

Radiation-Driven Superwinds and LyC Escape in Local Reionization-Era Analogs

Lena Komarova

University of Michigan

Sally Oey Ricardo Amorín Rui Marques Coelho Chaves Svea Hernandez Angela Adamo Mattia Sirressi Sophia Flury Alberto Saldana-Lopez Matthew Hayes Anne Jaskot et al.

and LzLCS Team

komarova@umich.edu

Outflows in Green Peas - largest class of local LCEs

200-1000 km/s broad emission in [O III], Balmer lines

SDSS

Origin of the fast outflows and wing morphology?

LyC Escape Mechanisms

Supernovae

(Ma+2015, Zastrow+2013, Heckman+2011)

- Energy-driven, create cavities in ISM
- → But at low metallicity Z, SN onset is delayed

(Jecmen & Oey 2023, Sukhbold+2016)

>10 Myr

Radiation-driven superwinds

(Komarova+2021, Krumholz+2017, Thompson+2015)

Tiny clumps with low filling factor driven
by photon momentum: <u>LyC escape</u>

Flury+2024, in prep; Carr+2024, in prep: combination of both results in highest f_{esc}

Broad Wing Morphology

SN-driven outflows - integral of

Radiation-driven outflows → smooth,

power-law or exponential wings

Use broad wing morphology + galaxy properties to identify feedback mechanisms traced by broad wings

Sample

– 20 LCEs from <u>Low-redshift Lyman Continuum Survey</u> (LzLCS)
 (Flury+2022a,b)

- 6 Izotov Green Pea LCEs (Izotov+2016a,b, 2018a,b)

Data

- MIKE/Magellan, Xshooter/VLT, ISIS/WHT optical spectra
- → [O III]5007, Ha broad wings: morphology, width, luminosity
- LyC properties, stellar populations, line measurements from LzLCS (Flury+2022a,b)

Broad Wing Morphology Classification

Wing Morphology and Galaxy Properties: Preliminary

- Power-law wings in young, low-metallicity, high-ionization galaxies
- → Consistent with radiation-driven superwinds
 - Gaussian wings in older, higher-metallicity, lower-ionization galaxies
- Consistent with SN-driven superwinds

[Preliminary]

Linking Kinematics to LyC and Lya Properties

→ Strongest LCEs show predominantly power-law wings

→ Strongest Lya emitters show broadest, power-law wings

8

[Preliminary]

Linking Kinematics to Galaxy Properties

- → Faster winds in more compact, higher SFR density systems
 - Regardless of feedback mechanism

Haro 11: What's Hidden in Green Peas

- Closest (88 Mpc), first confirmed LCE

(Bergvall+2006, Leitet+2011)

- Our new HST/COS spectra show Knots B and C are LCEs
 - **Knot B** dominates observed LyC **luminosity**, $f_{esc} \sim 3\%$
 - **Knot C** has higher $f_{\rm esc} \sim 5\%$

Wavelength (Å)

Komarova et al. 2024 ApJ 967 117

10

Insights from Resolving Haro 11

- → Leaked LyC luminosity is as important to EoR as f_{esc}
 - Hinges on ionizing photon production
- → Lya escape fractions trace LyC escape in individ. regions
- → But not leaked Lyman luminosities

- Knot A shows high ionization, low optical depth
 - Density-bounded conditions yet no detection
 - → Highly anisotropic LyC escape

-

Summary

 Use broad wing morphology + galaxy properties of local LCEs to constrain LyC escape mechanisms

- Power law profiles seen in young, low Z, high O₃₂ galaxies
 - → Link to radiation-driven superwinds
- Gaussian profiles seen in older, higher-Z, lower-O₃₂ galaxies
 - → Link to SNe-driven superwinds

- Haro 11 shows complexity and multiplicity of LyC escape mechanisms
 - → Importance of intrinsic LyC luminosity, age and SFR, to leaked LyC

- → All morphologies show a range of wind speeds and luminosities
- → No bias from wing SNR

Sample

J1154+2443	J004743+015440
J0901+2119	J003601+003307
J1442-0209	J091113+183108
J0925+1403	J011309+000223
J1011+1947	J012217+052044
J1152+3400	J081409+211459
	J095838+202508
	J091703+315221
	J105331+523753
	J144010+461937
	J113304+651341
	J115855+312559
	J124835+123403
	J131037+214817
	J131419+104739
	J134559+112848
	J164607+313054
	J123519+063556
	J124423+021540
	J012910+145935

Two Modes of LyC Escape Flury+2024 in prep; Carr+2024 in prep

15