Particle Accelerators: Diagnostics and Correction

Volker Ziemann

Department of Physics and Astronomy Uppsala University

Research Training course in Detector Technology Stockholm, Sept. 8, 2008

Diagnostics and Correction

- Zeroth Moment: Current
- First Moment: Position
- Second Moment: Size
- Emittance and Beta function
- Tune
- Beam-beam diagnostics
- Orbit correction
- Tune correction

Faraday Cup

- Dump current in a shielded metal block that stops the beam and meassure current to ground

- Invasive
- Needs to be thick enough to stop beam
- Might need cooling
- Need to shield secondary electrons
- Needs careful attention if time-resolved signal is required

$D \backsim \backsim$

- External oscillator drives the core through hysteresis curve
- Without beam only odd harmonics in secondary coil
- With beam the hysteresis-curve is displaced and even harmonics are generated and can be compensated to zero with extra current that can be measured.

Beam Position Monitor

- Picks up the wall currents at several positions
- If more signal on the left ($\mathrm{A}+\mathrm{D}$) compared to $(B+C)$ then the beam is further to the left.
- $k_{x}=k_{y}=R / \sqrt{ } 2$
- Small signal in small buttons
- Used in high intensity machines with short bunches. Synchrotron light sources
$x=k_{x} \frac{(A+D)-(B+C)}{A+B+C+D}, y=k_{y} \frac{(A+B)-(C+D)}{A+B+C+D}$ • Non-linear at large amplitudes

UPPSALA UNIVERSITET

Stripline BPM

- Magnetic flux in the small

$$
\begin{aligned}
& V_{1}(t)=\frac{Z_{s} \phi}{4 \pi}\left[I(t)-I\left(t-l / v_{b}-l / v_{s}\right)\right] \\
& V_{2}(t)=\frac{Z_{s} \phi}{4 \pi}\left[I\left(t-l / v_{s}\right)-I\left(t-l / v_{b}\right)\right]
\end{aligned}
$$

area between strip and wall changes and induces a voltage in wires.

- Signals with opposite polarity from the ends.
- Directional if bunch length smaller than stripline.
- Can be used to separate signals from counterpropagating beams.
- Position information from four striplines similar to button BPM.

UPPSALA UNIVERSITET

Shoebox BPM

- Large electrodes make it sensitive to weak currents in ion storage rings
- CELSIUS used these

urima Luminescent and OTR Screen

- Now to 2nd Moments
- Place either movable or static luminescent screen in path of beam \rightarrow invasive
- Blind spots and burn-out
- Limited dynamic range
- Failing cameras
- Optical transition radiation due to refractive index of screen
- thin foil of e.g. AlO_{2}
- Disturbs high energy beams very little if thin enough

SEM Grid

- Secondary emission monitor

- Beam intercepts thin wires and knocks out electrons
- Parallel readout of many wires
- One amplifier per wire makes this expensive
- Heat deposition in wires
- Plot current from wire as function of wire number
- Histogram
- Position and size of beam

Other size measurements

- Wire scanner, use single movable wire instead
- position encoder
- need to move fast in ring
- Magnesium Jet Profile Monitor
- use evaporated MG as 'wire'
- record the ionized electrons
- Residual gas profile monitor
- ionize residual gas and catch electrons on position sensitive sensors
- use magnetic fields to guide the electrons

Tune

- Kick the beam with a pulsed magnet
- Measure the position on every turn with beam position monitor
- Time series: $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{n}}$
- Fourier transform, usually FFT is used.
- Aliasing: can observe only fractional tune.
- Alternatively: Observe tune sideband of the revolution harmonics in spectrum nalyzer

Example: Tune from time series

UNIVERSITET

$$
\begin{aligned}
x_{n} & =\sin \left(\omega_{\beta} t_{n}\right) \\
& =\sin \left(\omega_{\beta} n T_{0}\right) \\
& =\sin \left(Q_{x} 2 \pi f_{0} n T_{0}\right) \\
& =\sin \left(2 \pi n Q_{x}\right) \\
& =\sin \left(2 \pi n\left[Q_{x}\right]\right)
\end{aligned}
$$

[Q]= fractional part of tune

```
Qx=0.616
n=1:1:1024;
x=sin(2*pi*Qx*n);
plot(n/1024,abs(fft(x)));
```


- cannot distinguish Q and 1-Q
- change QF and see how tune line moves

Emittance and Beta function

- Quadrupole scan: vary quadrupole and observe how the measured spot size changes
- Depends on all parameters of the beam before the quadrupole

$$
\sigma=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x x^{\prime}\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)=\varepsilon\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

Several wire scanners

wire 3

$$
\begin{aligned}
\sigma_{1}^{2} & =\left(R^{1}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{1} R_{12}^{1} \sigma_{12}+\left(R^{1}\right)_{12}^{2} \sigma_{22} \\
\sigma_{2}^{2} & =\left(R^{2}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{2} R_{12}^{2} \sigma_{12}+\left(R^{2}\right)_{11}^{2} \sigma_{22} \\
\sigma_{3}^{2} & =\left(R^{3}\right)_{11}^{2} \sigma_{11}+2 R_{11}^{3} R_{12}^{3} \sigma_{12}+\left(R^{3}\right)_{12}^{2} \sigma_{22} \\
\left(\begin{array}{ccc}
\sigma_{1}^{2} \\
\sigma_{2}^{2} \\
\sigma_{3}^{2}
\end{array}\right) & =\left(\begin{array}{lll}
\left(R^{1}\right)_{11}^{2} & 2 R_{11}^{1} R_{12}^{1} & \left(R^{1}\right)_{12}^{2} \\
\left(R^{2}\right)_{11}^{2} & 2 R_{11}^{2} R_{12}^{2} & \left(R^{2}\right)_{12}^{2} \\
\left(R^{3}\right)_{11}^{2} & 2 R_{11}^{3} R_{12}^{3} & \left(R^{3}\right)_{12}^{2}
\end{array}\right)\left(\begin{array}{c}
\sigma_{11} \\
\sigma_{12} \\
\sigma_{22}
\end{array}\right)
\end{aligned}
$$

- $\left(A^{t} A\right)^{-1} A^{t}$ - gymnastics with error bar estimates
- Derive emittance in same way, once σ is known
- Can use several more wire scanners which allows X^{2} calculation for goodness-of-fit estimate

SLC Beam-beam Diagnostics

- Micron-size bunches deflect each other
- deflection angle is a measure of size and intensity
- Centering
- Beam size
- Luminosity

Correction: Orbit

- Observe the orbit on beam-position monitors
- and correct with steering dipoles
- How much do we have to change the steering magnets in order to compensate the observed orbit either to zero or some other 'golden orbit'.
- In beam line the effect of a corrector on the downstream orbit is given by transfer matrix R_{12}
- One-to-one steering

Orbit correction in a Beamline

UNIVERSITET

- Observed beam positions x_{1}, x_{2}, and x_{3}
- Implicitly assume 12 or 34 matrix element in R
- Only downstream BPM can be affected
- Linear algebra problem $\left(A^{t} A\right)^{-1}$, etc to find required corrector excitations θ_{j} to explain x_{i}
- Reverse sign of calculated θ_{j} to correct the orbit to zero

- Use four steerers to adjust angle and position at a center point and then flatten orbit downstream of the last steerer.
- Solve upper part first, insert into third and fourth equation and solve that.
- Gives the required steering excitations θ_{j} as a function of x_{0} and $x_{0}{ }^{\prime} \rightarrow$ Multiknob

Multi-knobs

- Linear combination of device excitations as a function of a physics parameter
- Examples:
- two steerer power supply that change position without changing the angle at IP.
- two quadrupoles to change the z-position of one waist at the IP without changing the other.
- two quadrupole power supplies that change the horizontal and vertical tunes independently.
- Orthogonal control of physics parameters

UPPSALA UNIVERSITET

Correcting the Orbit in Ring

$$
\left(\begin{array}{c}
x_{1}-\hat{x}_{1} \\
x_{2}-\hat{x}_{2} \\
\vdots \\
x_{N}-\hat{x}_{N}
\end{array}\right)=\left(\begin{array}{cccc}
C_{12}^{11} & C_{12}^{12} & \ldots & C_{12}^{1 M} \\
C_{12}^{21} & C_{12}^{22} & \ldots & C_{12}^{2 M} \\
\vdots & \vdots & \ddots & \vdots \\
C_{12}^{N 1} & C_{12}^{N 2} & \ldots & C_{12}^{N M}
\end{array}\right)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{M}
\end{array}\right)
$$

- x_{i} are the measured positions
- x^{\wedge} is the desired orbit
- Its back to linear algebra again
- Bad placement, $\mathrm{M}<\mathrm{N}, \mathrm{N}<\mathrm{M} \rightarrow$ least squares, SVD, Micado

Inversion Algorithms

- $\mathrm{N}=\mathrm{M}$ and response matrix well-behaved

$$
\vec{\theta}=-A^{-1}(\vec{x}-\overrightarrow{\hat{x}})
$$

- $\mathrm{M}<\mathrm{N}$: too few correctors, least squares

$$
\vec{\theta}=\left(A^{T} A\right)^{-1} A^{T} \Delta \vec{x}
$$

- $\mathrm{M}>\mathrm{N}$ or degenerate , SVD
- Micado: pick the most effective, fix orbit, the next effective,... (Householder transformations)
- good for large rings with many BPM and COR

Tune Errors

- Solenoidal fields
- Unknown quadrupole geometry (eff. length)
- Power supply calibration errors
- Off-center orbit in Sextupoles
- Measure tune by exciting transverse oscillations and looking at FFT of positions
- Is it Q or $1-\mathrm{Q}$?
- Fix by tweaking quads.

Tune correction

- Consider effect of single quadrupole on the tune

$$
\begin{aligned}
R & =\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\left(\begin{array}{cc}
\cos (2 \pi Q) & \beta \sin (2 \pi Q) \\
-\sin (2 \pi Q) / \beta & \cos (2 \pi Q)
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos (2 \pi Q) & \beta \sin (2 \pi Q) \\
-\sin (2 \pi Q) / \beta-\sin (2 \pi Q) / f & \cos (2 \pi Q)-\beta \sin (2 \pi Q) / f
\end{array}\right)
\end{aligned}
$$

- $\operatorname{Tr}(R)=2 \cos (2 \pi(Q+\Delta Q))$
- $\Delta Q \approx \beta / 4 \pi f$ (\sim beta and quad strength $1 / f$)
- Use 2 quadrupoles with different β_{x} and β_{y} to correct both horizontal and vertical tune

Summary

- Discussed several devices that determine
- position,
- size
- tune
- Methods to correct errors of
- position, or the orbit
- tune
- These are the two correction procedures that are most commonly done in a storage ring

