Mapping the timing and morphology of the epoch of reionization with Lyman alpha

Andrei Mesinger

European Research Council

Until recently, the timing of the EoR was fairly uncertain...

Game changer: XQR-30 super high-quality QSO spectra at z=5.8-6.6 using X-Shooter on VLT

total sample >40 spectra probing forest at 5<z<6.4

Forward modeling: Lyα forest + UV LFs + CMB τ

Qin, AM+, in prep

 $Ly\alpha$ opacity CDF

Movie credit: Y. Qin

Forest τ_{eff} distributions

Joint fit over all redshift bins! No recalibration at each redshift, hyperparameters, removing mean flux, ad-hoc tuning / effective parameters, artificially scaling mfp or emissivity vs z, etc.

Qin, AM+ in prep

Average IGM properties

Consistent with data and IGMparameter studies

None of these data points are used in the likelihood!

None of these data points are used in the likelihood! Qin, AM+ in prep

Inferred EoR history

Lya forest + τ_e + UV LF

None of these data points are used in the likelihood! Qin, AM+ in prep

Inferred EoR history

Inferred EoR history

None of these data points are used in the likelihood! Qin, AM+ in prep

Which galaxies reionize the Universe?

all models agree that the escape fraction has to **decrease with mass**

Qin, AM+ in prep

ΔMuv ~ 2-3 model-to-model scatter in inferred galaxy contribution to EoR

None of these data points are used in the likelihood! Qin, AM+ in prep

Inferred EoR history

Unfortunately, the Lyα forest does not have the dynamic range to probe EoR morphology

We need other probes to understand morphology...

Qin+2021

Lyman alpha from galaxies is a great tool to study EoR topology NOW x_{HI}=0.51

Ionization morphology allows us to:

- confirm which galaxies drive reionization

during reionization, cosmic HI patches absorb Ly α photons in the damping wing of the line

• connect the growth of individual cosmic HII regions to the properties of galaxies inside them • connect the JWST-detectable galaxies to the thousands of surrounding galaxies too faint to detect

Exciting recent observations of galaxy groups

e.g. Tilvi+20; Endsley & Stark 22; Jung+22; Saxena+23; Whitler+23; Hayes & Scarlatta 23; Umeda+23; Witstock+24

Exciting recent observations of galaxy groups

e.g. Tilvi+20; Endsley & Stark 22; Jung+22; Saxena+23; Whitler+23; Hayes & Scarlatta 23; Umeda+23; Witstock+24

but...

Analysis of surrounding HII morphology is very approximate / qualitative...

- thousands of fainter galaxies)
- talk)

• typically observed galaxies are treated individually?!? (HII regions come from the cumulative radiation of

• assume uniform reionization?!? (reionization is patchy -> scatter and bias e.g. AM & Furlanetto 08) • ignores or simplifies many sources of **stochasticity** when assuming **intrinsic emission?!? (e.g. see lvan's**

New frameworks for studying EoR topology using galaxy "groups"

in collaboration with Ivan Nikolić (SNS), Ting-Yi Lu (DAWN), Charlotte Mason (DAWN)

Inferring bubbles around galaxies

GOAL: Infer the position and size of an HII region, given galaxy observations

 $P(\mathcal{O}, R_b | \mathbf{x}^i, f^i_{\alpha}(\lambda), M^i_{\mu\nu}, z)$

Inferring bubbles around galaxies

GOAL: Infer the position and size of an HII region, given galaxy observations

Forward model sources of stochasticity:

- global neutral fraction
- surrounding patchy EoR topology
- galaxy location
- Muv
- Ly α intrinsic flux (Δv , EW)
- NIRSpec noise

 $P(\mathcal{O}, R_b | \mathbf{x}^i, f^i_{\alpha}(\lambda), M^i_{\mu\nu}, z)$

How many galaxies are needed? $R_{fid} = 10 cMpc, < x_H > = 0.8, z = 7.5$

How many galaxies are needed? $R_{fid} = 10cMpc, < x_H > = 0.8, z=7.5$

How many galaxies are needed? $R_{fid} = 10 cMpc, < x_H > = 0.8, z = 7.5$

How many galaxies are needed? $R_{fid} = 10 cMpc, < x_H > = 0.8, z = 7.5$

Conclusions

- Lyα forest data:
 - (i) ends at z~5.4 with midpoint at z ~ 7 7.5 -15 galaxies
- properties to local HII environment
 - (i) Bayesian inference of HII bubbles is possible with ~6x10⁻³ galaxies cMpc⁻³

• We are finally nailing down the timing of (the second half of) reionization, largely thanks to high quality

(ii) reionization is driven by faint galaxies, with >50% of the ionizing photons sourced by M_{uv} > -12 –

• Lyα from galaxies can map local reionization topology during early EoR allowing us to connect galaxy

(ii) including a prior on the intrinsic spectrum (f_{esc}^{α}) can lower requirement to **~3x10**-3 galaxies cMpc-3 (iii) asymmetry of large-scale Lyα EW maps can find edges of bubbles (stay tuned for Ting-Yi's talk)

