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The tracking challenge

Several 100 events, some with thousands of tracks, 
from several different collisions,  are saved to mass-storage
each second  at the LHC.

To cope with the high density and high momentum of
these tracks, many, many channels are needed, some
unavoidably noisy, as well as relatively large amounts of
material (0.5-2 rl) in the tracking detectors.

Still, the ambition is high precision tracking, in order to 
perform, for example, a 10 MeV W mass measurement.

This requires highly sophisticated and error-tolerant
track-finders and -fitters, as well as highly performant
calibration and alignment of the tracker elements.
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Spacepoint formation

Most tracking detectors register “hits” from signals induced 
on pickup electrodes by an electron cloud made by a track.
If all the signal is on one electrode, the precision is
where      is the electrode size.
Much better is it if the signal is

distributed over two electrodes.
In that case

but you need to measure P 
and know σ….
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Spacepoint formation

If 3 or more electrodes pick up signal for one track passing
the detector layer, it is possible to fit the width of the 
electron cloud. In that case the barycenter (pulseheight
weighted average of the electrode centers) is a popular
estimator of the track position. The pulseheights must  
exceed a certain threshold and the electrodes must be 
spatially connected in order to identify clusters of electrodes 
belonging to different tracks:

/i i ix Px P= ∑ ∑



Spacepoint formation

The barycenter is not perfect because of the finite size of 
the electrodes. 
This example is for

3x3cm electrodes in
a lead-gas sampling
calorimeter. You see
that the estimate is 
only unbiassed at the
border between two 
or at centre of one.



Stereo view

If you do not have pixel detectors or a TPC, what about the 
second coordinate? (the third being the position of the 
detector surface.) 
In strip detectors double sided wafers are often used with 
strips on both sides having an angle between them.
In e+e- machines, where a particular wafer is rarely hit by 
more than one track, 90 degrees is appropriate.
In high track densities, 20-80 mrad is a better choice in 
order to avoid too many ghost hits.
With surfaces ~perpendicular to particle velocity and strips 
~parallel to B, this gives good resolution in the bending 
plane and some resolution in second coordinate.
For drift tubes the second coordinate is mostly  
unmeasured.



Spacepoint calibration

In general we must know the response function , the 
probability distribution of induced pulseheights for a given 
track impact (actually, we would like the inverse: the pdf for 
the track impact, given the pulseheights. But unfortunately 
we do not measure this directly).
The response function may vary from channel to channel 
and must be calibrated from data.
The nightmare is when this function also varies in time ,for 
example due to radiation damage. In this case, massive 
calibrations are required at each run-period.



Spacepoint calibration

T

Corrections are needed for crossing angle and 
change in electron drift direction caused by B.
(pictures from Simone Montesano) 
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Spacepoint calibation

The corrections can depend on hardware calibrations –
different  from  module to module



Dead and noisy channels

Any clustering algorithm must handle dead or noisy 
channels to avoid false or split clusters.
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Spacepoints in drift-tubes

Drift velocity in different 
gasses.Measure time t at which 
signal exceeds some threshold. 
Must calibrate the distance R(t-t0)
from the track to the wire.
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Example: ATLAS TRT

P
PPicture from Thomas Kittelmanns thesis



Drift tube hit calibrations

Both T0 and R(t-T0) may vary from channel to channel
Final adjustments – not available at hit preparation time –
may also be needed:
Time-of-flight and signal propagation time (depending on 
the coordinate along the length of the tube) 
Pulseheight, if available (electrons will typically deposit 
more energy, so that the 300 eV threshold is reached 
earlier) 
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Drift tube calibration

Either the minimum value of Rtrack(t-T0) yields T0, or a 
correction is obtained from a Gaussian fit to (Rtrack-Rhit)/v.
The peak Rtrack in each 3ns bin of t-T0 yields Rhit(t-T0) 
(Note that the average position is not good because of tails 
at long arrival times for tracks passing close to the wire) 

Pictures from Thomas Kittelmanns thesis



Pattern recognition

The simplest method is to predefine a number of templates, 
ie patterns of fired cells that define an allowed track. The 
templates can be arranged in a hierarchical structure of 
increasing granularity to avoid too many templates.
Such methods are often used in trigger algorithms. An 
example from the calorimeter world is the cell tower.
Each hit has an associated surface in the feature space of 
compatible tracks. This is called a Hough transform. For 
straight tracks in two dimensions, each hit corresponds to a 
straight line in the slope-intercept plane. Locations in this 
plane where many lines intercept reveal the tracks, and this 
can be used in early track-finding.



Pattern recognition

Histogramming methods (use-cases of Hough)  may provide 
fast seeds for high momentum tracks

by a ”conformal transformation”  also low momentum seeds
can be found by histogramming.



The Kalman-filter

Determines the track state vector dynamically from 
measurements at each detector surface. These are either 
discarded or used to update the existing state vector.
Needs only inversion of small matrices. Fast.
Can account for noise, multiple scattering and energy loss 
at each surface. Efficient.
Is equivalent to the least squares fit, but can provide also 
pattern recognition (you can skip a plane if the hit is too far 
from the prediction, count the number of skipped planes and 
eventually drop the track candidate).
Hence its popularity.
Ingredients in the following.



The state vector x

At each detector surface the track has a state vector of
track parameters.

Example: a helix, where 90-λ is the track angle to the B
field, R is the radius, s the path length and h is a sign
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Perigee parameters

The perigee parameters

are often used to describe the track state at the closest 
point to the beam axis(z). We use q/p instead of qp, 
because q/p is generally measured with a gaussian 
uncertainty (see later slides). The impact parameter d0 has 
some sign convention, for example according to the angular 
momentum of the track wrt the beam axis, oriented along z.

0 0 0( , , , , )qx d z
p

φ θ=



The projection matrix H

In order to compare with measurements, the track state 
needs to be projected onto the measurement frame. 
Consider, for example, a set of strips forming an angle α
with the x axis. Let the track parameters be x and y at the 
surface. Then we must do

in order to arrive at the predicted measurement in terms of 
strip counting.
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The propagator F

Let the track transport from layer k-1 to k be given by

This is then the predicted state (denoted by a tilde). If f is 
not already linear in x, we can try to use its derivatives to 
get a linear equation:

where Ck is the covariance matrix for the predicted state
and Q contains the additional random perturbations 
occuring in the step such as, for example, multiple 
scattering.
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The propagator F

The propagator can be straight line or helix, but in regions 
with an inhomogenous B field, the preferred method is 
Runge-Kutta integration. Here the trajectory derivatives are 
sampled at a number of intermediate positions, weighted so 
that the error is 5th power in h. 
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The residual r (covariance R) 

The difference between measurement m (can have several 
components) and the prediction of the track state x, is called 
the residual:

where V is the diagonal covariance matrix of the 
measurements. H projects the track state onto 
measurement space.
(Note that the contribution from the track is here added to 
the measurement variance. If the hit contributes to the track,    
this contribution is instead subtracted, as we shall see).

1 1 1,k k k T
k k k k k k k k kr m H x R V H C H− − −= −       = +



The gain matrix K

The matrix transforming the residual into a correction to the 
track state is:

where x (no thilde) is now the updated (filtered) state.
(check with a one-dimensional update of weighted averages) 
(from R.Mankel, Prep. Prog.Phys. &7 (2004) 553 ) 

1 1 1

1

1

( )

(1 )

k T k T
k k k k k k

k
k k k k

k
k k k k

K C H V H C H

x x K r

C K H C

− − −

−

−

= +

= +

= −



Alternatively:

A completely equivalent update algorithm is to take a 
weighted average of the predicted track state and the state 
suggested by the new measurement:
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Filtered residuals

The filtered residual, its covariance and chi2 are
1 2 1(1 ) , (1 ) ,k T
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Smoothing

We have reached the end with n hits. Now the procedure is 
repeated, but backwards. This is used to update each 
measurement k with the information from all the others:

If the measurement at plane k is more than a few sigma
from updated x , it will typically be ignored in the fit – as 
early as possible. Rejected measurements may be flagged.
This policy turns out to yield better momentum resolution 
while retaining good track efficiency.
Finally the innermost surface is extrapolated to the perigee.
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Smoothing



Newton-Raphson (global) fits

”Global” least-squares fitters minimize the distances 
between the fitted track and the assigned measurements, 
using a linear approximation for the dependence of the 
measured coordinates on the track parameters. Minimizing

where m and x now refers to all the surfaces yields

For normally distributed m, this is directly the maximum 
likelihood estimate of the parameters.

2 1( ) ( )m Hx V m Hxχ −= − −
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Newton-Raphson fit

If  the projection h(x) is not linear, we can still Taylor expand 
at an initial value x0 obtaining approximately:

yielding

Then x1 may not be exactly the minimizing value – but it is, after all, 
better than x0. 
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Global optimization

In dense track environments or very noisy environments, 
the problem arises of competing assignments of hits to the 
different tracks or to noise.
Consider M tracks and N detector layers, each with nk hits.
Let Mkia be the squared distance from track a to hit i in 
layer k.
Let Skia be the ”assignment strenght” for hit i to be 
associated with track a. The Elastic Arms Algorithm then 
defines the problem as that of the minimization of an energy 
function

Where Ska indicates summation over i.
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Annealing

The problem with the total energy minimization is that the 
energy landscape in track parameter space is very spiky 
and the risk is high to land in a local minimum of wrongly 
assigned hits.
This problem is solved by ”annealing”:
One starts the track finding at ”high temperature” where the 
assignment probabilities are relatively large at large 
distances,
then calculate new assignment probabilities according to a 
formula inspired by statistical mechanics,
then repeat the process at a lower temperature, until T=0. 



Deterministic Annealing Filter

In a very complicated tracking environment it is not realistic 
to use a global method like the Elastic Arms where the 
approximate number of tracks must be known beforehand.
Therefore Frühwirth and Strandlie proposed to modify the 
(local) Kalman filter using an assignment probability pik.

Since the measurement probability density function is still 
assumed to be Gaussian, the assignment propability for nk
competing measurements is assumed to be proportional to 
a multivariate Gaussian:

where x here is the smoothed track state without involving 
layer k in the fit and T a temperature parameter. The last  
term, the track contribution to   , can normally be neglected.

*( ; , )i i i T
k k k k k k k km H x TV H C Hφ φ= +

σ



Deterministic Annealing Filter

Allowing also for the hypothesis that no hit is assigned to 
the track in layer k, we normalise the assignment probs as

The cut term is parametrised

where     acts as a     cut-off at low temperature.
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Deterministic Annealing Filter

Uses the same principles as the Kalman filter, but several 
measurements per detector layer are taken into account by 
using their weighted mean.



Deterministic Annealing Filter

The Deterministic Annealing Filter has turned out especially 
effective in finding the best left-right choices in drift tubes.
It is used by ATLAS as an ”afterburner” to the Kalman Filter
and significantly improves momentum resolution.

A promising possibility is to extend it to a multitrack fitter with its 
own pattern recognition. In this case the normalisation of 
assignment probabilities needs to be changed so that the sum 
runs over all tracks competing for the measurements.
See Sebastian Fleischmanns thesis (ATLAS) for more detail.
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Momentum measurement

From Christian Jorams summer student lectures
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Momentum accuracy
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Multiple scattering
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Total momentum error



Dealing with multiple scattering

In the global least squares track fit, a finite number of 
scattering planes in the detector is defined and each
MS angle is treated as an extra track parameter with an 

independent contribution to chisquared of

An alternative way is to incorporate MS in the covariance 
matrix of the measurements 

with                                        for each scattering plane j.
This is more or less  what happens in the Kalman filter. 
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Non Gaussian contributions 

All the methods presented up to now are complicated by 
non-gaussian influences, such as hard photon radiation 
where the probability density for the electron to retain a 
fraction z of its energy follows the Bethe-Heitler law 

1( ) ( ln ) ( )cf z z c−= − Γ / ln 2rlc X=



Gaussian Sum Filter

One way to cope with non-Gaussian influences while 
retaining the techniques of the least squares fit is to branch 
the Kalman filter at each surface into parallel paths using a 
finite number of different Gaussian errors.
The different  paths carry weights according to the physics 
of multiple scattering, hard photons etc. The path with 
highest net probability is retained, preventing the 
occurrence of a measurement in the non-Gaussian tail to 
pull the track state as far away.
This approach is very efficient in recovering from hard 
bremsstrahlung, but is also very CPU consuming due the 
multiplication of branches. 



To avoid the heavyness of GSF, another method can with 
success be applied to the bremsstrahlung of electrons.
First, the z retained after a particular surface is estimated 
using the hits in the following planes.
Then an adjustable noise level σ(z) is calculated so that 
the Bethe-Heitler probability of a deviation from median z 
out to the found one equals that for z=z(median)+xσ(z), 
where x is drawn from a unit Gaussian. 
This way the Bethe-Heitler is mapped onto a Gaussian
(google Kartvelishvili for more details) 

Dynamic Noise Adjustment



The dynamically adjusted  σ(z)=Δz/Δx noise term is fed 
back to the Kalman Filter covariance matrix just like for 
multiple scattering.

Dynamic Noise Adjustment



DNA filter

Using the DNA filter instead of just a fixed noise of  width
really helps for electrons:2( )medianz z< − >



C++ implementation

At the micro-level the CLHEP library is quite efficient for 
directly coded matrix equations. In the exercises we try out 
the ROOT TMatrix package.
In ATLAS abstract interfaces are used for all components, 
reducing the compile-time dependencies and making the 
code general. The fitters do not care about which detectors 
made the measurement, which propagators are used etc..
Any component, like a particular track-fitter, or a particular 
propagator, can be interchanged at run-time.
Data objects are clearly distinguished from algorithms. 
These objects can be stored once, and accessed by all 
modules, but their basic properties can not be modified.
This is for safety and for modularity of the code.



Finding the primary vertex

Normally a limited ”beam-spot” is given by the machine-
parameters , possible pick-up electrodes or preprocessing.
Hereafter, just two tracks suffices to provide an accurate seed 
for the vertex 



The danger is of course that the initial seed is wrong, so 
great care must be taken in this first step.
In ZEUS, for example, all candidate track pairs were 
checked for compatibility with a common vertex on the 
proton beam-line. They were then ranked according to how 
many other pairs they agreed with. The best pair then 
started the chi-squared fit.
In CMS, a similar procedure is used were the coordinates 
with the highest density of track crossings is found. In this 
evaluation, each track pair is weighted by a decreasing 
function of the distance between the two perigees.

Finding the first vertex seed



The primary vertex fitter

After the first seed is found, a Kalman filter least squares 
algorithm is normally used to add tracks one by one, 
continuosly updating the vertex state.
In CMS, a weight is furthermore multiplied to each track, 
effectively blocking outliers from contributing. The CMS 
algorithm proceeds at progressively lower ”temperatures” 
just like the Deterministic Annealing Filter, letting the 
weights more and more steeply cut away outliers, so as to 
avoid local minima.
Finally a smoother step refits each of the contributing tracks 
using the vertex constraint and provides a final update to 
the vertex.
See eg J. Phys. G: Nucl. Part. Phys. 34 (2007) N343
”Adaptive Vertex Fitting”.



Carrying on

In the further reconstruction of the event a priori knowledge 
can be used with advantage. An example is the beam 
energy constraint used in the reconstruction of tracks from 
the decay of             in b-physics experiments, or the 
reconstruction of B meson cascade decay where the known 
masses of the D mesons are used as a constraint.
Another example is fitting electron-positron tracks from 
photon conversions. The knowledge of zero photon mass 
can be imposed by using Lagrange Multipliers.
(for more explanation by see eg 
www.phy.ufl.edu/~avery/fitting/kinfit_talk1.doc) 

(4 )Sϒ



Lagrange Multipliers

Let again x be the track parameters of the two tracks that 
form a conversion candidate. The constraints must be 
expressed as some functions of x being equal to zero.
We expand around an approximate solution xA:

The condition that the two tracks should emerge parallel 
from a common point is then expressed by something like

Where the p’s and r’s refer to the start points of the tracks.
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Lagrange Multipliers

The function to be minimized is now:

both wrt the track parameters x=(p,r) and the real constants 
λ (dropping the vector bars).  The ”0” refer to the 
unconstrained solution and the “A” to the  previous iteration. 
The solution have to be iterated since the constraint 
equation was linearized.
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Solution to the constrained fit

(check by differentiate chi2 and insert expressions below):
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B-tagging examples

Impact parameter significance (S=d0/σ) based likelihood 
ratio (b-quark vs u-quark hypothesis):
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B-tagging examples

If the resolution function R is known, we can test each 
tracks compatibility with the primary vertex. Let here d0
be the impact parameter projected on the jet axis (x). The 
probability for ”primary vertex origin” is:

We plot –log (probability that all the 
tracks  in the jet come from the 
primary vertex) 



B-tagging examples

Reconstructed secondary vertices can add extra 
orthogonal information to the impact parameter based 
discriminant:
Invariant mass of the attached tracks
Fraction of jet momentum carried by the attached tracks
Number of secondary vertices

more efficient b-tagging from 
combining all information



B-tagging examples

Finally the electron and muon identification capabilities of 
the detector can be used to identify (semi)-prompt leptons 
from b-hadron decay.
In general it pays off to consider separate probabilities for 
different track classes – such as the tracks with shared hits.
All the various information can be combined in many ways. 
One of the ways that have been tried out is the Boosted 
Decision Tree (J. Bastos, ATL-COM-PHYS-2007-016). 
ROOT integrated implementaions of all such multivariate 
analysis algorithms are collected in the TMVA package
http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf



Alignment

In order to have high resolution unbiased tracking, the 
detector elements must be correctly aligned. For the silicon 
elements we typically speak of a few microns or less.
Part of this is achieved by elaborate laser alignment 
systems, such as the Frequency Scanning Interferometer 
and the muon alignment  system in ATLAS, or the TPC laser 
calibration system in ALICE.
While these devices are good at tracking short-term 
changes, the ultimate alignment precision is best achieved 
by using the fitted tracks themselves.
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Alignment with tracks

Consider a tracker with n planes along the x-axis. From the 
reconstructed tracks, we want to determine the alignment 
corrections to the position and orientation of each plane.
Consider a single measured coordinate yi and a track model 
y=h(x,α), where x is a vector of the positions of the planes 
and α are the alignment corrections.
A straight forward estimate of αi is simply the average
residual <ri = yi – h(x,α)>, averaged over all fitted tracks.
If the considered plane does not take part in the fitted track, 
it is called an unbiased residual.
This “local” approach requires in general many iterations 
because the correlations between planes induced by the 
fitted tracks are ignored with this method.



Alignment with tracks



Alignment with tracks

In the ”global” approach we define a total chi2 of a large 
track sample:

where r are the residuals (note the unusual sign), α the 
alignment parameters of the detector elements common for 
all the tracks and x the individual track parameters. What 
we want is to simultaneously minimise chi2 both with 
respect to all the millions of x’s and the many α’s. Sounds 
impossible, but it isn’t  - as seen from the arguments in 
Bocci and Hulsbergen: ATL-INDET-PUB-2007-009 
presented in the following.
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Alignment with tracks

At the minimum wrt α, we do not want any changes in the 
chi2 derivatives wrt x when we change α by a small amount 
(here, the residuals are assumed linear in the alignment 
parameters). This can be expressed as 

Inserting transposed expressions from slide 30 and 31 and 
using A for the partial derivative of r wrt α, we get for any 
total derivative of α:
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Alignment with tracks

Further ignoring any second derivative of the residuals we 
obtain for the derivatives of a single track:

where the matrix                        is the covariance matrix of the
(biased) residuals in the track fit. (For the unbiased residuals 

we would get a plus sign).
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Alignment with tracks

The preceeding equations hold even if the x’s are not yet 
fitted and even if all kinds of extra contributions are used in 
the chi2 (eg other detectors, vertex, mult scatt etc) 
But if also the initial track parameters are minimising the 
individual chi2’s, the first derivative reduces to (slide31):

Thus the first derivative is local: the derivative wrt some α
receives only contributions from the local detector element 
for which the partial derivative A=δr/δα is non-zero.
Requiring the sum of the derivatives over all tracks be zero 
results in M coupled equations – in general non-linear –
where M is the number of alignment parameters.
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Alignment with tracks

If chi2 is not already at minimum, we linearize the problem 
and get the following linear equations for the corrections:

Several algorithms exists for solving them. MILLIPEDE is a 
well-known example (google Blobel). 
Another example is MINRES, minimising the distance 
between the two sides of the equation (used by CMS).
Yet others calculate eigenvectors and eigenvalues of the 
second derivative while exploiting the sparseness of this 
matrix (used by ATLAS).
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Alignment with tracks

The explicit solution to the alignment problem is thus

or equivalently

where                                    is the covariance matrix of the 
residual vector of a track.
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Alignment with tracks

After diagonalising the second derivative, the solution 
reads:

where uj are the eigenvectors, dj the eigenvalues. and b is 
minus the first derivative. Clearly there is a problem if dj=0. 
Small eigenvalues corresponds to weak modes, ie 
alignment corrections that are poorly constrained by the 
data. An obvious example is the movement of the entire 
setup to another location in the world.
Using weak modes will blow up detector resolution, so only 
those corrections should be applied whose uncertainty C is 
far below the detector resolution. 
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Weak modes

The deformations corresponding to different eigenvectors 
give independent contributions to the chisquared.
Small eigenvalues correspond to weak modes. Those are 
movements of the detector parts that are poorly constrained 
by track residuals.
An obvious example is the translation of the entire detector 
to somewhere else.
Another is deformations that somehow preserve the track 
model (eg helix->helix).
Using the weak modes will blow up detector resolution. 
Therefore one should only apply corrections for modes  
whose uncertainty C is much smaller than the detector 
resolution.
To obtain the corrections for the weak modes other 
alternative methods must be used (laser alignment, optical 
survey, cosmic tracks).



Effects of  misalignment

The LHC experiments have ~successfully exercised the 
method on misaligned Monte Carlo. Still room to improve 
on the infamous “weak modes”



Conclusion and outlook

Profiting from increasing computing ressources, new 
sophisticated track finders and fitters have been applied to 
high energy physics experiments.
These algorithms will face their crucial tests in the 
reconstruction of real collisions during the coming year.
In the future we might see truly global methods (optimizing 
simultaneously all the tracks in regions of an event) and 
also methods benefitting at an early stage from particle 
identification.
We will also see more detectors and constraints included in 
the global alignment procedures– at the cost of sharply 
increased computing power requirements – in order to avoid 
weak modes.



Exercises

Consider a simple silicon telescope in a test beam:
A Kalman filter example (with unrealistically simplified 
pattern recognition) using the ROOT TMatrix is in 
http:/www.nbi.dk/~phansen/nordforsk/kalman.C
Try different outlier cuts and see what happens to the track 
efficiency and precision of the track parameters
Compare with the equivalent Global Chi2 example: 
http://www.nbi.dk/~phansen/nordforsk/globalchi2.C
(Something is fishy. Note that MS is ignored in the reco.) 
Try out the alignment algoritms : 
http://www.nbi.dk/~phansen/nordforsk/align.C
(Note the elimination of the most important weak mode) 
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