The Resolved Dust and ISM of a z=7.31 Rotating Disk

Cosmic Dawn at High Latitudes

Hiddo Algera (Hiroshima U/NAOJ)

Stockholm, Sweden 27 June 2024

Dust in the Epoch of Reionization

ALMA detections of dust continuum emission in distant galaxies demonstrate dust buildup can proceed rapidly

Watson et al. (2015)

Bowler et al. (2018)

Tamura et al. (2019)

The ALMA REBELS Survey

Cycle 7 ALMA Large Program

- 40 UV-bright galaxies at
 z_{phot} ≥ 6.5 scanned for the
 [C II]₁₅₈ line
- 27 lines detected (68%)
- 16 **dust** detections (40%)

Obscured Star Formation at z~7

• Massive Lyman-break galaxies show $f_{\rm obs} \approx 0.3 - 0.6$

1.00.8 sqo sqo 0.40.2

See also Fudamoto et al. (2020); Bowler et al. (2023); Mitsuhashi et al. (2023)

Obscured Star Formation at z~7

- Massive Lyman-break galaxies show $f_{\rm obs} \approx 0.3 - 0.6$
- Cosmic star formation rate density is ~30% obscured

$$-0.5$$

 (-0.5) -1.0
 -1.5 -1.5
 -2.0 -2.0
 -2.5 -3.0
 -3.0

See also Zavala et al. (2021); Barrufet et al. (2023); Fujimoto et al. (2023)

There appears to be a lot of dust at high redshift

But how does it get there so rapidly?

REBELS-25 at z=7.31

Brightest Band 6 continuum source in **REBELS**

Dust Continuum Emission in REBELS-25

3 mm (B3) - 0.45 mm (B9)

Algera et al. (2024b), submitted

Dust Continuum Emission in REBELS-25

• Massive reservoir of cold dust, $\log(M_{dust}/M_{\odot}) = 8.1^{+0.6}_{-0.4}$ $\rightarrow M_{dust}/M_{\star} = 0.8^{+2.0}_{-0.5}\%$

Supernova dust?

Dust production rates prior to the **reverse shock** (which destroys ~20 - 100% of dust)

 $[M_{\odot}]$ $\mathrm{m}_{\mathrm{dust}}$ 0.1

Schneider & Maiolino (2024)

Supernova dust?

Dust production rates prior to the **reverse shock** (which destroys ~20 - 100% of dust)

 $[M_{\odot}]$ $\mathrm{m}_{\mathrm{dust}}$ 0.1

Schneider & Maiolino (2024)

Supernova dust?

- Dust production rates prior to the **reverse shock** (which destroys ~20 - 100% of dust)
- Require efficient supernovae, and little dust destruction

 $[M_{\odot}]$ m_{dust} 0.1

REBELS-25

Schneider & Maiolino (2024)

Supernovae may not be sufficient: evidence for dust growth in the ISM?

Dust Growth in the ISM

Detection of the CO(7-6) line + PDR modeling implies a **dense ISM**

Hygate, **Algera** et al. in prep

Dust Growth in the ISM

A steep dust emissivity index (β_{IR}) can arise from large, coagulated dust grains

- Clements et al. (2018) \bigcirc
- Da Cunha et al. (2021) \bigcirc
- Ismail et al. (2023)
- McKay et al. (2023)
- Bendo et al. (2023) \bigcirc
- Liao et al. (2024) \bigcirc
- Tripodi et al. (2024)
- Marrone et al. (2018)
- \bigstar This Work

Algera et al. (2024b), submitted

JWST/NIRSpec IFU Metallicities

- Dust-corrected **R23** where possible; else lower limits from **Ne3O2**
- REBELS galaxies are **enriched**; $Z \gtrsim 0.2 Z_{\odot}$
- REBELS-25 may be near-**solar** metallicity

Rowland et al. (in prep)

Onto resolved scales with ALMA + JWST

A Resolved View of REBELS-25

700pc [CII]158 map of REBELS-25 reveals a rotating disk galaxy

Rowland et al. (2024)

A Rotating Disk at z=7.31

	Wisnioski+15, $0.67 < Q < 2$
	Wisnioski+15, $Q = 1$
	Rizzo+23
⊵	Lelli+23
Ā	Hodge+12
Ŧ	Liu+22
٠	Rizzo+20
•	Rizzo+21
-	Lelli+21
$\overline{\Delta}$	Fraternali+21
•	Parlanti+23
Ō.	Posses+23
•	Roman-Oliveira+23
٠	Neeleman+23
÷	Fujimoto+24
F	Amvrosiadis+24

Rowland et al. (2024)

Matched resolution ALMA Band 6 + 8 Observations

Pink: 158µm continuum (cold dust) Cyan: 88μ m continuum (warm dust) **Background:** JWST rest-UV emission

UV clumps miss ~90% of the star formation in REBELS-25

Algera et al. (in prep)

Matched resolution ALMA Band 6 + 8 Observations

Pink: [CII]₁₅₈ (neutral / molecular gas) Cyan: [OIII]₈₈ (ionized gas) Background: JWST [OIII]₅₀₀₇

- [CII]158 significantly more **extended** than [OIII]88
- [OIII]88 and [OIII]5007 emission peaks are spatially offset

Algera et al. (in prep)

Conclusions

- Dust is an important component of the ISM, even at $z \gtrsim 7$ - It obscures ~50% of SF in massive galaxies, and ~30% of the SFRD
- Dust build-up through **grain growth** likely important at high-z - The high dust mass, dense ISM, steep $\beta_{\rm IR}$ and high metallicity of **REBELS-25** (indirectly) support this
- Need to be cautious about interpreting unresolved ALMA + JWST measurements, as these potentially trace different regions