Cosmic Dawn at High Latitudes

PROBING BURSTY STAR FORMATION In the first galaxies with JWST

UNIVERSITY OF Copenhagen

25 June 2024

Swedish Royal Academy of Sciences

Viola Gelli

viola.gelli@nbi.ku.dk

Surprising abundance of UV bright galaxies at z > 10

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt}$

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt}$

Higher SF efficiency at high-z? [Dekel+23, Mason+23]

VIOLA GELLI - COSMIC DAWN CENTER

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt}$

Higher SF efficiency at high-z? [Dekel+23, Mason+23] More top-heavy IMF?

[Rasmussen Cueto+23]

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt}$ Higher SF efficiency at high-z? [Dekel+23, Mason+23] More top-heavy IMF? [Rasmussen Cueto+23] Dust removal? [Ferrara+23]

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt}$ Higher SF efficiency at high-z? [Dekel+23, Mason+23] More top-heavy IMF? [Rasmussen Cueto+23] Dust removal? [Ferrara+23]

Scatter in the $M_{UV} - M_h$ relation?

Surprising abundance of UV bright galaxies at z > 10

Why? $L_{\rm UV} \propto SFR \propto \epsilon_{\star} f_b \frac{dM_h}{dt} + N(\sigma)$ Higher SF efficiency at high-z? [Dekel+23, Mason+23] More top-heavy IMF? [Rasmussen Cueto+23] Dust removal? [Ferrara+23]

Scatter in the $M_{UV} - M_h$ relation?

SIMULATIONS PREDICTIONS

Strongly feedback regulated and time-variable SFH

Gelli, Salvadori, Ferrara, Pallottini, Carniani 2023, ApJL

SIMULATIONS PREDICTIONS

- Strongly feedback regulated and time-variable SFH
- Galaxies in *low-mass* halos are the most bursty and sensitive to feedback processes

Gelli, Salvadori, Ferrara, Pallottini, Carniani 2023, ApJL

SIMULATIONS PREDICTIONS

....

- Strongly feedback regulated and *time-variable SFH*
- Galaxies in *low-mass* halos are the most bursty and sensitive to feedback processes

JWST OBSERVATIONS

Strait+23)

Gelli, Salvadori, Ferrara, Pallottini, Carniani 2023, ApJL

Detections of the first low-mass *quenched* post starburst galaxies (Looser+23,

SIMULATIONS PREDICTIONS

....

- Strongly feedback regulated and time-variable SFH
- Galaxies in *low-mass* halos are the most bursty and sensitive to feedback processes

Gelli, Salvadori, Ferrara, Pallottini, Carniani 2023, ApJL

JWST OBSERVATIONS

Detections of the first low-mass *quenched* post starburst galaxies (Looser+23, Strait+23)

Large *scatter* in the observed high-z galaxies properties at fixed magnitude

SIMULATIONS PREDICTIONS $\sigma_{ m UV}$

.....

- Strongly feedback regulated and time-variable SFH
- Low-mass galaxies are the most bursty and sensitive to feedback processes

JWST OB

VIOLA GELLI - COSMIC DAWN CENTER

- Detections of the first low-mass *quenched* post starburst galaxies
- Large *scatter* in the observed high-z galaxies properties at fixed magnitude

es

E:

Strongly feedback regulated and time-variable S

Gelli, Mason & Hayward 2024 arXiv:2405.13108

to feedback processes

....

JWST OB

VIOLA GELLI - COSMIC DAWN CENTER

- Detections of the first low-mass **quenched** post starburst galaxies
- Large *scatter* in the observed high-z galaxies properties at fixed magnitude

es

E:

Gelli, Mason & Hayward 2024

arXiv:2405.13108

.....

What are the implications of a <u>mass-dependent scatter</u>?

Can we probe stochastic star-formation with JWST?

·

→ Increasing scatter towards low halo mass:

VIOLA GELLI - COSMIC DAWN CENTER

MASS-DEPENDENT UV SCATTER MODEL

·

Increasing scatter towards low halo mass:

 $\sigma_{UV} \propto v_{esc}^{-1} \propto M_h^{-1/3}$

- Redshift independent $\sigma_{UV}(M_h)$ and $\epsilon_{\star}(M_h)$ z = 5 calibration

VIOLA GELLI - COSMIC DAWN CENTER

MASS-DEPENDENT UV SCATTER MODEL

...

Increasing scatter towards low halo mass:

$$\sigma_{UV} \propto v_{esc}^{-1} \propto M_h^{-1/3}$$

→ <u>Redshift independent</u> $\sigma_{UV}(M_h)$ and $\varepsilon_{\star}(M_h)$ z = 5 calibration

 \rightarrow Probability for a halo M_h to have luminosity M_{UV}

$$p(M_{\rm UV} \mid M_h) = \frac{1}{\sqrt{2\pi}\sigma_{\rm UV}(M_h)} \exp\left(\frac{-[M_{\rm UV} - M_{\rm UV}]}{2\sigma_{\rm UV}^2(M_h)}\right)$$

MASS-DEPENDENT UV SCATTER MODEL

Gelli, Mason & Hayward 2024

.....

Increasing scatter towards low halo mass:

 $\sigma_{UV} \propto v_{esc}^{-1} \propto M_h^{-1/3}$

→ Redshift independent $\sigma_{UV}(M_h)$ and $\epsilon_{\star}(M_h)$ = 5 colliberation = 5 collibera

MASS-DEPENDENT UV SCATTER MODEL

In ACDM low-mass haloes dominant at early epochs: the UV-scatter effect will be more important towards higher-z

Gelli, Mason & Hayward 2024

LUMINOSITY FUNCTIONS

....

LUMINOSITY FUNCTIONS

...

LUMINOSITY FUNCTIONS

LUMINOSITY FUNCTIONS

...

LUMINOSITY FUNCTIONS

• •

REIONIZATION HISTORY

...

REIONIZATION HISTORY

...

REIONIZATION HISTORY

...

REIONIZATION HISTORY

...

REIONIZATION HISTORY

...

...

...

VIOLA GELLI - COSMIC DAWN CENTER

CLUSTERING OF GALAXIES

VIOLA GELLI - COSMIC DAWN CENTER

CLUSTERING OF GALAXIES

CLUSTERING OF GALAXIES

....

25 JUNE 2024 - COSMIC DAWN AT HIGH LATITUDES

CLUSTERING OF GALAXIES

....

Stochastic star formation leads to lower galaxy bias at higher redshifts

25 JUNE 2024 - COSMIC DAWN AT HIGH LATITUDES

CLUSTERING OF GALAXIES

...

Stochastic star formation leads to **lower galaxy bias** at higher redshifts

...

SPECTRAL ENERGY DISTRIBUTIONS

and **emission line strengths** for galaxies with the same M_{UV}

CONCLUSIONS

- Bursty star formation at high-*z* leads to a stochasticity in the UV luminosities of galaxies
- A σ_{UV} increasing towards lower M_h predicts:
 - Higher UV LFs towards higher *z*. \bigcirc
 - Reionization starts earlier and is more gradual
 - Lower galaxy bias \bigcirc
 - Broad ranges of β_{UV} , Balmer breaks and emission ()line strengths for galaxies with the same M_{IIV}
- Stochasticity is not enough to reproduce z > 12 LFs: enhanced SFE at high-z?

viola.gelli@nbi.ku.dk

25 JUNE 2024 - COSMIC DAWN AT HIGH LATITUDES

LUMINOSITY DENSITY

· · ·

QUIESCENT LOW-MASS GALAXIES IN SIMULATIONS

STAR FORMATION HISTORIES

Feedback-regulated, bursty evolution

Periods of quiescence

20 1.5 1.0 0.5 0.0 -0.51.5 1.0 0.5 0.0 -0.5 $\log SFR/(M_{\odot} yr^{-1})$ 1.5 1.0 0.5 0.0 -0.51.5 1.0 0.5 0.0 -0.5 1.5 1.0 0.5 0.0 -0.5 200

Gelli et al. 2023a, ApJL

LILIUM z = 7.3SFR = 0 $\log M_{\star}/\mathrm{M}_{\odot} = 8.7$ $t_{\rm quench} \sim 20 \, {\rm Myr}$ $f_{duty} \sim 0.8$

QUIESCENT LOW-MASS GALAXIES IN SIMULATIONS

Gelli et al. 2024, ApJL

LILIUM

$$z = 7.3$$

 $SFR = 0$
 $\log M_*/M_{\odot} =$
 $t_{\rm quench} \sim 20 \,\rm N$
 $f_{duty} \sim 0.8$

QUIESCENT LOW-MASS GALAXIES IN SIMULATIONS

6 < *z* < 8

AT $M_{\star} < 10^{8.3} M_{\odot}$

INTERPRETING JADES-GS-Z7-01-QU

Gelli et al. 2024, ApJL

ABRUPT QUENCHING is needed in JADES-GS-Z7-01-QU

CAN SN QUENCH SF IN HIGH-Z GALAXIES?

Energy rate injected by SNe

Top-hat SFH

Minimum SFR required for a burst to suppress SF

Gelli et al. 2024, arXiv:2310.03065

SN-QUENCHING CONDITION

CAN SN QUENCH SF IN HIGH-Z GALAXIES?

SN-QUENCHING CONDITION

Gelli et al. 2024, arXiv:2310.03065

 $SFR \ge \frac{f_b M_h(z, T_{vir})}{1} \equiv SFR_{min}$ $\tau + \Delta t_b$

