The D0 detector calorimeter

Oscar Larsson KTH

Henri Seppänen University of Helsinki

Björn Nordkvist, Maja Tylmad, Elin Bergeaas Kuutmann Stockholm University

Purpose of D0

- General-purpose detector for high energy hadron collisions at the Tevatron protonantiproton collider $\sqrt{s} = 1.8$ TeV (1.96 TeV in Run II)
- Designed for the study of high-mass and large $E_{\!_T}$ phenomena
- Top quark discovery required
 - good energy resolution (missing E_T)
 - good jet resolution
 - accurate jet energy scale

The D0 calorimeter system

Pre-shower: scintillator (tracking/calo) Central calorimeter (CC):

Electromagnetic, Fine hadronic, Coarse hadronic End calorimeter (EC):

Electromagnetic, Inner hadronic, Middle hadronic, Outer hadronic

D0 calos

Active material: LAr 15 000 litres Passive material:

- EM: U
- Fine Hadron: U/Nb
- Coarse hadronic: copper or steel

Run I: compensating.
Run II: increased collision frequency => shorter integration time => not compensating

Coarse Had Fine Had EM

Outer had (coarse)

Middle had (coarse & fine)

Inner had (coarse & fine))

Resolution

$$\frac{\sigma(E)}{E} = \sqrt{C^2 + \left(\frac{S}{\sqrt{E}}\right)^2 + \left(\frac{N}{E}\right)^2}.$$

Run I set-up test beam values:

Particle	C	S	N
e	$0.0115\substack{+0.0027\\-0.0036}$	$(0.135\pm0.005)~\sqrt{\mathrm{GeV}}$	$0.43~{\rm GeV}$
π	0.032 ± 0.004	$(0.45 \pm 0.04) \sqrt{\mathrm{GeV}}$	$0.975~{\rm GeV}$

The resolution worsened in Run II due to extra material before the calo, and new noisier electronics

Advantages

- LAr/U
 - ease of segmentation
 - compensating (suppresses response to EM part of had shower)
 - stability of calibration
 - homogenity of response
- U high density: compact calo at low cost
- LAr is radiation-hard, easy to handle, cheap

No changes were made to the calos in the Run I->Run II upgrade

Disadvantages

- Uranium is very **noisy** (radioctive)
- Not compensating in Run II
- Hard to handle (radioctive)

References

- J. Strandberg (doctoral thesis, 2006)
- S. Strandberg (doctoral thesis, 2007)
- Norm Buchanan: CALOR 2006 conference (June 5, 2006)
- F. Tarrade: Journal of Physics: Conference Series 110 (2008) 092030
- C. Santoni: Talk at TileCal Week, July 2, 2008