redshifts?

Key aspects we need to improve upon:

- and measure their physical and spectroscopic properties to infer diagnostics
- Refine the prediction models for escape fraction from the low and intermediate redshift leakers
- Use simulations to drive the interpretation of the multivariate diagnostics

Increase the sample of known leakers at low and intermediate redshift,

