Redshifted 21-cm bispectrum from CD-EoR: Impact of Source Model and IGM Physics

Suman Majumdar

Department of Astronomy, Astrophysics and Space Engineering Indian Institute of Technology Indore

arXiv: 2406.03118 and 2207.09128

Collaborators: Leon Noble (IIT Indore), Mohammad Kamran (Uppsala University), Chandra Shekhar Murmu (IIT Indore), Raghunath Ghara (University of Pennsylvania), Garrelt Mellema (Stockholm University), Ilian T. Iliev (University of Sussex) and Jonathan R. Pritchard (Imperial College London)

Mohammad Kamran

Postdoc at Uppsala University PhD from IIT Indore (2022)

arXiv: 2207.09128

Leon Noble

PhD candidate at IIT Indore

arXiv: 2406.03118

How we can see the IGM during EoR

21-cm differential brightness temperature

How to interpret the observations?

Observable summary statistics

21-cm Power spectrum

$$<\Delta(\vec{k}_1)\Delta^*(\vec{k}_2) >= V\delta_D^3(\vec{k}_1 - \vec{k}_2)P(k)$$
$$\Delta(\vec{k}) \xrightarrow{\mathcal{FT}} \delta T_b$$

Power spectrum can completely characterize the statistical properties of a signal i.e. Gaussian in nature.

IGM 21-cm signal from EoR is highly non-Gaussian

Progress of reionization

Various ways of quantifying non-Gaussianity

- One point statistics \rightarrow Skewness, Kurtosis \rightarrow Watkinson et al 2014 etc
- Position dependent power spectrum \rightarrow Giri et al 2019 etc
- Wavelet Scattering Transforms \rightarrow Greig et al 2022, Hoti et al 2024 etc
- Different image based statistics → Bubble Size Distribution, Minkowski functionals, Largest Cluster Statistics → Iliev et al 2005, 2007, Friedrich et al. 2010, Kakiichi et al. 2017, Giri et al. 2017, 2018, Pathak et al 2022, Dasgupta et al 2023 etc

21-cm bispectrum

 $<\Delta(ec{k}_1)\Delta(ec{k}_2)\Delta(ec{k}_3)>=V\delta^K_{ec{k}_1+ec{k}_2+ec{k}_3,0}B(ec{k}_1,ec{k}_2,ec{k}_3)$

 $\Delta(\vec{k}) \xrightarrow{\mathcal{FT}} \delta T_b$

21-cm bispectrum

 $<\Delta(ec{k}_1)\Delta(ec{k}_2)\Delta(ec{k}_3)>=V\delta^K_{ec{k}_1+ec{k}_2+ec{k}_3,0}B(ec{k}_1,ec{k}_2,ec{k}_3)$ $ec{k_2}$) $\Delta(\vec{k}) \xrightarrow{\mathcal{F}} \delta T_b$ $ec{k_3}$ $ec{k_2}$ $ec{k_3}$ $\Delta \left(\vec{k_1} \right)$ $ec{k_1}$

Unique triangles in the Fourier space

Bharadwaj et al 2020, Majumdar et al 2020, Kamran et al 2020, 2021

Squeezed-limit bispectrum

Detectability of the squeezed-limit bispectrum with SKA

Tiwari, SM et al 2022

D)etectabi	Triangles	Direct	Gridded	Туре		
			EoR0			14m	with SKA	
			$k_1 = k_2 = k_3 = 0.007$	$0.166\pm2.5e-7$	$10.4\pm4.1e-8$	Equilateral		
$\Delta^3(k_1, n, \cos \theta) [\mathrm{mK}]^3$			$k_1 = 0.2, k_2 = k_3 = 0.1$	-0.266 ± 0.0004	921.2 ± 0.3	Trott,	.SM et al 201	9
	5		$k_1 = 0.4, k_2 = k_3 = 0.2$	$\textbf{2.84} \pm \textbf{0.0044}$	-1766.2 ± 0.6	Isosceles	Powerspectrum	
	105		$k_1 = 0.6, k_2 = k_3 = 0.3$	-4.87 ± 0.063	-427.8 ± 5.8	Isosceles	Isosceles Bispectrum	
		Coeval	$k_1 = 1.0, k_2 = k_3 = 0.5$	$\textbf{3.45} \pm \textbf{0.60}$	$\textbf{129.4} \pm \textbf{108.9}$	Isosceles	Unique Bispectrum	
			EoR0			28m		
	10^{4}		$k_1 = k_2 = k_3 = 0.014$	$-0.019 \pm 1.4e - 7$	$-29.3 \pm 8.1e - 6$	Equilateral	Set-1	
			$k_1 = 0.2, k_2 = k_3 = 0.1$	-0.14 ± 0.002	-594.5 ± 4.0	Isosceles		
			$k_1 = 0.4, k_2 = k_3 = 0.2$	$\textbf{0.360} \pm \textbf{0.009}$	948.9 ± 7.2	Isosceles		
	10 ³		$k_1 = 0.6, k_2 = k_3 = 0.3$	$\textbf{0.98} \pm \textbf{0.18}$	-793.1 ± 37.6	Isosceles		
			$k_1 = 1.0, k_2 = k_3 = 0.5$	$\textbf{1.08} \pm \textbf{1.78}$	19450 ± 752	Isosceles	A l	
			EoR1			14m		
$/\Delta_{\rm C}^3$	2		$k_1 = k_2 = k_3 = 0.007$	$-0.004 \pm 1.2e - 8$	$0.61 \pm 3.2e - 9$	Equilateral		
	10^{2}		$k_1 = 0.2, k_2 = k_3 = 0.1$	0.044 ± 0.0001	-666.5 ± 0.03	Isosceles		
	4		$k_1 = 0.4, k_2 = k_3 = 0.2$	0.19 ± 0.0004	3157.0 ± 0.82	Isosceles		
$\Delta^3_{\rm C})$	2	1($k_1 = 0.6, k_2 = k_3 = 0.3$	-0.064 ± 0.007	-1861.9 ± 0.54	Isosceles		
Ĩ	1		$k_1 = 1.0, k_2 = k_3 = 0.5$	$-$ 0.12 \pm 0.13	5907.5 ± 56.1	Isosceles		
$(\Delta^3_{ m LC})$	0 -1	0.1	EoR1			28m		
			$k_1 = k_2 = k_3 = 0.014$	$0.0006\pm7.0e-9$	$17.1\pm8.4e-7$	Equilateral		
			$k_1 = 0.2, k_2 = k_3 = 0.1$	$\textbf{0.0001} \pm \textbf{0.0005}$	927.7 ± 0.43	Isosceles	$n_{\rm mfp}({ m Mpc})$	
			$k_1 = 0.4, k_2 = k_3 = 0.2$	-0.082 ± 0.002	-245.3 ± 0.15	Isosceles		
	N/	Iondal SM	$k_1 = 0.6, k_2 = k_3 = 0.3$	$\textbf{0.012} \pm \textbf{0.030}$	5881.8 ± 10.4	Isosceles	al 2022	13
	IVI		$k_1 = 1.0, k_2 = k_3 = 0.5$	$\textbf{6.2} \pm \textbf{1.2}$	$\textbf{4257.6} \pm \textbf{15.6}$	Isosceles		

Squeezed-limit bispectrum

- Among all possible unique k-triangles, squeezed-limit triangle bispectrum has maximum magnitude
 (Majumdar et al. 2018, 2020; Hutter et al. 2019, Watkinson et al 2021, Kamran, SM et al. 2021, 2022, Tiwari, SM et al. 2022, Gill, SM et al. 2023, Raste et al. 2024).
- Highest detection probability by SKA (Mondal, SM et al. 2021, Tiwari, SM, et al. 2022).

We will focus on large scale ($k_1 \sim 0.16 \text{ Mpc}^{-1}$) squeezed limit bispectrum.

Epoch of Reionization 21-cm bispectrum

Impact of the sources of reionization on 21-cm signal

Choudhury et al 2009; Watkinson et al. 2014; Majumdar et al. 2016; Eide et al. 2018; Hutter et al. 2019; Watkinson et al. 2021 Pathak et al. 2022; Raste et al 2024; Schaeffer et al 2024,..... and many more

Impact of the sources of reionization on the 21-cm bispectrum

- Impact of various reionization morphologies on the 21-cm bispectrum
- To what extent the 21-cm bispectrum can distinguish between different reionization morphologies 17

Reionization scenarios

Reionization scenarios

Reionization scenarios

Combination of inside-out and outside-in

Evolution of squeezed-limit bispectrum: Combination of inside-out and outside-in $z = 9.16, x_{\rm HI} = 0.90$ $z\,{=}\,8.17, x_{ m HI}\,{=}\,0.72$ $z = 7.66, x_{ m HI} = 0.50$ $z = 7.22, x_{ m HI} = 0.20$

Progress of reionization

lower neutral fraction

Magnitude differences in 21-cm bispectrum between different reionization scenarios w. r. t. Fiducial

Power spectrum vs bispectrum

Majumdar et al. 2016, arXiv: 1509.07518

Summary I

- 21-cm bispectrum can capture the time evolving non-Gaussianity in different reionization scenarios.
- It can distinguish between different reionization scenarios.
- It can distinguish reionization scenarios better than the 21-cm power spectrum thanks to its sign and sequence of sign changes.

Noble,.., SM et al. 2024, arXiv: 2406.03118

Cosmic Dawn 21-cm bispectrum

To identify which IGM process is dominating at what cosmic time (during CD) using the 21-cm bispectrum

Disentangling the Lya coupling and X-ray heating

$$\delta T_{\rm b}(\mathbf{r},z) = 27 x_{\rm HI}(\mathbf{r},z) \left(1 - \frac{T_{\rm CMB}(z)}{T_{\rm S}(\mathbf{r},z)} \right) \left(1 + \delta_{\rm b}(\mathbf{r},z) \right) \left(\frac{\Omega_{\rm b}h^2}{0.023} \right) \left(\frac{0.15}{\Omega_{\rm m}h^2} \frac{1+z}{10} \right)^{1/2} \,\mathrm{mK}$$

IGM physics makes the spatial and temporal fluctuations of the CD-EoR 21-cm signal highly non-Gaussian!

Image Credit: Raghunath Ghara

HI 21-cm Brightness Temperature Fluctuations

Simulations

➤ Dark matter N-body simulation → To generate dark matter distributions.
J. Harnois-Déraps+ 2013

➤ Radiative transfer simulation \rightarrow GRIZZLY \rightarrow To generate CD 21-cm maps. Ghara+ 2015, 2018

Raghunath Ghara

Postdoc at the University of Pennsylvania

Simulations Different CD scenarios

Scenarios Processes	Model-a ₀	Model-a	Model-b	Model-c
Lyα-coupling	Yes	Yes	Saturated	Yes
X-ray heating	No	No	Yes	Yes
Ionization	No	Yes	Yes	Yes

Importance of first three scenarios:

Used to identify the unique signature of each IGM process on the 21-cm bispectrum \Rightarrow Helps in explaining the bispectrum from Model-c, the most realistic scenario.

Sign: Negative during the entire CD

Model- a_0 until $z \sim 13$

Late stage Early stage \leftarrow Redshift (z) **Squeezed-limit bispectrum** 100 $\delta \bar{T}_{\mathrm{b}} = -0.4 \,\mathrm{mK}$ -124.2 mK $\delta \bar{T}_{\rm b} = -296.8 \text{ mK}$ $\delta \bar{T}_{\rm b} = -362.6 \text{ mK}$ $\delta \bar{T}_{ m h} = -10.1 \, { m mK}$ $\delta T_{ m b}$ 10⁶F $ar{x}_{ m HI}=1.00$ $ar{x}_{ ext{HI}}=1.00$ $\bar{x}_{ m HI} = 1.00$ $\bar{x}_{\rm HI} = 1.00$ $\bar{x}_{\mathrm{HI}} = 1.00$ $Model - a_0$ 50 10^{5} $\stackrel{\circ}{\stackrel{150}{\simeq}} z = 17.21$ z = 13.91z = 11.55z = 9.03z = 15.60Model – a 10^{4} 10^{3} 50 10^{2} Sq **Model-a**₀: Lyα coupling 10^{1} $\delta ar{T}_{ m b} = -10.1~{ m mK}$ $\delta \bar{T}_{ m b} = -0.4\,{ m mK}$ $\delta \bar{T}_{\rm b} = -124.0 \, {\rm mK} \, \delta \bar{T}_{\rm b} = -291.2 \, {\rm mK} \, \delta \bar{T}_{\rm b} = -318.3 \, {\rm mK}$ -100200 k_3 $ar{x}_{ m HI}=1.00$ $ar{x}_{ m HI}=1.00$ $\bar{x}_{\rm HL} = 0.98$ $ar{x}_{ m HI}=0.91$ $\bar{x}_{\rm HI}$ 0.99 $\stackrel{ m 2d}{\stackrel{ m 150}{ m M}}_{ m 100}$ $^{-150}$ \mathbf{F} -20050Model-a: Lya coupling+ photo-ionization 0 -250 $100 \ 150 \ 200 \ 0 \ 50$ 50 50 100 150 200 Mpc Mpc $k_1 = 0.16 \, { m Mpc}^{-1}$ -10° 17.515.012.510.0

21-cm bispectrum as a probe of IGM physics during CD

Bispectrum for Model-a agrees well with Model-a₀ until $z \sim 13$

Redshift (z)

At z < 13, sign reversal.

 \leftarrow

Lya background.

Sign is negative as the signal is in absorption.

Positive bispectrum due to heating

Kamran,.., SM et al 2022, arXiv: 2207.09128

Power spectrum vs bispectrum

Bispectrum via its sign and sign changes can conclusively tells us which IGM process dominates the 21-cm fluctuations at what cosmic time.

Power spectrum \Rightarrow always +ve \Rightarrow it is difficult to unequivocally identify these transitions on the basis of the power spectrum alone.

Robustness of the bispectrum

Kamran,.., SM et al 2022, arXiv: 2207.09128

Impact of different source models

Kamran,.., SM et al 2022, arXiv: 2207.09128

Summary II

- CD 21-cm signal is highly non-Gaussian which the bispectrum statistic can potentially capture.
 - The bispectrum can probe the IGM physics that sources the non-Gaussianity in the signal.
 - The bispectrum features can be used as a confirmative test for the 21-cm observations using the next-generation telescopes such as SKA.

The sign of the bispectrum can tell us the relative contrast of the fluctuations in the 21-cm signal with respect to its background. The sign, shape and the sequence of sign change in the bispectrum works as a smoking gun for the dominant physical processes in the IGM.

Magnitude differences in 21-cm bispectrum between different reionization scenarios w. r. t. Fiducial

Magnitude differences in 21-cm bispectrum between different reionization scenarios w. r. t. Fiducial

Large scale signal -ve

Bharadwaj & Ali 2004 Bharadwaj & Pandey 2005

Strong -ve signal in a weak -ve background Large scale signal -ve

zero signal in a -ve background

Large scale signal +ve

-ve signal in a +ve background Large scale signal -ve

Impact of dark matter models on 21-cm signal bispectrum

Astrophysical parameters remain fixed

Saxena et al. 2020, MNRAS, 497, 2941

Relative differences between the 21-cm bispectra for WDM and CDM models varies between 10% – 300% for all unique k-triangles

Saxena et al. 2020, MNRAS, 497, 2941