Illuminating the Young Universe with FIRE: What drives the evolution of the cosmic star formation rate density?

Robert Feldmann Department of Astrophysics University of Zurich

in collaboration with James S. Bullock (UCI), Claude-André Faucher-Giguère (Northwestern), Philip F. Hopkins (Caltech), Dušan Kereš (UCSD), Mike Boylan-Kolchin (UT), and the FIRE collaboration

> Cosmic Dawn at High Latitudes Stockholm June 24, 2024

arXiv:2407.0267

Swiss National Science Foundation

The Cosmic SFR in the Era of JWST

The high-z challenge:	27
 Many models predict a fast decline of SFR and UV luminosity density at z>10 	27. 26.
 Higher than expected SFR and UV luminosity density observed at z>10 (e.g., Harikane+2023, Donnan+2023a,b, Finkelstein+2023, Bouwens+2023) 	[^{ε–} 26.
Various proposed explanations:	L 25. H
 SF more efficient at higher z 	ທ 25. ອ
 bursty SF (higher scatter) 	لة 10 12
 AGN contribution to UV luminosity 	1200
●top-heavy IMF	ິ 24. <u>ອ</u>
Approach:	23.
 Cosmological simulations (FIREbox^{HR}) 	23

Ζ

Wha

- Part of Feedback in Realistic Environments (FIRE) project (He
- Suite of cosmological **volume** simulations

FIREbox simulation

- First FIRE cosmological volume simulation (Feldmann+
- L=22 cMpc, Planck-15 cosmology
- run to z=0, ~1 billion gas particles, mass resolution

FIREbox^{*HR*} simulation

- same volume, 8 x more particles, mass resolution 78
- stops at z~6

• Run with **standard** FIRE-2 physics (Hopkins+2018)

- cooling to 10K
- SF in dense (>1000 Hcc), self-gravitating gas
- various channels for stellar feedback
- cosmic UV background (Faucher-Giguère+2009)
- no AGN feedback

Validated in numerous previous zoom-in simulations with FIRE-2 physics

•Amiga Halo Finder for halo properties

- include halos with $M_{halo} > 10^7 \; M_{\odot}$
- 100k 500k halos at z~6-12
- •Galaxy properties within 3 proper kpc radii

- •UV luminosity of galaxies
 - for galaxies in sufficiently massive halos ($\geq 10^9 M_{\odot}$) with dust radiative transfer code **SKIRT v9** (Camps & Baes 2020)
 - for other galaxies ignore dust contributions

Analysis

Which galaxies dominate the UV luminosity density at *z* ~ 6 - 12?

Answer: Moderately faint galaxies (-18.5 < M_{UV} < -17.5), <u>not</u> massive, bright galaxies (M_{UV} < -19)

UV LF in FIREbox^{HR}

- Good agreement with observed UV luminosity function at $z \sim 7 10$
- Deviation from Schechter function at $z \le 8$ for faint magnitudes (M_{UV} > -15)
- Dust attenuation affects only bright end ($M_{UV} < -19$)
- at z > 10: steeper faint end, contribution from low luminosity (not well resolved) halos

before reionization

during reionization

UV luminosity density in FIREbox^{*HR*}

- Observations: Fitted UV Luminosity functions integrated down to $M_{UV} = -17$
- Simulation: Sum UV luminosity in galaxies with $M_{UV} = -17$

→ FIREbox^{HR} reproduces observed **UV** luminosity density, including the **`excess'** at $z \ge 10$

26.5 \mathbb{O} Mpc 26.0 25.5 ا^ا 25.0 erg 500 [24.5 م 24.0 δ 23.5 -Q 23.0

 \odot

Star formation efficiency in FIREbox^{*HR*}

 \bullet

SFE redshift-independent & only weakly halo mass-dependent (for $M_{halo} \sim 10^9 - 10^{11} M_{\odot}$) comparably high SFE for intermediate mass halos that dominate UV luminosity density

• Assume SFE is lognormal with redshift-independent SFE — halo mass relation from FIREbox^{*HR*} (provides mean and scatter)

$$\rho_{\rm UV}(z) = \frac{1}{\kappa} \int_{-\infty}^{\infty} d \lg M \frac{dn}{d \lg M} \dot{M} \langle \mathcal{S} \rangle_{\rm eff}.$$

 Halo number density for any mass and redshift from HMF (Murray+2014), halo accretion rate from Behroozi & Silk 2015

Implications

- UV luminosity density does not decline as a power law with redshift, but steeper decline at higher z
- no EDGE like signal from sources with $M_{UV} < -12$
- but ignore Pop III, low mass halos

Theoretical model

Ζ

What drives the high UV luminosity density at z>10?

• Can address this question with the theoretical model

$$\kappa \frac{d\rho_{\rm UV}}{d \lg M} = \left[\dot{M} \frac{dn}{d \lg M} \right] \langle \rm SFE \rangle_{\rm eff}$$

- •UV luminosity density dominated by intermediate mass halos ($M_{\rm halo}\sim 10^9-10^{11}\,M_{\odot}$)
- the responsible halo mass range decreases with increasing redshift (b/c SHAR increases and HMF decreases)
- for shallower slope, stronger shift towards lower masses at higher z → higher number density at lower masses partly compensates for decrease of number density at higher z

 \clubsuit Increased contribution from more numerous galaxies in lower mass halos at higher z if slope is less steep

Implication for galaxies during re-ionization

- Theoretical model in line with observed reionization history if $lg(f_{esc}\xi_{ion}[Hz erg^{-1}]) \sim 24.5 24.7$
- Re-ionization mid-point $z \sim 6.8 7.6$, duration $\Delta z \sim 1.4$ (25-75%), $\Delta z \sim 2.8$ (10-90%).
- Inferred escape fractions are 5-8% (12-20%, 30-50%) if $lg(\xi_{ion}[Hz erg^{-1}]) \sim 25.8 (25.4, 25.0)$
- For escape fraction of 20% (Ma+2020), we get $lg(\xi_{ion}[Hz erg^{-1}]) \sim 25.2 25.4$

- FIREbox^{HR} predicts (approx.) non-evolving star formation efficiency halo mass relation
- No increase in SFE with increasing redshift!
- Theoretical model based on non-evolving star formation efficiency halo mass relation from FIREbox^{HR}
- mass halos towards higher z

Summary

• Introduced FIREbox^{HR}: cosmological volume simulation with FIRE-2 physics to $z\sim6$ at 7800 M_{\odot} baryonic resolution • Simulation results in good agreement with observed UV luminosity density and UV LFs, no tuning to high-z regime

• Model suggests origin of high UV luminosity density is additional contributions from galaxies residing in lower

•Ionizing photon production efficiency is $lg(\xi_{ion}[Hz erg^{-1}]) \sim 25.2 - 25.4$ if escape fraction is ~20%

See arXiv:2407.02674 for more details! Thank you!

