LyC Escape and IGM Tomography Using the 600-900Å Continuum of the Sunburst Arc

Michelle Berg

John Chisholm, X Prochaska, T. Emil Rivera-Thorsen, Keren Sharon, Michael D. Gladders, Matthew Bayliss, Haakon Dahle, J. J. Eldridge, Claus Leitherer, Jane R. Rigby, and Anne Verhamme

Postdoctoral Fellow

University of Texas at Austin

Sunburst Arc

The Sunburst Arc is the brightest lensed galaxy to ever be discovered at R=17.8 mag.

Rivera-Thorsen et al. 2019 NASA, ESA and E. Rivera-Thorsen

Dahle et al. 2016

Sunburst Arc

The Sunburst Arc is the brightest lensed galaxy to ever be discovered at R=17.8 mag.

Rivera-Thorsen et al. 2019 NASA, ESA and E. Rivera-Thorsen

Dahle et al. 2016

Gravitational Lensing

Light from a distant object is bent around a foreground massive object.

NASA, ESA and L. Calçada

A LyC Leaker

The leaking region is imaged 12 times over the 4 arcs.

Best chance of observing the ionizing stellar continuum for the first time!

Comparison to Models

We cannot tell how well the models fit the observations in the ionizing continuum.

Leitherer et al. 1999, 2010 Eldridge et al. 2017 Chisholm et al. 2019 Rivera-Thorsen et al. 2019 Berg et al. 2024b in prep

Escape Fractions


```
S99 f_{ecs,rel} = 47.0 \pm 0.5\%
BPASS f_{ecs,rel} = 33.0 \pm 0.3\%
```

Sunburst Arc has a high escape fraction with either model.

Rivera-Thorsen et al. 2019 Berg et al. 2024b in prep

Models with IGM + Galaxy Absorption

Foreground IGM can be substantially neutral and lower LyC estimates. $T_{ISM} c_f(S99) = 36\%, c_f(BPASS) = 53\%$

Add galaxy and absorber Lyman limit breaks

- 1. CIV at z=2.18916*
- 2. Lyα at z=2.15420*****
- 3. Lyα at z=2.07030
- 4. CIV at z=1.99850 *****
- 5. LLS at z=1.90930

Berg et al. 2024a,b in prep Rigby et al. 2024 in prep

Models with IGM + Galaxy Absorption

Models with IGM + Galaxy Absorption

Models with dust fit the observations the best from 790-912Å.

Berg et al. 2024a,b in prep

Updated Escape Fractions

The escape fractions increased by 5-10%.

Berg et al. 2024b in prep

We can estimate the size of the foreground absorbers in 2D and the HI mass.

Lyα at z=2.15420

Berg et al. 2024a in prep

We can estimate the size of the foreground absorbers in 2D and the HI mass.

Lyα at z=2.15420

Berg et al. 2024a in prep

We can estimate the size of the foreground absorbers in 2D and the HI mass.

Lyα at z=2.15420

Berg et al. 2024a in prep

 $M(HI) = 8 \times 10^2 - 7 \times 10^4 M_{\odot}$

We can estimate the size of the foreground absorbers in 2D and the HI mass.

Lyα at z=2.15420

Absorber Characteristics

This is the first time absorbers at z~2 have been probed at extremely small separations. These absorbers exhibit IGM and CGM absorber characteristics.

Absorber Characteristics

This is the first time absorbers at $z\sim2$ have been probed at extremely small separations. These absorbers exhibit IGM and CGM absorber characteristics.

Summary

1. We can measure the ionizing stellar continuum of the Sunburst Arc. The absolute escape fractions are high, ranging from 27-36%.

2. Dust needs to be included in the models to fit the observations.

> 3. We can estimate the size and HI mass of the foreground absorbers at z~2.

Berg et al. 2024a,b in prep

