A tale of three histories: distinguishing reionization scenarios in the JWST era

Christopher Cain

School of Earth & Space Exploration Arizona State University

June 24, 2024

Some collaborators: Rogier Windhorst (ASU), Rolf Jansen (ASU), Anson D'Aloisio (UCR), Julian Muñoz (UTA)

Image: A math a math

Arizona State University

Christopher Cain

Can galaxies drive cosmic reionization?

 Recent work (Munoz+24) suggest ionizing output of galaxies may have been enough to re-ionize the universe by z ~ 8 - 9

Christopher Cain

Arizona State University

Why is late reionization $(z_{end} < 6)$ necessary?

- **1** Mean transmission of Ly α at $z \le 6$ early end =
- 2 Mean free path to ionizing photons

Christopher Cain

Arizona State University

too many photons!

How can we get rid of photons?

Two ways:

- **1** Across all redshifts \rightarrow Late Start/Late End
- 2 At lower redshifts only \rightarrow Early Start/Late End

Christopher Cain

Simulations of Reionization with FlexRT

- Adaptive ray-tracing RT in a cosmological volume $(N_{\rm BT} = 200^3, L_{\rm box} = 200 \ h^{-1} {\rm Mpc})$
- Sub-grid opacity model based on high-res hydro/RT sims
- **Both** late-ending models are calibrated to **reproduce** $Ly\alpha$ forest mean transmission at 5 < z < 6 (Bosman+22)

Arizona State University

UVLF/Ionizing properties of galaxies

- New JWST UVLF (Adams+24) evolves rapidly at z > 8
- Scaled down Munoz+24 model \rightarrow late start/late end
- Early start/late end $ightarrow \sim 10 imes$ evolution in $\langle f_{
 m esc}\xi_{
 m ion}
 angle$

Early start needs steeper evolution than observations suggest

Christopher Cain

Arizona State University

Can galaxies accommodate an early start?

- Factor of $\gtrsim 3$ uncertainty in $\rho_{\rm UV}(z > 8)$
- Extrapolation of ξ_{ion} measurements to high z/faint galaxies?
- Evolution in M^{cut}_{UV} (feedback)??

Christopher Cain

Can galaxies accommodate an early start?

- Factor of $\gtrsim 3$ uncertainty in $\rho_{\rm UV}(z > 8)$
- Extrapolation of ξ_{ion} measurements to high z/faint galaxies?
- Evolution in M^{cut}_{UV} (feedback)??

Christopher Cain

QSO Observations at 5 < z < 6

- The ionizing photon mean free path prefers a late start
- The thermal history of the IGM prefers an early start

Christopher Cain

Arizona State University

QSO Observations at 5 < z < 6

Distribution of forest optical depths - sensitive to $x_{\rm HI}$

Early start/late end model is preferred

Christopher Cain

Arizona State University

QSO Observations at 5 < z < 6

- Constraints on the neutral fraction at z < 6.5 from dark gaps, dark pixels, QSO damping wings, and the forest opacity 1.0
- Recent forest damping wing constraints (Zhu+24, Spina+24) disfavor early end
- Some limits prefer an early start

Christopher Cain

Arizona State University

Ly α emitters at $z \ge 8$

- Several recent detections (Zitrin+15, Larson+22, Bunker+23)
- Lyα requires some ionization around galaxies to escape damping wing absorption
- Wavelength (micron)
- Most extreme example:
 GNz-11 at z = 10.6

Figures: Tilvi+20, Bunker+23

Christopher Cain

Ly α transmission at z > 8 in the late start model

Christopher Cain

Arizona State University

Ly α transmission at z > 8 in the early start model

Christopher Cain

Arizona State University

Do LAEs require an early start?

Can infer x_{HI} with LAE detections and/or damping wings

Christopher Cain

Arizona State University

Which model is favored?

An interesting puzzle emerges...

Probe	Late Start	Early Start
$ au_{ m CMB}$	No Preference	No Preference
$UVLF/\xi_{\mathrm{ion}}/f_{\mathrm{esc}}$	Preferred	Not Preferred
Ly $lpha$ Forest $\langle T angle$	No Preference	No Preference
Forest $ au_{ m eff}$ dist.	Not preferred	Preferred
Mean Free Path	Preferred	Not preferred
Thermal History	Not preferred	Preferred
$x_{ m HI}(z < 6.5)$	Not preferred	Preferred
$x_{ m HI}(z > 6.5)$	No Preference	No Preference
LAEs at $z > 8$	Not preferred	Preferred

Preferred model: ????

Christopher Cain

A tale of three histories: distinguishing reionization scenarios in the JWST era

Arizona State University

Conclusions

An early (z > 6) end to reionization is incompatible with 5 < z < 6 QSO observations

 Late or early start? Different observations (seem to) prefer difference scenarios

New JWST observations may have complicated our understanding of reionization!

Christopher Cain

Arizona State University

< 口 > < 同 >

Extra Slides

Christopher Cain

Arizona State University

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Improvements in IGM modeling

- Introducing SAGUARO (Simulating IGM Evolution and Environments at High Resolution)
- Suite of high-resolution coupled RT/hydro simulations of the IGM using RadHydro (Trac & Cen 2004, Trac+07)
- Spans 4 < z < 15 (useful for post-reionization studies)
- Large-scale IGM environments: Γ_{HI} (ionizing background), Δ_{box} (box-scale density), z_{reion} (redshift of reionization)
- 2 h^{-1} kpc (250 h^{-1} pc) resolution for $L_{\text{box}} = 2$ h^{-1} Mpc (250 h^{-1} kpc)
- Phase 1: 64 simulations, \sim 1.5 million CPU hours

< 口 > < 同 >

IGM Density

Model the dynamics of the IGM in a wide range of large-scale environments throughout reionization

Christopher Cain

Arizona State University

IGM Temperature

High resolution reveals a complex, hydrodynamics-driven thermal structure (https://arxiv.org/abs/2405.02397)

Christopher Cain

Arizona State University

Preliminary Results

Characterization of self-shielding density across environments

Preliminary Results

Dynamics of the HI column density distribution

Christopher Cain

Arizona State University

Ionization History + $\tau_{\rm CMB}$

Both late-ending models are 1σ consistent with the Planck+20 $\tau_{\rm CMB}$ measurement

Christopher Cain

Arizona State University

$au_{ m eff}$ distribution at z= 5.4, 5.6

None of the models agree very well at these redshifts

Christopher Cain

Arizona State University

$au_{ m eff}$ distribution at z= 5.0, 5.2

• z = 5.2 suggests both of our models end reionization slightly too late

Christopher Cain

Arizona State University

What about GN-z11?

Arizona State University

Christopher Cain