

Increasing Redshift [Ly α] \longrightarrow Probing the connection between IGM transmission and galaxies during cosmic reionization using JWST ASPIRE quasar fields

Xiangyu Jin The University of Arizona

Advisors: Xiaohui Fan and Jinyi Yang

EREBUS Collaboration and ASPIRE Team Jun 28, 2024, Cosmic Dawn at High Latitudes Conference

IGM during cosmic reionization Large scatter in IGM effective Rapid change in the ionizing photon mean free path at z>5 optical depth at z>5.5 Effective optical depth $\tau_{\rm eff} = -\ln \langle F/F_{\rm cont.} \rangle$ Measured over 50/h cMpc Dark $---- \propto (1+z)^{-5.4}$ $\tau \propto (1+z)^{4.3},$ Fan+2006 10^{2} $\tau \propto (1+z)^{11.2},$ 56.7 cMpc Barnett+2017 6 z=5.08 Bosman+2018 $\lambda_{\rm mfp}~(pMpc)$ Eilers + 2018 10^{1} Zhu+23Becker+2015-Lya eff Becker et al. (2021)This work, $Ly\alpha$ Bosman et al. (2021)This work, $Ly\beta$ Worseck et al. (2014) 10^{0} Prochaska et al. (2009)5.6 cMpc Fumagalli et al. (2013) z=5.93 Lusso et al. (2018)O'Meara et al. (2013) 10^{-1} 5.56.0 3.0 3.54.0 5.02.54.56.54.55.05.56.0 Transparent 4.0 z

Zhu et al., 2023

Yang et al., 2020 (See also Bosman et al., 2021, Laura's talk)

Large scale fluctuation in the IGM The topology of reionization

Davies et al., 2018

IGM transmission-LAE surface density Tension at the low IGM effective optical depth

z~5.7 Ly-alpha emitters selected using HSC NB 816

Christenson et al., 2023

ASPRE

A SPectroscopic survey of Biased Halos In the Reionization Era: A Quasar Legacy Survey

√65-hour JWST (GO 2078) PI: Feige Wang **100-hour ALMA (2022.1.01077.L)** ✓ Multi-wavelength extragalactic survey ✓ A diverse team with ~80 investigators

> \star Stellar emission from quasar host galaxies * Early black hole growth and AGN feedback *Cosmic reionization * Early metal enrichment

* The large scale environment and dark matter halos of the first quasars

 \star A spectroscopic survey of galaxies from cosmic dawn to the local universe

https://aspire-quasar.github.io

ASPIRE program (GO 2078) JWST NIRCam/WFSS observations in reionization-era quasar fields

473 [O III] emitters identified

5.5

6.0

[O III] emitters at the quasar redshift

[O III] emitters in the quasar Lyman-alpha forest see also Koki's talk

6.57.0Redshift Wang et al., in preparation

IGM transmission around [O III] emitters Measured within an "influence radius"

Jin et al., submitted

Excess IGM transmission around z<6.1[O III] emitters

Excess IGM transmission at different redshifts? The IGM-galaxy cross-correlation function result from the EIGER program

See also Daichi's talk

Excess IGM transmission at different redshifts? The IGM-galaxy cross-correlation function result from the EIGER program

z > 5.7: Excess IGM transmission @ $\geq 10/h$ cMpc Consistent with the fluctuating UVB models

z<5.7: Excess IGM transmission @ \geq 25/h cMpc Ly-alpha absorption within 5/h cMpc

See also Enrico's talk

Redshift evolution of scales of excess transmission Coincident with the fast redshift evolution of ionizing photon mean free paths 5.7<z<6.1 5.4<z<5.7 [O III] Redshift Scales showing excess >=10/h cMpc>=25/h cMpc IGM transmission around [O III] emitters $\propto (1+z)^{-5.4}$

Redshift evolution of ionizing photon mean free path

 10^{2} $\lambda_{\mathrm{mfp}}~(\mathrm{pMpc})$ 10^{1} 10^{0}

 10^{-1}

13

Stacked IGM Ly-alpha transmission Higher IGM transmission around [O III] emitters

Influence radius = $25.0 h^{-1} cMpc$

Earlier reionization around [O III] emitters

Summary

- There is an Ly-alpha absorption within 5/h cMpc from z<5.7 [O III] emitters.
- large-scale fluctuations in the ionizing background.
- supporting earlier reionization around [O III] emitters.

Email: xiangyujin@arizona.edu

• We find excess IGM Ly-alpha transmission around z>5.7 and z<5.7 [O III] emitters at scales beyond the ionizing photon mean free path at corresponding redshifts.

• We find the scatter in the IGM effective optical depth is likely associated with the

• We find the IGM patches around [O III] emitters reach the same optical depth at least dz~0.1 ahead of those IGM patches where no [O III] emitters are detected,

• We have new/incoming data from 6-10m ground-based telescopes covering the quasar Lyman-alpha forest to increase our sample size to 25 ASPIRE quasar fields.

