Inferring the Distribution of the Ionising Photon Escape Fraction

Kimi C. Kreilgaard, Charlotte A. Mason, Fergus Cullen, Ryan Begley & Ross J. McLure

arXiv: 2405.10364

Cosmic Dawn at High Latitudes, Stockholm, June 2024

The reionisation history

- Number of sources producing ionising photons
- Ionising photon production efficiency
- The ionising photon escape fraction distribution

Bolan+2022

How does the distribution connect to the physical picture?

Ionisation-Bounded

The Data

- Selection of 148 star-forming galaxies from VANDELS survey
 - Spectroscopic redshift: 3.35 < z < 3.95
 - LyC photometry (VIMOS U-band)
 - Non-ionising UV photometry. (HST F606W)

$$\mathcal{R}_{\rm obs} = \left(\frac{L_{\rm LyC}}{L_{\rm UV}}\right)_{\rm obs} = \left(\frac{\langle f_{\rm U}\rangle}{\langle f_{\rm V606}\rangle}\right)_{\rm obs}$$

Sample presented in Begley+2022

Linking the escape fraction to the data

Forward model from Begley+2022

How do we infer the population distribution?

Our Intermediate Goal (flat prior)

Individual Galaxy Parameters

Our Data

Nuisance **Parameters** (Prior knowledge)

How do we infer the population distribution?

Individual Galaxy Parameters

What does the distribution look like?

 Most distributions predict the majority of galaxies with: $f_{\rm esc} < 0.1$

Which distribution is best? **Posterior Predictive Test**

What does the exponential PDF look like? ... it correlates with the UV beta slope

$$\begin{cases} \beta_{\rm obs} < -1.30 \\ \beta_{\rm obs} > -1.30 \end{cases}$$

Comparing with simulations ... is challenging, but important!

- Fair comparison requires similar galaxies (redshift, mass, beta-slope, ...)
- Simulations and observations measure f_{esc} differently
- Sight line f_{esc} versus angle averaged f_{esc}

SPHINX sample from Katz+2023

Comparing with simulations ... is challenging, but important!

- Fair comparison requires similar galaxies (redshift, mass, beta-slope, ...)
- Simulations and observations measure f_{esc} differently
- Sight line f_{esc} versus angle averaged f_{esc}

Somewhat similar shape, but the simulation under-predicts the escape fraction.

SPHINX sample from Katz+2023

Bias-free Extragalactic Analysis for Cosmic Origins with NIRCam

PI: Takahiro Morishita, **Co-PIs:** Charlotte Mason, Michele Trenti, Tommaso Treu

Survey Paper: Morishita+ in prep.

BEACON is:

- Pure-parallel multi-band imaging survey
- ~ 220 sightlines
- ~ 0.6 square degrees total area
- Awarded ~ 600 hours

BEACON will find:

- N > 1e3 galaxies at z = 7-9
- N ~ 100 galaxies at z = 10 12
- N ~ 1-100 galaxies at z > 13

A good z~10 candidate

- NIRCAM 8-band imaging provides robust photometric redshift determination
- With our 8 band filter configurations we can determine redshifts at z~2 up to z > 10

Take Aways

FESC DISTRIBUTION arXiv: 2405.10364

- We recover **expected values of** $f_{\rm esc} = 0.05$ consistent w. previous work (Begley+2022)
- We argue the distribution is exponential: only a small fraction of sources may be the main contributers to reionisation at a given time.
- Correlation with physical galaxy properties is possible with more data, useful for constraints within EoR

BEACON SURVEY Morishita+ in prep.

- Unbiased view of the Universe
- Robust photometric redshifts
- Candidates for spectroscopic follow-up
- Pure-Parallel is "free"

Thanks For Your

VANDELS Sample

