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Abstract

Class notes for the Accelerator Physics Course at Uppsala University dur-
ing the winter 2006.

1 Introduction

The goal of the course is to discuss the concepts and the tools needed to design a
modern particle accelerator. This knowledge is useful both for the future acceler-
ator physicist and the user of accelerators, such as a synchrotron radiation user,
a high-energy or a nuclear physicist. The participation in experiments conducted
at accelerators and the survival in accelerator control rooms of the experimen-
talist is much facilitated by a basic knowledge of the concepts and the jargon
used in the accelerator physics community. Being exposed to some simple design
tools such as the beam optics code MAD or the magnet design code MaxwellSV
will help to enhance this understanding. At the end of the course, I hope that
the participants have acquired this basic understanding and are able to roughly
sketch and design an accelerator for a tropical island, if stranded on it with their
laptop.

To summarize the two goals of this course:

• Be able to do a zeroth-order design of a particle. accelerator

• Survival in an accelerator control room.

I will start the course by a quick historical tour that briefly discusses the first
accelerators that emerged during the first half of the 20th century, followed by a
discussion of the different types of accelerators that were built during the second
half. In particular we will briefly illuminate the pro and cons of different types
of accelerators.
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Figure 1: Schematic and picture of a cathode ray tube.

1.1 The early Accelerators

On of the simplest device where accelerated particles are used in the analysis
of the physical world is the cathode ray tube, which is a close relative of the
oscilloscope or the television. Many of the pertinent features of accelerators are
already present in this long-known device.

1.1.1 Cathode Ray Tube

The cathode ray tube was used by Karl Ferdinand Braun already in 1897 to make
electrical oscillations visible by directing accelerated electrons in a vacuum tube
onto a luminescent screen with the help of electric and magnetic fields. On the
left of fig. 1 a photo taken from [6] of such a tube is shown. On the right we show
the schematics of a cathode ray tube. The electrons are created in a thermionic
cathode, which is basically a heated wire and are extracted by the electric field
generated by the voltage between the cathode and the anode. Another voltage,
which can be time-varying, and is applied to deflection plates directs the beam
to the luminescent screen where the electrons are detected. The entire setup is
embedded in a vacuum tube to avoid collisions of the electrons with the rest gas.

As mentioned before, we already have the essential ingredient of an accelerator
present: particle creation, acceleration, guide field, detection or diagnostic, and
vacuum. Note that in a TV tube the deflection plates are replaced by magnetic
coils and the deflection is done both horizontally and vertically.

Exercise 1.1.1: Calculate the electron trajectory. Assume reasonable volt-
ages and distances for a small tabletop experiment.

1.1.2 Van-de-Graaff Electrostatic Accelerator

From 1929 on R. van-de-Graaf developed an electrostatic accelerator in which
charge is deposited on a belt made of silk or any other isolating elastic material
such as rubber by a corona- or a triboelectric discharge. The belt carrying the
charge is moved by pulleys to the upper platform where the charge is deposited
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Figure 2: Schematics of a van de Graaff accelerator.

at a higher potential. If an ion source is positioned at the higher potential and
the beam travels inside a column where the local potential is determined by a
resistor cascade, the beam can be accelerated. A modern version of this device
is called a Pelletron and is e.g. used in high-energy electron-coolers. A tandem
accelerator uses the high voltage generated by a van de Graaff to accelerate
negatively charged ions and strip several electron off of the ion to use the same
acceleration potential twice.

1.1.3 Cockroft-Walton

A method to multiply alternating voltages to very high voltages by using a net-
work made of capacitors and diodes, was first found by Greinacher a cascaded
version reaching much higher accelerating voltages was later used by Cockroft
and Walton in nuclear physics experiments. The basic principle of the voltage
multiplier can be explained by looking at Fig. 3. The negative voltage of the AC
voltage Us that is applied at the left-hand side charges capacitor C1 to Us and
the positive voltage half an oscillation period later charges C2 to 2Us. Cascading
these units allows to reach voltages into the MV range.
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Figure 3: The Greinacher voltage multiplier that is the base of a Cockroft-Walton
accelerator.

Figure 4: Schematics of a cyclotron.

1.1.4 Cyclotron

The working principle of the cyclotron in which charged particles are accelerated
in a static magnetic field by repeated change of polarity of two accelerating ’dees’,
see Fig.4 was found by Lawrence in 1929. The particles are created in a ion source
in the center of the cyclotron and accelerated in the gap between the dees. While
the particle travels inside the dee the polarity between the dees changes and the
particles can be accelerated when they traverse the next gap again. This process
repeats over and over again. Since the magnetic field is constant the radius of
the orbit increases as is indicated by the spiral drawn in Fig. 4. Synchronism is
guaranteed as long as the particles move a non-relativistic speeds up to energies
of about 100MeV. Specially shaped magnetic fields and variable RF generators
allow, however, to reach moderately relativistic energies up to about 600MeV
(PSI, TRIUMF).

1.1.5 Betatron

The induction voltage generated by a temporally varying magnetic field is used
to accelerate electrons up to about 200MeV. In this way the betatron resembles
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Figure 5: Schematics of a Drift-tube linac also called an Alvarez structure.

a transformer, where the magnet coil is the primary winding and the accelerated
electron beam the secondary winding. The principle behind the betatron was
invented by Kerst around 1940 and these machines are often used for the gener-
ation of X-rays by impinging the accelerated electrons on a target made of, for
example, tungsten.

1.1.6 Drift-tube Linac, Alvarez Structure

In the cyclotron the particles hide inside the dees while the electric field that
drives the dees reverses polarity. The same principle can also be used in a par-
ticular type of linear accelerator, called drift-tube linear accelerator. The basic
principle is shown in Fig. 5 where hollow tubes are connected to a RF-generator.
A charge, here assumed positive is accelerated, if it arrives at the gap between at
the correct time. While the electric field reverses polarity the particle is hidden
inside the drift tube and it finds again an accelerating field at the next gap, if the
length of the drift tube is chosen properly. This type of accelerator is often used
in proton linacs and protons at non-relativistic energies still change their speed
as they are accelerated and the length of the drift tubes must be matched to the
speed and has to get longer as the speed and thereby the energy of the particles
increases.

Instead of connecting an RF generator directly to the drift tubes the entire
structure can be embedded in a large resonator and fed by microwaves of typically
a few 100MHz. This is particularly attractive for ultra-relativistic particles.

Exercise: calculate the length of the tubes for a RF system of 10MHz and
a particle energy from 10MeV to 500MeV if the particles are protons.

1.1.7 Disc-loaded waveguide linac

The idea of directly using microwaves to accelerate particles in free space is im-
peded by the fact that microwaves always travel at the speed of light, whereas
particles always travel at speeds less of that. We therefore have to make the
electromagnetic waves, the microwaves travel slower. One way, the most popular
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Figure 6: Schematics of a disk-loaded waveguide.

nowadays, to slow down microwaves is to pass them through a disk loaded waveg-
uide which is a vacuum pipe with washer disks included, as is shown schematically
in Fig. 6 where the particle moves to the right and the grey washer disks are used
to slow down the electro-magnetic wave that is fed into the structure from the
left. The 3 km long linac at SLAC, for example, uses these structures with a
frequency of about 3GHz.

1.2 Choosing an Accelerator

The design and construction of particle accelerators are driven by requirements
of the experiments that will be done at the respective machines. Here we briefly
discuss the possible demands.

1.2.1 Why high energies?

Accelerators for particles of higher and higher energies are built for two reasons.
First, resolving small structures of a given size requires a probe or radiation of
a wavelength that is of comparable size, or preferably smaller. The de’Broglie
wavelength of a particle is inversely proportional to the particle’s momentum and
therefore high energy particles allow to resolve smaller structures. Second, the
energy stored in the accelerated particles can be used to produce new particles of
high mass. The higher the beam energy, the heavier the newly generated particles
can be.

1.2.2 Electrons versus Protons

In order to reach the highest possible energies protons or heavy ions are advan-
tageous, but these particles have a substructure. The proton, for example is an
agglomerate of three quarks accompanied by gluons and the collision between
two protons or a proton and an anti-protons is actually a collision between a
number of their constituents. The events recorded in the particle detectors are
consequently difficult to interpret. Electrons, on the other hand are, as far as we
know today, point-like and the events are easier to interpret, but electrons are
lighter and emit synchrotron radiation. Furthermore, it is more difficult to reach
the highest possible energies.
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Often new physics at high energies is explored by proton accelerators and
later an electron-positron accelerator is used in precision measurements.

1.2.3 Circular versus Linear

The design of a circular accelerator is driven by the desire to achieve a high col-
lision rate in the detector in order to investigate events with high statistics. The
high revolution rate of circular accelerators makes this attractive. In a circular
machine, however, a large number of magnets is needed in order to recirculate
the beam. For protons the magnet technology actually sets the limit, because
magnetic fields in excess of 2T cannot be reached with electro-magnetic tech-
nology and about 10T is the limit for super-conducting technology which limits
the energy if the size of the accelerator is limited. Circular electron machines are
limited by the RF-system needed to replenish the emitted synchrotron radiation.

Reaching extremely high energies in electron machines another approach is
needed, namely that of a linear collider, which avoids the humongous synchrotron
radiation losses, but poses very high demands on the acceleration technology to
reach the desired energies within the available space. Another important feature
of electron accelerators is that the beam quality is determined by the emission of
synchrotron radiation and certain limits can not be circumvented.

Other applications for linear accelerators are high intensity proton linacs in
neutron spallation sources, or medical applications. If there are extreme demands
on the beam quality, as for example in free-electron lasers, linear accelerators are
needed, because the beam quality is defined in the electron gun and transported
to the experiment.

1.2.4 Collider versus Fixed Target

In nuclear or high-energy physics experiments high count rates, but also a large
energy density in the experiment are of prime concern. In a fixed target experi-
ment the target can be made very thick in order to increase the count rate, but
the interaction products will carry a certain amount of kinetic energy, dictated by
momentum conservation, which is unavailable for the creation of new particles.
In a collider on the other hand, all the kinetic energy of the initial particles is
available for the creation of new particles, but the target density is limited by the
intensities of the colliding beams and the constantly, at high rate, colliding beams
perturb each other up to a limit where an increase in the intensity is detrimental
to the count rate.

1.2.5 Synchrotron Light Sources

The purpose of synchrotron light sources is the generation of photons with the
high intensities and beam quality, such as spatial and temporal coherence. There
are two classes of light sources, those based on rings where the primary sources of
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Figure 7: LHC and its detectors. (picture CERN)

synchrotron radiation are the main dipole magnets, but nowadays this is comple-
mented by undulators and wigglers, where an array with sinusoidally alternating
magnetic field generates radiation of higher intensity and brightness compared
to that emitted in dipoles. The second class of synchrotron radiation sources
are linac-based free-electron lasers, where a bunch with extremely high (peak)
current and small transverse size is passed through a very long undulator. In the
long undulator an instability between the photons and the electrons develops that
leads to an exponential growth of the number of photons and therfore intensity.
Furthermore the emitted light has a high degree of coherence.

1.3 Examples of Modern Accelerators

In this section we discuss a small group of accelerators in order to illustrate
the features and questions mentioned before and how they were answered in a
engineering design.

1.3.1 SPEAR at SLAC in Stanford

The 3.5GeV storage ring SPEAR with a circumference of 270 m was built in the
late 1960s as a e+e− collider and the first meson containing charm quarks, the
J/Ψ particle, was co-discovered in SPEAR. A discovery which was subsequently
rewarded the Nobel prize in 1974. As higher-energy e+e− colliders became avail-
able throughout the 1980 the activities at SPEAR turned towards synchrotron
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Figure 8: Aerial view of the Slac Linear Collider. (picture SLAC)

radiation research, which used mainly the radiation from the bending dipoles. It
was thus one of the early 1st-generation light sources. As undulator and wiggler
magnets were added in the straight sections between the dipoles, it morphed into
a 2nd-generation light source. During a major rebuild in the early 21th century
SPEAR was turned into a modern 3rd-generation synchrotron light source, aptly
named SPEAR3.

1.3.2 LEP and LHC at CERN in Geneva

During the 1980s a huge e+e− collider name LEP with a circumference of 27 km
and a maximum energy of 100GeV per beam was built at CERN in Geneva with
the intent to experimentally investigate the electro-weak theory, especially the
Z0 and W -bosons, which were discovered earlier in the SPS, a proton-antiproton
collider at CERN. The physics program in LEP was very successful and experi-
mentally showed, for example, that there are only three families of fundamental
particles. Operating LEP at the highest beam energies was limited by the emis-
sion of synchrotron radiation. At 100GeV beam energy about 3% of the beam
energy is lost every turn and had to be replenished by a large number of super-
conducting RF-cavities. Despite the experimental successes LEP was dismantled
in 2002 in order to reuse the existing 27 km tunnel to house a collider, called the
Large Hadron Collider (LHC) which will bring protons and heavy ions into colli-
sions. The reachable energy is limited by the magnet technology which employs
super-conducting magnets cooled by supra-liquid helium at 1.8K. The peak en-
ergy for protons is 7.7TeV and the more than 1200 dipole magnets with a peak
field of 8T are needed ’to keep the beam in the pipe.’ Figure 7 shows the LHC
tunnel with the SPS used as injector and the four major experiments ALICE,

9



1 INTRODUCTION Draft, November 14, 2006

Figure 9: CLIC layout. (picture CERN)

CMS, and LHC-B, and ATLAS (with active Uppsala participation).

1.3.3 SLC at SLAC in Stanford

The improvements in vacuum and microwave technology during the 50s made
the generation of high power S-band (3GHz) possible, which was used to feed
the acceleration structures of the 3 km long linear accelerator built at SLAC in
Stanford during the 1960s. During the 80s schemes to increase the achievable
energy from the initial 20GeV to 50GeV were implemented which made the
investigation of the Z0 bosons possible. Furthermore, a positron source, damping
rings, and arcs at the end of the linac were added. This led to the revolutionary
concept of a linear collider. In order to reach high luminosities the relatively low
repetition frequency of 120Hz needs to be compensated by squeezing the beams
to micron size at the collision point which led to a big development effort for
suitable beam diagnostic and control. The SLC was in operation until 200?, now
part of the linac is used as an injector for the PEP2 B-factory which was the
second incarnation of the PEP ring at SLAC. From 2009 part of it will be used
in the LCLS free-electron laser.

1.3.4 ILC and CLIC, planned

The experience from LEP showed that reaching 100GeV in a circular e+e− ac-
celerator requires a circumference of 27 km which indicates that the emission of
synchrotron radiation will prevent reaching higher energies in a circular collider.
Going towards TeV energies in en electron machine thus requires a linear accelera-
tor, or, rather two accelerators pointing at each other. In order to keep the length
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Beamlines at the ALS 2006
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Figure 10: The synchrotron radiation beam lines in the ALS (figure ALS).

of this accelerator within reasonable limits (30 km?) a high accelerating gradient
in the RF structures is mandatory. Super-conducting RF structures can reach
around 30MeV/m if powered by 1.3GHz microwave klystrons. This is the way
that the ILC collaboration is going but the peak beam energy is limited to about
0.5TeV and in order to reach the Multi-TeV another approach, the two-beam ac-
celeration scheme, on which CLIC is based, is needed. Here a low-energy beam at
very high intensity is decelerated in specially shaped RF structures and generates
30GHz microwaves that are used to accelerate the lower-intensity main beam to
very high energies. This scheme has shown to reach acceleration gradients in the
150MeV/m range. Figure 9 shows a schematic of CLIC. The final focus system
for both ILC and CLIC is very demanding, because here the intended beam sizes
at the collision point will be several orders of magnitude smaller than at SLC,
namely nano-meter size beams are required. This will pose extreme constraints
on the alignment and beam stabilization system, among other things.
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Figure 11: MAX IV layout. (picture from FEL04 conference)

1.3.5 ALS at LBNL in Berkeley

Since 1993 the building that previously housed the 184-inch cyclotron in Berke-
ley, Ca. is the home of the Advanced Light Source (ALS), a third generation
synchrotron light source, i.e. deliberately built and designed to produce syn-
chrotron radiation in 1.9GeV electron storage ring with a circumference of 2xxm
storing up to 400mA of particles. The ALS is equipped with 28 beam lines
that provide user groups with radiation from bending magnets and 15 beam lines
from undulators and wigglers. The spectral range of the ALS extends into the
X-ray region allowing for example microscopy of biological samples and protein
crystallography.

1.3.6 MAXLAB in Lund

In Lund a Swedish national synchrotron light source, called MAXLAB is in oper-
ation since the 1980s. The first electron storage ring was MAX I with a maximum
energy of 550MeV. It serves both nuclear physics and synchrotron users. Since
1995 a third generation light source, the 1.5GeV ring MAX II is operational and
serves users with VUV and soft X-ray photons. During 200x the new 700MeV
ring MAX III was taken into operation and it will provide high quality beams and
brilliant radiation to users of lower photon energies in the VUV and IR range
of the spectrum, liberating the straight sections in MAX II for insertion devices
(undulators, wigglers) in the X-ray region. A special feature of MAX III is the
integration of support and magnet structure, permitting an extremely compact
and inexpensive design. In the future the MAX IV complex is planned, which
consists of two rings at 1.5 and 3GeV on top of each other with a full energy
normal-conducting linear accelerator. Included in the design is a cascaded optical
klystron free-electron laser.
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1.3.7 Other accelerators in Scandinavia

Apart from accelerators for medical applications such as tumor irradiation or
isotope production there are a number of accelerators for basic research in Scan-
dinavia. In Jyväskylä, Finland there is a 130MeV cyclotron that provides a large
variety of ions to experimenters in nuclear physics and biology. The ASTRID ring
in Århus, Denmark has the unique capability of being able to accelerate both elec-
trons to provide synchrotron radiation and heavy particles such as highly charged
ions or even large molecules such as Buckminster-Fullerenes C60. An completely
electrostatic accelerator, called ELISE was also conceived at ASTRID. In Stock-
holm the heavy ion storage ring CRYRING is operated at the Manne Siegbahn
Laboratory is equipped with an electron cooler and is mostly used for atomic
physics experiments such as dissociative recombination of carbohydrates. In Up-
psala the Gustav-Werner cyclotron is in operation since the late 1940s and nowa-
days provides ions and protons up to a kinetic energy of 180MeV. Until 2005
the beams were used to fill the 82m nuclear physics storage ring CELSIUS, but
are today used to generate neutrons for material testing and irradiate patients in
collaboration with the University hospital. These activities will expand greatly
if the Swedish Proton Therapy Center (SPTC) will be built in Uppsala, as is
currently discussed.

2 Course Overview

Here we give a short synopsis of the issues that will be discussed and motivate
the relevance of the respective concepts. It is intended to whet the appetite of
the student to learn more and to give an overview over the material covered. We
also discuss prerequisites and expected student participation for the course.

2.1 The Particles

When describing particles in an accelerator we first have to choose a suitable
coordinate system to describe the state of a single particle. In an accelerator we
typically have to consider a large number (106 to 1011) of charged particles, which
makes a statistical description suitable.

2.1.1 Their mathematical Description . . .

In classical mechanics the state of point-like particles can uniquely be described
by their phase-space coordinates, which are the positions in x, y, z and the corre-
sponding momenta px, py, pz with a suitably chosen origin and zero momenta. In
an accelerator we chose a particle that moves on a design trajectory as reference
and describe the state of other particles in the beam by their deviation from the
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reference particle. Moreover, we use positions and angles of the particle in the di-
rection perpendicular to the reference particle’s motion as transverse coordinates
and the relative energy difference with as well as the arrival time at a particular
position with respect to the reference particle. Of course this only describes a
single particle.

The large number of particles in an accelerator warrants the use of statistical
methods and we describe an ensembles of many particles by distribution functions
in the phase space variables. Sometimes a distribution or a projection can be
measured directly, but often averaged quantities that describe a distribution are
needed. The most obvious examples are the moments, where the zeroth moment
describes the total number of particles in the distribution, the first moments
describe the center-of-mass quantities, such as average position, and the second
moments describe the size of the distribution. Mixed moments or correlations
sometimes show physical significance and will be discussed at the appropriate
places. Often the moments that are most easily measured experimentally, as is,
for example, the beam position.

2.1.2 . . . and Generation

Normal particles used in accelerators are electrons, protons, but also heavy ions,
anti-protons, and positrons and they have to be generated in suitable devices to
provide the required intensities with beam sizes that are needed in the experi-
ments. Electrons can, for example, be generated in thermionic devices, where a
filament is heated and the electrons are extracted by high voltage. Heavy ions can
be generated in an electron-cyclotron resonance (ECR) ion source where a plasma
is sustained by a microwave and magnetic fields. The positive ions are extracted
by high voltage. Positrons are generated by impinging high-energy electrons on
a target and separating the positrons in the developing electromagnetic shower
of gammas, and electron-positron pairs. Since all particles generated in a given
source have the same charge, they repel each other and reaching high intensities
normally imposes limits on the achievable beam quality.

In the course we will discuss the generation mechanisms and the engineering
of sources for commonly used particles.

2.2 Beam Transport

Once the particles are generated they need to be guided to the experiments by
magnetic fields. The dynamics of the particles is determined by the Lorentz-
equation and the reference orbit is normally determined by the position and the
excitation of dipole magnets.

The beam particles do not necessarily follow the reference trajectory, partially
because they all carry the same charge and tend to diverge, partially because of
finite alignment tolerances. Furthermore the transverse beam size often needs to
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be adjusted to suit experimental demands. This implies the need for focusing
forces that kick the particles back towards their reference or design trajectory,
similar to what lenses do in optical systems where they allow shaping the trans-
verse beam size of e.g. a laser beam. In a beam transport system the function
of lenses is carried by quadrupole magnets and the positioning and excitation of
the quadrupoles determines the stability of a beam transport system as well as
the transverse beam size throughout the accelerator. The design of simple beam
optical systems can be done by analytical means, but more complex systems are
analyzed by computer codes like MAD [8] as we will do during the course.

We will discuss the concepts used in beam optics and explore different accel-
erators using codes such as MAD.

2.3 Magnets

The dipole and quadrupole magnets alluded to before and other magnets need
to be designed and built and their parameters can be quickly estimated by ana-
lytical means such as Ampere’s law. Depending on the accelerator the magnets
can be normal- or super-conducting or made of permanent magnets. For a de-
tailed design two- or three-dimensional codes based for example on finite-element
methods are required.

In the course we will use the free student version of a commercial electro-
magnetic design code [9].

2.4 Getting up to speed: Acceleration

The particles in an accelerator are accelerated by radio-frequency (RF) fields and
we will discuss the generation of RF-power and how it is applied to the beam
in resonating RF-structures which we briefly discuss. At first sight it may be
surprising that all particles in an ensemble receive the same accelerating fields
which appears as a remarkable feat, but can be explained by the concept of phase
focusing which keeps all particles in an ensemble, often called bunch, synchro-
nized.

2.5 Where are the they: Diagnostics and Correction

Despite transverse focusing due to quadrupoles and phase focusing due to the
RF-system them beam can go badly wrong, especially when starting up a new
accelerator. In order to find out what is wrong we need diagnostic devices that
tell us the state of the beam in the machine. Especially important are the current,
the position and the size of the beam, the moments so-to-speak. We will discuss
the devices that measure these quantities and then apply the knowledge about
the state of the beam to correct it. As an example one might consider the beam
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position, which can be corrected by small extra dipole magnets that are placed
in the accelerator.

We will cover the basic beam instrumentation devices and a few correction
methods are are frequently encountered in control rooms.

2.6 Oops, too much: Instabilities

In experiments often a large intensity beam is desired, but a large number of
particles can become unstable, because the particles start interacting among
themselves and create a feedback loop, that can become unstable. One such
self-interaction is the space-charge field due to the same charge of all particles,
another instability is driven by RF-fields deposited by the leading particles in
resonant structures that later parts of the bunch see. In a circular accelerator
this may lead to an instability.

We will discuss a small number of mechanisms that lead to instabilities and
point at cures.

2.7 Take care: Radiation protection

Depending on the beam energy and intensity an accelerator can be a high-
radiation environment and proper care needs to be taken for access and mon-
itoring the radioactive dose to which personnel and equipment is exposed.

We will briefly discuss the units and effects of ionizing radiation and how the
radiation is detected.

2.8 Synchrotron Radiation

It is well known that accelerated charges radiate electromagnetic waves, similar
to what happens in a normal dipole antenna. Under normal conditions only the
light particles electrons or positrons emit radiation. Initially this effect was unde-
sired, because the energy lost needs to be replenished in RF-structures, but later
attractive applications of the so-called synchrotron radiation appeared, mostly
due to the short wavelength and attractive spectral properties of the radiation.
Nowadays electron accelerators dedicated to the generation of synchrotron light
are build, where free-electron lasers are the brightest sources.

We discuss the power and spectral characteristics of the synchrotron radiation
emitted.

2.9 Prerequisites

Knowledge of the concepts listed in important in order to be able to properly
follow the course.

16



2 COURSE OVERVIEW Draft, November 14, 2006

• Classical Mechanics

• Relativistic Kinematics

• Lorenz-force

• Multipole expansion

• Probability distributions

• Linear Algebra

• Ordinary differential equations

2.10 Student Participation

Active student participation in the seminars is a prerequisite for passing the
course, because problem solving will deepen the understanding of the subject
matter and will enable you to solve other real-world problems if they cross your
path.

During the course we will design a fictitious accelerator, called ERPL, which
is short for Electron-Ring-Proton-Linac, which should be a collider between a
proton-linac in the 200MeV range and an electron ring with a design energy of
3 GeV. The latter should also be able to provide synchrotron radiation user with
radiation. Typical problems will deal with

• Discussion of technical choices for parameters in various subsystems,

• Magnet lattice and beam optics,

• Magnet design,

• Orbit, tune, and chromaticity correction,

• Estimating instability limits

Most, but not all, problems will relate to this accelerator.
Especially in the early phases of the course I will assign the discussion of

special subjects to students, which is typically based on a publication that the
student presents to the class. This will be similar to a classic seminar. Examples
in the first class will be the discussion of

• the cyclotron,

• the betatron,

• and the Cockroft-Walton
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Figure 12: Reference trajectory.

accelerators.
There will be a final exam or a 1/2 hour oral exam depending on the number

of participants.
We will visit the CRYRING at the Manne Siegbahn Laboratory in Stockholm.
Having covered the administrative details, we are ready to jump into the

subject matter of the course.

3 The Particles and their Description

The particles that are used in accelerators need to be charged, which implies
that some normally neutral atom or molecule needs to be ionized in order to be
accelerated and guided by electro-magnetic fields. The generation process and
the technology of particle sources we postpone to a later chapter and discuss the
mathematical description first of a single particle and later an ensemble of many
particles in this section. For the purpose of describing the motion of particles in
an accelerator, we can treat electron, protons or other ions as essentially point-
like, and ignore their internal structure. As mentioned in the introduction are
such point-like particles in classical mechanics uniquely described by their phase
space coordinates, which consist of their positions and velocities, or equivalently,
their momenta.

When we design an accelerator for a particular purpose – such as collider or
light source – we envision where the particles that constitute the beam should
show up at what time (such as two beams at the same time in the same place
in a collider). This basic requirement is then translated into a description of the
trajectory, or orbit, of a reference particle that has all the desired properties. Of
course such a particle has the right energy at the desired place which means it
has to arrive in RF cavities at just the right time to receive the correct energy

18
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increase. Knowing the energy we can place dipole bending magnets in order to
guide the reference particle to where we want it to be. Here the magnets are
assumed to be ideal and provide just the correct bending angle to guide the
reference particle and the distances between the magnet are chosen to correctly
determine the arrival time at the desired locations such as the interaction point
in a collider. For a given reference trajectory we can find a co-moving coordinate
system in the form of a Frenet-tripod that describes the dynamics of the particles
that are not quite so perfect as the reference particle in that co-moving coordinate
system. It must be noted that the rather heuristic arguments used her can be
made rigorous by a proper sequence of canonical transformations to transform the
dynamics represented by a Hamiltonian into the co-moving frame. This procedure
is, for example, described in detail in Ref. [2].

Rather than giving the the positions and momenta with respect to the refer-
ence particle we use the following quantities

x , the horizontal distance to the reference particle;

x′ , the horizontal angle with respect to the trajectory of the reference particle;

y , the vertical distance to the reference particle;

y′ , the vertical angle with respect to the trajectory of the reference particle;

τ , the arrival time with respect to the reference particle at a fixed point;

δ , the relative momentum difference with respect to the reference particle;

to describe the state of a single particle. It should be noted that some pro-
grams such as MAD use slightly different variables, which, however, in the ultra-
relativistic limit agree with those mentioned here. An advantage of these quan-
tities is that they describe geometric concepts like distances and angles. The
arrival time is relevant if time-varying electro-magnetic fields affect the particle
such as RF-structures. The relative momentum difference δ is convenient, be-
cause it describes the relative variation of the angles inflicted by magnetic fields
with momentum.

Now we have a way to describe a single particle and where it is at a specific
time. In a real accelerator we have to deal, however, with a large ensemble of
particles, typically on the order of 106 to 1011 individual particles. If dealing
with such a large number of particles that constitute a beam we have to use
statistical means to describe their multi-variate distribution in the six variables
x, x′, y, y′, τ, δ. A suitable tool is a distribution function ψ(x, x′, y, y′, τ, δ) which
describes the number of particles in an infinitesimal phase-space volume NdV

NdV = ψ(x, x′, y, y′, τ, δ)dxdx′dydy′dτdδ . (1)
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Figure 13: A histogram.

Often projections onto one of two variables are used. Mathematically, they are
described by integrating over the unconsidered variables. For example

Ψ(x, y) =
∫
ψ(x, x′, y, y′, τ, δ)dx′dy′dτdδ (2)

describes the distribution in the two transverse spatial coordinates x and y which
can be measured in an accelerator, by placing a luminescent screen into the path
of the beam and recording the image by photographic means. The intensity of the
image on the screen is dependent on the number of particles that hit a particular
location on the screen. Note, however, that the screen does not discriminate the
angles x′, y′ or the arrival time τ (within limits) or the energy δ of the particles
and we therefore sum or integrate over these coordinates. Note that the local
intensity on the screen is obtained by summing over all intercepting particles
which is the experimental equivalent of creating a histogram. In fig. 13 we show
an artificially generated one-dimensional histogram of particle positions.

A distribution function or even a histogram as its experimental approximation
contains a lot of information in the sense that many numbers are needed to
describe it and a more efficient way is clearly desirable. We can estimate the
number of particles represented in the histogram in Fig. 13 by counting the
number of particles in all bins. By careful observation we see that the distribution
is well centered and has the bulk of particles near x = 0. Furthermore it has a
width of around ±2 mm. By characterizing distribution by the total number
of particles, its center and its width we effectively describe it by its moments.
The zero-th moment is the total number of particles which can be determined by
integrating a distribution function over all space, the first moment 〈x〉 determines
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the center-of-mass and can be calculated by evaluating the integral

〈xn〉 =
∫
xnψ(x)dx (3)

for n = 1. Here we assume here that the distribution function ψ(x) only depends
on the variable x. If it depends on other variables as well, the integral has to
extend over all other variables as well. The second moment 〈x2〉 is related to the
rms width of the distribution σ by

σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2 . (4)

Note that often the moments or the width are the quantities that can most easily
determined experimentally. Take for example the screen image discussed in the
previous paragraphs. By turning the picture into a two-dimensional histogram,
calculate the integrals numerically by observing that the integral can be rewritten
as a sum and the integration measure dx is the bin width of the histogram. Thus
we can determine the moments and thereby the center and width of the distri-
bution. If we denote averaging over the distribution function by angle brackets

〈g()〉 =
∫
g()ψ()dV (5)

where the empty brackets can filled by any number of suitable arguments we can
calculate averages over any function.

Since the particle distributions are often determined by the repeated appli-
cation of random forces (which are often balanced by damping) the central limit
theorem implies that the resulting distribution function is Gaussian. In one di-
mension a normalized and centered Gaussian is given by

φ(x) =
1√
2πσ

exp
(
−x2/2σ2

)
(6)

and the multi-variable version in n dimensions with ~x = (x1, . . . , xn) is given by

φ(~x) =
1

(2π)n/2
√

detσ
exp

−1

2

n∑
i,j=1

(σ−1)ijxixj

 (7)

where we have introduced the symmetric sigma-matrix σ that is given by

σij =
∫
xixjφ(~x)dnx . (8)

It is possible with some effort to prove that eq. 8 is indeed correct by explicitely
evaluating the integral at least for the case n = 2.
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Figure 14: A two dimensional Gaussian distribution.

An example of a two-dimensional distribution is in order now to illustrate the
concept of correlation. In Fig. 14 we display a contour plot and a surface plot of
a Gaussian distribution with the sigma matrix

σ =

(
2 1
1 1

)
=

(
〈x2〉 〈xy〉
〈xy〉 〈y2〉

)
(9)

which exhibits a strong correlation between the two directions, as described by the
off-diagonal elements of the sigma-matrix. The definition of the sigma-matrix in
terms of second moments in Eq. 9 is possible, because the distribution is centered
and the first moments 〈x〉 = 〈y〉 are zero.

We now have a found means to describe several aspects of the particles and
beams that move through the accelerator, namely

• individual particles,

• distributions of particles,

• and moments of distributions.

It is possible to mathematically describe how the three representations of the state
of the beam changes as it passes through the accelerator. The dynamics of the
individual particles can be described by Hamiltonian mechanics, the distribution
function by the Vlasov- or Fokker-Planck equations and the dynamics of the
moments can be described by maps, which in the simplest case reduce to matrix
operations, as we will see in the next sections.

4 Transverse Beam Optics

In the previous section we found that the information about the first and second
moments gives a fairly well description of most distributions that are reasonably
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Figure 15: Particle trajectory in a drift space.

well-behaved. Here we will describe methods of how to find out how the moments
change from one place in the beam line to the next. We restrict ourselves to the
transverse degrees of freedom x, x′, y, y′.

4.1 Drift

We start by considering the simplest elements in a beam line and describe their
influence on the motion of a single particle and deduce the maps for the moments
from that. We start by considering what happens in a drift space which is a fancy
word for an empty beam pipe without magnetic or electric fields. Obviously
the particles travel on a straight line through a drift space and the transverse
coordinates x2, x

′
2 at the end of the drift space of length L are related to those

at the beginningx1, x
′
1 by

x2 = x1 + Lx′1
x′2 = x′1 (10)

which is easy to understand when looking at Fig. 15. The particle comes from
the right and travels towards the left. Initially is has a distance x1 to the axis and
moves away from the axis with an angle x′1. During the passage the angle does not
change, but the distance to the z−axis increases, according to the first of Eq. 10.
We observe that the final coordinates with subscript 2 are linear combinations of
the initial coordinates with subscript 1 and we can consequently write Eq. 10 in
matrix form (

x2

x′2

)
=

(
1 L
0 1

)(
x1

x′1

)
. (11)

It is easy to verify that the matrix for two consecutive drift spaces of length L1

and L2 can be obtained by multiplying the matrix for L1 with that of L2.
Observe that in all pictures the particles propagate from the right to the

left which makes writing down the equivalent matrix equations easier, because
matrices are usually multiplied from the left to a column vector that represents
the particle.
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Figure 16: Thin quad.

4.2 Thin Quadrupole

The next element is a thin quadrupole which behaves in the same way as a thin
lens known from light optics. We will discuss real quadrupoles later, but fill for
the time being focus on thin quadrupoles, because they are very useful for crude
estimates of beam lines. The defining property of a thin lens is that it applies a
kick (change in angle x′) to the particle that is proportional to the distance from
the center of the lens or the quadrupole. This behavior is illustrated in Fig. 16
where two particles coming from the right traveling parallel to the axis receive
a downward kick proportional to their distance from the axis. This causes both
particles to cross the axis at a downstream location. The distance from the lens
to the crossing point is, of course, the focal length of the lens. On the right of
Fig. 16 the linearly increasing magnetic field that causes the particle deflection
is shown.

We now have the task to build a matrix that reflects the behavior we just
described, namely a kick proportional to the distance to the axis. It is easy to
verify that the matrix (

1 0
− 1

f
1

)
, (12)

where f is the focal length, has this property by calculating the composite matrix
of a thin quadrupole with focal length f and a drift space of length f and applying
it to an incoming particle with state (x1, x

′
1 = 0). The resulting vector should

have the form (x2 = 0, x′2).
Similar to light lenses there are both focusing and defocusing lenses and they

differ by the sign of the focal length. A defocusing lens thus has negative sign
which is intuitively satisfying, because the intersection with axis lies before then
lens (at negative z) for a defocusing lens and after the lens (at positive z) for a
focusing lens.

Optical lenses are often round and the focal length in the horizontal and
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Figure 17: Forces in a quadrupole, if a positively charged particle moves into the
plane.

vertical plane are equal, even though there are examples, such as cylindrical
lenses that generate a line focus. In magnetic quadrupole lenses the deflection is
generated by the magnetic field which has to obey Maxwells equations, especially
∇ × ~B = 0 especially inside the quadrupole we have dBy/dx = dBx/dy. This
causes a magnetic field that rises linearly along the positive x−axis to decrease
along the positive y−axis. Another way of visualizing this behavior is by looking
at the field lines (red) in a quadrupole in Fig. 17 and calculate the Lorenz force
(blue). A particle on the horizontal axis is kicked towards the center of the
quadrupole (focusing), whereas a particle on the vertical axis is deflected away
from the quadrupole center (defocusing). In summary, a quadrupole that focuses
in one plane defocuses in the other plane. The 4×4 matrix for the two transverse
planes that reflects this is given by

1 0 0 0
− 1

f
1 0 0

0 0 1 0
0 0 1

f
1

 . (13)

The matrix operates on a vector ~x = (x, x′, y, y′)T . Note that the 4 × 4 matrix
in Eq. 13 contains two 2 × 2 blocks along the diagonal and 2 × 2 zero-matrices
in the off-diagonal positions. The zeros in the off-diagonals imply that a normal
quadrupole does not couple the horizontal motion in x and the vertical motion
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Figure 18: Phase space portrait of the motion in the FODO sequence defined in
Eq. 14.

in y.
We now have the basic ingredients to design simple beam lines in a rough way

to investigate their general properties. We will later return to other beam line
elements such as real quadrupoles, dipoles, and RF cavities.

4.3 FODO Lattice

One of the simplest sequence of magnets is a so-called FODO structure which
consists of a sequence of quadrupoles and drift spaces. It can be schematically
depicted by

(QF/2) (L) (QD) (L) (QF/2) (14)

where (QD) and (L) denote the matrix of a defocusing quadrupole and a drift
of length (L), respectively. The focusing quadrupole is split in half to make
the beam line symmetric. If we assume the following values L = 1 m for the
drift space and f = ±1 m for the focal length of the quadrupoles we obtain the
following matrix M for the segment in Eq. 14

M =

 1− L2

8f2 L+ L2

4f

− 1
4f2 + L2

16f3 1− L2

8f2

 . (15)

Note that we have chosen alternating focusing and defocusing magnets, because
in the other plane the sequence were reversed, i.e. the horizontally focusing
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magnets become defocusing and vice-versa. In this way the horizontal x-plane
and vertical y-plane are effectively exchanged.

We can now visualize the motion of the particles by repeated application of
the matrix M on initial conditions x = 0.01 m and x′ = 0 and iterate 100 times.
If we plot x′ versus x we create a phase portrait of the motion. An example is
displayed in Fig. 18, where we plot x−x′ at the starting point in black stars and
in the center of the first drift space as red crosses. We observe that the motion in
both cases is confined to an ellipse, indicating that the dynamics of the particle
is similar to that of a harmonic oscillator. Note also that the area of the ellipses
appears to be equal which indicates the presence of a conserved quantity or an
integral of motion as is the energy in a harmonic oscillator.

4.4 The Lattice Beta-function

The presence of a conserved quantity could be intuitively expected, because the
transfer matrices for drift and quadrupole have unit determinant and therefore
the product of these matrices also has unit determinant. This property can
be exploited to find a useful parameterization of the transfer matrix M which
is a 2 × 2 matrix with unit determinant. It therefore has three independent
parameters. Since the motion resembles that of a harmonic oscillator we require
that in the center of the parameterization we have a rotation matrix with rotation
angle µ. This is the first parameter. Since x and x′ have units of meter and
radians we have to scale them to equalize the units a quantity with units m1/2.
This scaling parameter we call β and has the units of meter. This is the second
parameter. Finally we introduce a unit-less parameter α to account for the third
parameter needed and arrive at this parameterization

M =

 √
β 0

− α√
β

1√
β

( cosµ sinµ
− sinµ cosµ

) 1√
β

0

α√
β

√
β


=

(
cosµ+ α sinµ β sinµ

−1+α2

β
sinµ cosµ− α sinµ

)
. (16)

The parameterization shown in the first line of Eq. 16 has a simple interpretation.
First we apply a coordinate transformation by the matrix with α and β, then
we apply a rotation, followed by the inverse coordinate transformation. The β-
matrix is thus just an affine transformation that rescales and changes the angle
of the coordinate axis. Since the motion in the new coordinate system is a circle
it is common to call this ’transforming into normalized phase space.’

The rotation angle µ is commonly called the phase advance of the oscillations
that the particle performs and β is the ubiquitous beta-function. We can now
exploit the parameterization from Eq. 16 to determine the phase advance, β, and
α for the FODO beam line (or lattice) in Eq. 14 with transfer-matrix given by
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Eq. 15 and obtain the following equations(
cosµ+ α sinµ β sinµ

−1+α2

β
sinµ cosµ− α sinµ

)
=

 1− L2

8f2 L+ L2

4f

− 1
4f2 + L2

16f3 1− L2

8f2

 . (17)

Adding the diagonal elements and dividing by 2 we find

cosµ = 1− L2

8f 2
(18)

and using the trigonometric equation 1− cosµ = 2 sin2(µ/2) we obtain

sin(µ/2) =
L

4f
. (19)

From the 12-matrix element in Eq. 17 we can determine the beta function

β = L
1 + L/4f

sinµ
= L

1 + sin(µ/2)

sinµ
(20)

where we assume that we have calculated µ already in Eq. 19. Finally, from the
difference of the diagonal elements we determine

α = 0 . (21)

Note that here we have performed the explicit calculations to determine the
parameters µ, β, and α from the matrix elements for a matrix explicitely given
by Eq. 15. The same procedure, however, can be done for any matrix M whose
elements are given, for example, in numeric form.

Now we need to discuss the assumptions that went into the choice of pa-
rameterization in Eq. 16. First note that the beta function and phase advance
are determined by the magnet lattice, i.e. the positioning and excitation of the
quadrupoles. No information about the particle- or beam-distribution entered
into the discussion. Therefore the beta function we talk about here is that of
the lattice. later we will encounter another beta function, that is related to the
beam distribution. In some cases these two beta functions are equal, normally in
circular accelerators, but they need not be equal.

Second, we required that there is a rotation matrix at the bottom because the
phase space in Fig 18 looks like that of a harmonic oscillator. We chose the beta-
matrices to the left and right of the rotation matrix to be inverses of each other.
This choice implies that we tacitly assume that the transfer matrix describes
a subsection of the accelerator that has periodic boundary conditions. This is
often the case, because accelerators are build of a number of similar modules,
such as the FODO cell discussed above. By choosing equal beta matrices on the
left and right guaranteed that there is the same number of parameters in the
parameterization as there are free parameters in the original 2× 2-matrix M.
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The restriction to three parameters is not really required. If we choose the
following parameterization of an arbitrary transfer matrix R

R =

 √
β2 0

− α2√
β2

1√
β2

( cosµ sinµ
− sinµ cosµ

) 1√
β1

0

α1√
β1

√
β1

 (22)

with different α, β on either side of the rotation matrix we can no longer uniquely
determine the five parameters α1, β1, α2, β2, and µ from the transfer matrix R
alone. In practical examples often the beta functions α1, β1 at the start of a
beam line are given from someone who worked on the section of beam line before
the one with transfer matrix R and we are left with three parameters α2, β2, and
µ that we need to determine from the three independent transfer matrix elements
in R.

Of course, we can reverse the interpretation and argue that the transfer matrix
R propagates the beta functions from the start point α1, β1 to the end point α2, β2.
This transformation is done by the matrix β2

α2

γ2

 =

 R2
11 −2R11R12 R2

12

−R11R21 R11R22 +R12R21 −R12R22

R2
21 −2R21R22 R2

22


 β1

α1

γ1

 (23)

with γ = (1 + α2)/β and Rij are the matrix elements of the transfer matrix R.
The correctness of Eq. 23 can be established by inserting the parameterization of
R from Eq. 22 simplifying the expression.

The parameterization in terms of beta functions and phase advance is very
widely used and also very convenient. If we assume that we have calculated a table
of beta functions and phase advances for a beam line we can immediately calculate
for example the sensitivity of the particle orbit x at a position labeled 2 to dipole-
errors where the beam gets and small kick θ at another position labeled 1. The
12-element of the matrix in Eq. 22 provides just this correlation x = R12θ with

R12 =
√
β1β2 sinµ . (24)

We immediately see that the amplitude of the particle oscillation is determined
by the beta function and that it propagates in sinusoidally with phase advance
µ. Obviously this is a quasi-harmonic oscillation with varying amplitude.

4.5 Tune and Stability

If we consider a circular accelerator that consists of elements such as drifts,
quadrupoles and other that can be described by transfer matrices, we can cal-
culate the so-called full-turn matrix which maps the coordinates of a particle at
the starting point of the matrix to those after one turn through the accelerator.
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Since the start- and end-point of the map are the same the phase ellipses before
and after the turn are identical this implies that the beta functions at the start-
and end-point must be identical. We can consequently use the parameterization
in Eq. 16 for both the horizontal and the vertical 2× 2 full-turn matrices 1. We
have seen in the above example that the phase advance µ and beta functions can
be determined from the transfer matrix if the beta functions at the start and
end-point are equal. In the case that we consider a full-turn matrix the phase
advance µ that appears in the argument of the trigonometric functions is usually
denoted by

µ = 2πQ (25)

where Q is called the tune of the circular accelerator. There is usually a tune
for the horizontal and the vertical motion, conventionally denoted by Qx and Qy,
respectively. Sometimes the tunes are also denoted by the symbols νx/y.

The tune has a very simple interpretation: it is the number of oscillations
that a particle performs during one turn in the circular accelerator.

Given the full-turn matrix we saw in the previous section that we can find
the phase advance µ and thereby the tune Q = µ/2π by calculating the sum of
the diagonal elements – the trace – of the full-turn transfer matrix, as should be
obvious from the second line of Eq. 16 and we obtain

2 cos(2πQ) = M11 +M22 = Tr(M) . (26)

Observe that in this way we only obtain the fractional part of the tune due to
the periodicity or multi-valuedness of the cosine function.

Obviously we can only calculate the tune in argument of the cosine if the trace
of the matrix has magnitude less than 2, because the cosine on the left-hand-side
is limited between ±1 the right hand side can not exceed ±2. This constitutes a
stability criterion for stable oscillations in a circular accelerator.

Of course we can physically build an accelerator where we arrange the magnets
in such a way that the trace of the transfer matrix exceed 2, but in that case we
cannot use the parameterization in Eq. 16 and find beta-functions and tunes.

4.6 Courant-Snyder Invariant or Action variable

In the discussion in the previous sections the beta function was entirely deter-
mined by the transfer matrix. No information about the particle coordinates
was used in the discussion. We know, however, that the particle coordinates are
located on an ellipse in phase space. The coordinate transformation that appears
as the beta-matrix in Eq. 16 in the far right converts the real particle coordinates

1provided there is no XY−coupling between the transverse planes.
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(x, x′) to those in normalized phase space where the motion is described by circles

(
x̃
x̃′

)
=

 1√
β

0

α√
β

√
β

( x
x′

)
. (27)

In normalized phase space the phase portrait of different particles is described by
circles and the motion is described by a phase advance that makes the particle
hop from point to point on the circle determined by the phase advance µ. Particles
with different initial coordinates in real space will determine circles with different
radii and we can characterize these circles by their radius that is historically
denoted by 2J,

2J = x̃2 + x̃′2 (28)

where J is the Courant-Snyder or action variable. It is often somewhat incorrectly
called emittance. We will use the term Courant-Snyder or action invariant for
the quantity that describes the amplitude of a single particle and emittance when
talking about the average of the action over an ensemble of particles.

The circle in normalized phase space given by Eq. 28 that is characterized by
2J can be expressed in real space coordinates (x, x′) by using Eq. 27. A little
algebra yields

1 + α2

β
x2 + 2αxx′ + βx′2 = 2J (29)

which is clearly the description of an ellipse as a quadratic equation as should,
because it is a conic section.

So far we dealt with the beam line, its magnet lattice and the description of
the motion of a single particle. Of course it is possible to describe the motion
of a large ensemble of particles through their individual constituents, but that is
very inefficient. Using moments is much better and that is what we turn to in
the next section.

4.7 The Sigma- or Beam-matrix

In section 3 we found that well-behaved distribution functions can be efficiently
described by their first few moments, namely zeroth moment, the particle number;
the first moments, the centroids; and the second moments, the beam sizes. Here
we discuss how the moments of the beam distribution propagate through a beam
line. Once we can do this we have reasonably complete information about the
behavior of the beam everywhere in the accelerator.

We start by considering how a single particle propagates due to the effect of a
transfer matrix R and then calculate the moments after the beam line represented
by R by averaging the final coordinates over the initial distribution. To make
this approach clearer we work this out in detail. We describe the initial vector
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by ~x = (x1, · · · , xn) where n can be any number, but] most often it will be 2, 4,
or 6. The individual particle is assumed to propagate according to

x̄i =
n∑

j=1

Rijxj (30)

if written in component form. We denote the particle coordinates at the end of
the beam line that is represented by R with a bar. For averaging over the initial
distribution function we use the Eq. 5 on page 21 and also use the notation that
angle brackets denote averaging. Clearly averaging Eq. 30 we obtain

X̄i = 〈x̄i〉 = 〈
n∑

j=1

Rijxj〉 =
n∑

j=1

Rij〈xj〉

=
n∑

j=1

RijXj (31)

which states that the centroids Xi propagate in the same way the individual
particles do, which is convenient, because we can use the single particle dynamics
to describe the behavior of a large ensemble of particles. In particular beam
position monitors that we will discuss further below in section 7 are sensitive to
the centroid of the beam motion, but we can model these measurements with
single particle dynamics.

We now turn to the second moments and how they propagate in a beam
line defined by transfer matrix R. The sigma matrix is in general defined as the
central second moments of the distribution. ’Central’ in this context means that
the centroid motion is subtracted. The sigma matrix is then defined as

σij = 〈(xi −Xi)(xj −Xj)〉 . (32)

In the remainder of the present section we will for the sake of simplifying the
equations assume that the centroid of the distribution is located on the beam
axis, i.e. Xi = 0. The sigma matrix at the end of the beam line σ̄ is then given
by

σ̄ij = 〈x̄ix̄j〉 = 〈
n∑

k=1

Rikxk

n∑
l=1

Rjlxl〉 =
n∑

k=1

Rik

n∑
l=1

Rjl〈xkxl〉

=
n∑

k=1

n∑
l=1

RikRjlσkl (33)

in terms of the initial sigma matrix σ and the transfer matrix R. Note that Eq. 33
is given in component form. Written explicitely in matrix form we obtain

σ̄ = RσRT (34)
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where RT denotes the transpose of matrix R. Strictly speaking we have only
shown that the sigma matrix propagates with Eq. 34 if ~X = 0 but with a little
more effort it is straightforward to show that Eq. 34 also holds if the full definition
of the sigma matrix in Eq. 32 is used.

Equation 34 now enables us to propagate a beam through a beam line, if we
know all transfer matrices along the way. This method is in fact implemented
in many beam transport codes, starting from TRANSPORT [12], MAD [8] and
many others. I want to stress the relevance of the sigma matrix, because it
carries all the information about the beam properties such as beam size σ11 = σ2

x

or angular divergence σ22 = σ2
x′ throughout the accelerator.

4.8 Emittance and Beam Beta-function

In Eq. 34 we see how the sigma matrix that contains the information of the beam
sizes propagates through the beam line. Previously we also realized that the
transfer matrices R all have unit determinant and calculating the determinant of
both sides of Eq. 34

det σ̄ = det(RσRT ) = det(R) det(σ) det(RT ) = detσ (35)

we observe that the determinant of the sigma matrix remains constant as the
beam propagates through the beam line. This is a property of a sigma-matrix
of any dimension, provided that the transfer matrix has unit determinant, as is
the case for conservative motion, i.e. where the motion can be derived from a
Hamiltonian, where the transfer matrices are symplectic.

In the following we will, however restrict ourselves to the horizontal or vertical
motion, for example x, x′ or y, y′. Here the conservation of a quantity should not
come as a surprise, because we already saw that the Courant-Snyder invariant is
a quantity that is preserved for the individual particle as a particle propagates
down a beam line. That a similar quantity is preserved for a distribution that
consists of many individual particles is only natural. The quantity related to
the sigma-matrix that stays constant is commonly called the emittance ε and is
defined by

ε2 = detσ . (36)

The square in the definition appears to be consistent with the commonly used
definition of the emittance.

Now we will proceed to find a convenient parameterization of the sigma-
matrix. Note that the 2 × 2 sigma-matrix is symmetric and therefore has three
independent parameters. The existence of a conserved quantity, the emittance ε,
implies that there are two more independent parameters. As we will verify in a
moment, a convenient parameterization of the sigma-matrix is

σ = ε

(
β −α
−α γ

)
(37)
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with the already encountered definition γ = (1+α2)/β which guarantees that the
determinant of the matrix in Eq. 37 is unity. At first sight it may appear arbitrary
to choose the parameters α and β for the parameterization of the sigma matrix,
because we had already used them in the parameterization of the transfer matrix
R in Eq. 22. The usefulness is, however, immediately established if we propagate
the parameterization of the sigma-matrix from Eq. 37 using the parameterization
of the transfer-matrix R from Eq. 22

Rσ(1)RT =

 √
β2 0

− α2√
β2

1√
β2

( cosµ sinµ
− sinµ cosµ

) 1√
β1

0

α1√
β1

√
β1


ε

(
β1 −α1

−α1 γ1

)

 √

β2 0
− α2√

β2

1√
β2

( cosµ sinµ
− sinµ cosµ

) 1√
β1

0

α1√
β1

√
β1




T

= ε

 √
β2 0

− α2√
β2

1√
β2

( cosµ sinµ
− sinµ cosµ

)

×
(

cosµ sinµ
− sinµ cosµ

)T

√
β2 − α2√

β2

0 1√
β2


= ε

 √
β2 0

− α2√
β2

1√
β2



√
β2 − α2√

β2

0 1√
β2


= ε

(
β2 −α2

−α2 γ2

)
(38)

= σ(2) .

Here we observe how well the parameterization of the transfer-matrix R in Eq. 22
works together with the parameterization of the sigma-matrix for Eq. 37. We see
that R just transforms the sigma-matrix with beta-functions subscripted with 1
to those subscripted with 2.

From the parameterization in Eq. 37 we also find one of the interpretations
of the emittance and beta function. Remember that the 11-element of the sigma
matrix is the square of the rms beam size which is often denoted by σ2

x, but we
can also write it as

σ11 = σ2
x = εβ (39)

or by taking the root we get the well-known expression

σx =
√
εβ (40)
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Figure 19: Schematic of a thermionic electron gun.

where the beam size is conveniently described in a way that describes a constant
part, the emittance, that is unchanged in a beam line and therefore describes the
scale or magnitude of the beam size. The second part, the beta function, that
describes the variation of the beam size and is determined by the excitation and
placement of the magnetic elements.

4.9 Emittance Growth and Equilibrium

In this section we learned that the emittance stays constant in a beam line with
static magnetic fields, but the question remains what determines the value of the
emittance to start with. The primary determining factor is the particle source
that we discuss in a later chapter and just name a thermionic electron gun as
an example. In a thermionic gun the electrons are generated by an electrically
heated cathode and extracted by a positive voltage as is schematically shown in
Fif. 19. The transverse beam properties of the electrons at the right hand side
is defined by the temperature of the cathode and the geometry of the gun, such
as the shape of the cathode and anode and possibly other control electrodes that
are not shown in Fig. 19. Another strong influence comes from space charge
that will cause the equally charged electrons to repel each other, thereby blowing
up the beam and increasing the emittance. In this way the initial emittance is
primarily determined in other particle sources, but even after leaving the source
and accelerated to higher energies the emittance can change due to stochastic and
friction forces. The former include the emission of synchrotron radiation, which is
an essentially stochastic quantum mechanical process that we will consider more
carefully later. Another stochastic process that will increase the beam size is the
interaction with a target or scattering of the particles off of each other in high
intensity beam, which is called intrabeam scattering. Friction or damping forces
are also caused by synchrotron radiation, but also by explicit cooling devices,
such as electron coolers or a stochastic cooling system.

The quantitative behaviour of such systems can be nicely visualized with a
simple one dimensional example where a particle on the x-axis receives a sequence
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of random kicks of rms magnitude θ which is a called Wiener process. The
individual particle experiences the dynamics

xn+1 = xn + θP̂ (41)

which called a Langevin equation of this stochastic process, where P̂ is a ’function’
that produces gaussian distributed random numbers with zero average and unity
rms. If averaged over many realizations, either in time or over ensemble, where
angle brackets denote the apprpriate averaging, we can write 〈P 〉 = 0 and 〈P 2〉 =
1. If the particle is part of an ensemble (think beam) we can calculate how the
average of the ensemble X = 〈x〉 changes from time n to time n+ 1, and just do
the ensemble average of the previous equation

Xn+1 = 〈xn+1〉 = 〈xn + θP̂ 〉 = Xn + θ〈P 〉 = Xn (42)

which means that random kicks with mean zero do not change the center or
average position of the distribution. Intuitively one would expect that these
random kicks will make the distribution wider rather than move its center. The
width, however, is described by the centered second moment of the distribution,
or the rms, which we now calculate

σ2
n+1 = 〈(xn+1 −Xn+1)

2〉 = 〈(xn + θP̂ −Xn)2〉 = σ2
n + θ2 (43)

which means the square of the rms with increases linearly with turn number.
Assume that initially we start with all particles at zero and have σ0 = 0. The
rms width σn after n random kicks of the distribution is

σ2
n = σ2

0 + nθ2 = nθ2 (44)

which implies that the rms width itself increases with the root of the number of
kicks

σn = θ
√
n = θ

√
t/T (45)

where we introduced the elapsed time t and the time between random kicks T
to replace the kick number n. This temporal behaviour is characteristic for a
diffusion process and can also be derived from a Fokker-Planck equation with
diffusion constant D = θ2/T.

Including damping in the above analysis amounts to adding a damping term
to eq 41 which turns it to

xn+1 = e−αxn + θP̂ (46)

where α = T/τ is the damping decrement related to the ’revolution time’ and
the damping time τ. Performing a similar analysis we can find the equilibrium
rms width σ∞ from the requirement σn+1 = σn which results in

σ2
∞ =

θ2

1− e−2α
≈ θ2

2α
=
τθ2

2T
(47)
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provided that the damping decrement α is small compared to unity.
Turning back to the accelerator physical problem with randomly excited be-

tatron oscillations. We can quantitatively analyze the emittance increase due to
the random transverse kicks as is common for example in a traget and to a lesser
extent in the interaction of the beam with the residual gas in the accelerator.
Let’s consider a simple ring defined by a transfer matrix R with tune Q and beta
function β

R =

(
cos(2πQ) β sin(2πQ)

− sin(2πQ)/β cos(2πQ)

)
(48)

and the beam is the given by its sigma matrix in eq. 37. We now want to calculate
the change in emittance if we subject the beam to a sequence of random kicks
the rms kick angle θrms which changes the x′ coordinate to x′ + θrmsP̂ where P̂
is the random process we encountered earlier. The equivalent Langevin equation
now reads (

xn+1

x′n+1

)
= R

(
xn

x′n + θrmsP̂

)
(49)

and we can calculate the dynamics of the averages X = 〈x〉 and X ′ = 〈x′〉 and the
rms width σ2

x = 〈(x−X)2〉, angular divergence σ2
x′ = 〈(x′−X ′)2〉 and correlation

σxx′ = 〈(x − X)(x′ − X ′)〉 which constitute the sigma matrix and calculate the
emittance as the determinant of the sigma matrix and find that the emittance
growth rate for a single turn is

dε

dn
=
β

2
θ2

rms or
dε

dT
=

β

2T
θ2

rms (50)

where n is turn number and T is the revolution period. This expression describes
the emittance growth rate due to for instance the transverse kicks the beam
experiences in a target on with scattering off of the residual gas in the beam
pipe, but also due to an exit window where the beam leaves the vacuum system
in order to interact with an external target. Later we will estimate the rms
scattering angles for the different processes as a function of material type and
thickness.

Note that we dealt with a process that explicitely changes the transverse an-
gular coordinate of the particles in the beam. There are other processes that
randomly change the momentum of the beam. The emission of synchrotron radi-
ation is the prime example, but also phase jitter of an RF system will randomly
change the energy of particles. This can have a an influence on the emittance if
there is a correlation between energy and transverse position at the location where
the energy change occurs. We will discuss this process after having introduced
the dispersion function in one of the next sections.
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4.10 Beta functions, the classical approach

In the previous sections we discussed the transport of particles and beams in
magnet lattices. From the basic quantities, the transfer matrices and the beam
matrix we deduced parameterizations in terms of emittances and beta functions
that are commonly used when describing accelerators, but are just convenient
parameters. In the next section we will connect this approach with that normally
found in textbooks on accelerator physics, such as Ref. [1] or [3].

From the transfer-matrices for drift and thin quadrupole we see that the forces
that act on the particle are a function of the position s in the accelerator and we
can write

x′′(s)− k(s)x = 0 (51)

where k(s) = (dBy/dx)/pc is the integrated quadrupole strength normalize to
the momentum pc = Bρ. We can interpret Eq. 51 in the following way: either
there is no quadrupole at position s in which case we have k(s) = 0 or there
is one with constant gradient. If k > 0 the quadrupole is focusing and for
k < 0 it is defocusing. If the accelerator is circular, Eq. 51 is a Hill-equation and
k(s) = k(s+C) where C is the circumference or the periodicity of the accelerator.

We can solve Eq. 51 with the following Ansatz for the trajectory of the particle

x(s) = Aw(s) cos(ψ(s) + ψ0) (52)

with a periodic amplitude function w(s) and a phase function ψ(s). Of course
this ansatz is motivated by the observation that the motion of a particle in an
accelerator (at least when it is stable) resembles that of a harmonica oscillator,
albeit with variable amplitude and frequency. Inserting Eq. 52 in Eq. 51 and
sorting according to cos and sin we obtain

A
[
w′′ − wψ′2 − kw

]
cos(ψ + ψ0)− A [2w′ψ′ + wψ′′] sin(ψ + ψ0) = 0 . (53)

In order to be valid for non-zero amplitude A and for any starting phase ψ0 the
expressions in the square brackets must vanish identically and we get

0 = w′′ − wψ′2 − kw

0 = 2w′ψ′ + wψ′′ . (54)

Multiplying the second equation with w we can write it as (w2ψ′)′ = 0. Integrating
once we find ψ′ = 1/w2. Integrating once more we find

ψ(s) =
∫ s

0

dr

w(r)2
(55)

and inserting this into the first of Eq. 54 we obtain the following expression for
the amplitude function w

w′′ − 1

w3
− k(s)w = 0 . (56)
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4.11 Quadrupole

We consider a quadrupole with constant gradient k = (dBy/dx)/Bρ that has
length l and calculate the transfer matrix R that maps the input coordinates
x0, x

′
0 to those at the end of the quadrupole. Here it is convenient to start from

the equation of motion
x′′ + kx = 0 . (57)

For k > 0 this equation is easily solved by cos(
√
ks) and the corresponding cosine

function
x(s) = A1 cos(

√
ks) + A2 sin(

√
ks) . (58)

The coefficients can be determined by matching to the initial values x0, x
′
0 and

we obtain

x(s) = x0 cos(
√
ks) +

x′0√
k

sin(
√
ks) . (59)

At the end of the quadrupole we have s = l and can write for the 2×2 horizontal
transfer-matrix

R =

(
cos(

√
kl) 1√

k
sin(

√
kl)

−
√
k sin(

√
kl) cos(

√
kl)

)
(60)

that maps the initial coordinates x0, x
′
0 to those at the end of the quadrupole.

Note that in the limit of a thin quadrupole with l→ 0, while keeping
√
kl constant

the transfer matrix approaches that of a thin focusing quadrupole where kl equals
the inverse focal length 1/f.

In case the quadrupole is defocusing and k < 0 we can solve Eq. 57 in terms
of hyperbolic sines and cosines. the corresponding transfer matrix is then given
by

R =

(
cosh(

√
−kl) 1√

−k
sinh(

√
−kl)√

−k sinh(
√
−kl) cosh(

√
−kl)

)
(61)

and the 4× 4 matrix can be built by placing the 2× 2 matrices on the diagonal
and 2× 2 zero-matrices on the off-diagonal places.

4.12 Dipole

The primary task of the dipole magnets in an accelerator is to define the reference
orbit. Intuitively there are two parameters that define the effect of a dipole
magnet on a particle with momentum ~p, the magnetic field ~B and the length
of the dipole. The trajectory in the dipole is determined by the balance of the
centrifugal force and the Lorenz force

γmv2

ρ
= e~v × ~B (62)
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Figure 20: Top-view on a sector bending magnet explaining dipole focusing.

where γm is the relativistic mass of the particle with massm and speed v. Solving
for the bending radius 1/ρ we find

1

ρ
=
eB

pc
(63)

where we introduced the momentum p = γmv. Note that this equation implies
a proportionality between the momentum p and the quantity Bρ and often the
latter is used to quantify the momentum of the particle, because it conveniently
relates the the magnetic field to a geometric quantity, ρ. The 1.5 TeV electron
beams in CLIC have a Bρ of 5000Tm which immediately implies that a magnet
with 1 T would provide a bending radius of 5 km. This makes relating engineering
quantities (Tesla) to beam related quantities (bending radius) very easy. From
the radius of curvature ρ we can deduce the bending angle φ by simple geometric
reasoning

φ =
l

ρ
=
eBl

pc
. (64)

which increases proportionally with the magnetic field and inversely proportional
with the momentum. Higher energy beams are ’stiffer’ and refuse to bend easily
in a given magnetic field.

We now have to consider two different type of dipoles which often appear in
accelerators, rectangular bends and sector bends and start by considering the
latter. A sector bend is defined as a bending magnet into which the reference
trajectory enters and exits perpendicular to the entrance and exit face of the
magnet. This implies that the entrance and exit faces are not parallel to each
other and that the magnet looks like a piece of a slice of a pie, as is indicated
in Fig. 20 which shows a top view of a horizontal sector bending magnet with
the dashed reference trajectory labeled by ’ref’. The trajectory, labeled ’1’, that
enters the bend further on the outside – at larger radius vector – of the the
reference trajectory experiences a longer magnet and is therfore bent more, as is
shown in Fig. 20. The converse is true for the trajectory on the inside, labeled ’2’.
The effect of the dipole is that a particle off the reference trajectory experiences
a kick ∆x′ proportional to its distance from the reference trajectory, which is
similar to a focusing quadrupole and this effect is indeed called ’weak focusing’.
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Figure 21: Side view of a combined function dipole.

In order to calculate this focusing effect we consider the difference in bending
angle that a particle with distance x from the reference trajectory experiences in
an infinitesimally short dipole of length ds

∆x′ = φ(0)− φ(x) =
ds

ρ
− ds

ρ

ρ+ x

ρ
= −ds

ρ2
x (65)

which can be rewritten as

x′′(s) +
1

ρ2
x = 0 (66)

resulting in an equation similar to that describing a quadrupole, except that
the strength-parameter k is replaced by 1/ρ2. Note that the focusing effect is
proportional ρ2 and is therefore independent of the sign of the magnetic field B.
This is particularly important when considering the weak focusing of wigglers
with alternating magnetic field, which does not cancel on average.

Apart from the horizontal weak focusing we just encountered, sector bends
can have a quadrupole-like gradient added. This gradient can, for example be
generated by tilted pole faces, such as those shown in Fig. 21 which shows an
example of a combined function magnet. It is called that way, because it serves
two purposes, it bends and it focuses similar to a quadrupole, thus combined
function. The differential equations that govern the dynamics in a combined
dipole is thus described by the following equations

x′′(s)−
(
k +

1

ρ2

)
x = 0

y′′(s) + ky = 0 . (67)
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Figure 22: (Left) Top-view of a rectangular bending magnet and three horizontal
trajectories. (Right) Side-view of a rectangular bending magnet and the vertical
magnetic field profile. Note the fringe field.

The 2 × 2 transfer matrices that describes focusing in the respective planes of
such a bend are given by Eq. 60 and Eq. 61, depending on the sign of k + 1/ρ2

and k.
Apart from sector bending magnets such as that shown in the top-view in

Fig. 20 there are also rectangular bends, so-called RBENDs which have parallel
entrance and exit faces. In such a magnet the length of the trajectory does not
depend on the horizontal offset, as was the case for sector bends, discussed earlier
in this section. Therefore, there is no horizontal focusing in a rectangular bend.
Of course, a quadrupole gradient can be added by shaping the pole face (see
Fig. 21) or other means such as additional coils.

In a rectangular bend the particles enter the fringe field with a horizontal
angle and can interact with the longitudinal component of the B−field which is
present in the fringe-field region, because the vertical component By varies with
z and due to dBy/dz = dBz/dy also the longitudinal component Bz varies with
the vertical distance to the center of the magnet y. The Lorenz-force resulting
from a longitudinal field component with a horizontal velocity component of a
particle will be vertical. Consequently we have a vertical force, that depends on
the vertical position.

We will now approximately calculate the magnitude of this effect by first
observing that

dBz

dy
=
dBy

dz
≈ B

g
(68)

where g is the full gap height. We thus assume that the full vertical field inside the
magnet decays to zero over the longitudinal distance of one gap height. Moreover,
here we assume that this decay is linear, which is only a crude approximation
that is convenient in the calculation. Inside the fringe-field region the longitudinal
component therefore can be approximated by

Bz =
B

g
y (69)

with an integration constant that we ignored for the time being. The vertical force
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that a particle experiences is given by the vertical component of the Lorenz-force
equation

dpy

dt
= evxBz ≈

φ

2
c
B

g
y (70)

and changing the time derivative dt to the a derivative along the beam line by
dz = c dt we obtain after integrating over the longitudinal extent of the fringe-
field

∆py =
φ

2
By (71)

and normalizing by the total momentum pc = Bρ results in

∆y′ =
∆py

p
=
φ

2

y

ρ
. (72)

Rewriting this in terms of a transfer matrix we find(
y2

y′2

)
=

(
1 0

− tan(φ/2)
2ρ

1

)(
y1

y′1

)
(73)

where we replaced the approximate value of the deflection angle φ/2 by tan(φ/2)
which follows from a more careful treatment that is for example shown in Ref. [4].
The matrix in Eq. 73 is the map from just outside the fringe field to just inside the
magnet. The same effect will affect the particle on its way out of the rectangular
bend and therefore the combined effect of a rectangular bend with length l in the
non-deflecting plane is given by

Ry =

(
1 0

− tan(φ/2)
2ρ

1

)(
1 l
0 1

)(
1 0

− tan(φ/2)
2ρ

1

)
(74)

which can be used numerically in beam optics codes.
In this section we considered the effect of the dipole on a particle on the

reference orbit defining the bending angle and the effect of a transversely offset
particle, namely focusing, but in the next section we will discuss the effect of a
momentum offset in a dipole magnet and what influence this has on the particle
orbit.

4.13 Dispersion

The dipole magnets in an accelerator deflect the beam by an angle given by
φ0 = eB/p0c and the nominal deflection angle is only given for a particle with
the reference momentum p0. If the particle has a momentum that differs by a
small amount the angle also varies slightly and we have

φ(δ) =
eB

p0(1 + δ)c
≈ φ0(1− δ) = φ0 − φ0δ (75)

43



4 TRANSVERSE BEAM OPTICS Draft, November 14, 2006

Figure 23: Effect of a dipole on particle with different energies.

which implies that the particle gets a small kick−φ0δ with respect to the reference
trajectory, depending on its relative momentum error δ = ∆p/p. This is just the
effect that is desired in a spectrometer, where the particles are transversely sorted
according to their energy.

Conceptually the dispersion is a particle trajectory of a particle with momen-
tum offset δ. If we consider the start of a beam line and we assume that particles
with different energies are located on the reference orbit. As the particles progress
along the beam line, they stay together on the reference orbit until they meet a
dipole magnet, when they start diverging and are being sorted according to their
energy. In the subsequent sections of the beam line the off-energy particle will
perform oscillations around the reference trajectory. In every dipole magnet if
will, however, receive a small kick that will change these oscillations with respect
to the reference trajectory.

Since the dispersion is ’generated in the dipoles’ we now have a closer look at
the detailed trajectory inside the dipole and will calculate an extended transfer
matrix for the dipole that takes energy offset into account. The additional kick
that a particle with momentum offset δ receives in an infinitesimally short dipole
magnet is

∆x′ = δ
ds

ρ
(76)

which is the momentum dependent effect that we need to add to the differential
equation that describes the motion in the bending-plane of a dipole Eq. 66 and
we arrive at

x′′ +
1

ρ2
x =

1

ρ
δ . (77)

Since this is an ordinary linear differential equation we can assume that the
solution is proportional to the momentum offset δ and introduce the dispersion
function D(s) with x = Dδ. The differential equation then simplifies to

D′′ +
1

ρ2
D =

1

ρ
(78)
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which, as can be easily verified, is solved by the Ansatz

D(s) = A cos(s/ρ) +B sin(s/ρ) + ρ (79)

with integration constants A and B. If the dispersion function and its derivative
at the entrance of the dipole are denoted by D0 and D′

0 we can express the
integration constants in terms of the initial values and write the trajectory of the
off-momentum particle as x = Dδ in terms of its initial values as

D(s) = D0 cos(s/ρ) + ρD′
0 sin(s/ρ) + ρ[1− cos(s/ρ)] . (80)

and an equation for D′(s) that can be calculated easily by differentiating Eq. 80
with respect to s.

Since the dispersion function D(s) describes the position of off-momentum
particles in the accelerator it is important in the design of accelerators and,
since it stems from a linear differential equation is easily calculated by transfer-
matrices. The complete 6 × 6 transfer matrix for a sector bend is then given
by

R =



cosφ ρ sinφ 0 0 0 ρ(1− cosφ)
− sin(φ)/ρ cosφ 0 0 0 sinφ)

0 0 1 l 0 0
0 0 1 1 0 0

− sinφ −ρ(1− cosφ) 0 0 1 l/γ2

0 0 0 0 0 1


(81)

with the bending angle φ = l/ρ. So far we have not motivated the entries in
the fifth row, which describe the dependence of the arrival time (or equivalently,
longitudinal position in the bunch) on the dispersion at the entrance of the dipole.
Clearly, if the incoming dispersion is such that the initial angle D′

0 is pointing
outwards in the dipole, the trajectory inside the dipole is longer and the particle
arrives later, or further back in the bunch. A similar argument holds for D0. The
56-element describes the effect that particles with different energies have slightly
different speeds, despite being ultra-relativistic and therefore have different arrival
times.

The matrix in Eq. 81 can be used to propagate the dispersion function through
an accelerator or a beam line if the initial values are given. In a circular accelera-
tor, we have to require, however, that the dispersion function is periodic with the
circumference. We therefore have to calculate the initial values at the starting
point of the ring from the full-turn matrix. In this case by full-turn matrix we
mean the entire 6× 6 matrix. Let’s assume that we have done so and denote the
full-turn matrix by R̃. If the ring is not coupled we can consider a reduced 3× 3
matrix which consists of row and columns 1,2,6 only and denote that reduced
matrix by S. This matrix S has the following structure

S =

 R̃11 R̃12 R̃16

R̃21 R̃22 R̃26

0 0 1

 (82)
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and we will find the equilibrium solution by solving for a vector ~D = (D̃, D̃′, 1)
that satisfies

~D = S ~D (83)

which leads to (
1−R11 R12

R21 1−R22

)(
D̃

D̃′

)
=

(
R16

R26

)
(84)

and we finally arrive at(
D̃

D̃′

)
=

1

(1−R11)(1−R22)−R12R21

(
1−R22 −R12

−R21 1−R11

)(
R16

R26

)
(85)

which denotes the periodic, or equilibrium, dispersion values at the start of the
circular beam line that is described by R̃.

The dispersion of an accelerator is, apart from the tunes and the beta func-
tions, one of the most important characterizing functions. In particular is de-
scribes the distance an off-momentum particle travels away from the reference
trajectory. In diagnostic equipment that tries to measure the momentum of the
beam by observing its transverse offset it is therefore advantageous to place it
at a location with large dispersion. Furthermore, it is easy to show that it also
describes the contribution due to an rms momentum spread σp of the beam size
of an ensemble of particle as Dσp. The total beam size due to finite emittance
and finite momentum spread is then given by

σx =
√
εxβx(s) +D2(s)σ2

p (86)

if we assume that the momentum spread and the emittance are uncorrelated.

4.14 Momentum Compaction Factor

The dispersion trajectory that we calculated in the previous section describes the
orbit of a particle with momentum offset δ. If such a particle traverses a dipole
magnet it will lie further on the out- or inside, depending on the sign of the
dispersion function at that location and the sign of δ. If it lies further outside
it will have a longer path to travel and therefore will arrive later at the exit of
the magnet. The change in length ∆l with momentum variation of the path in a
single dipole with bending radius ρ is given by

∆l

δ
=
∫ l

0

D(s)

ρ
ds . (87)

In the case of a circular accelerator we can sum the pathlength change over all
dipoles and normalizing to the circumference C of the ring to obtain the so-called
momentum-compaction factor α defined by

α =
∆C

Cδ
=

1

C

∫
all dipoles

D(s)

ρ
ds (88)
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Figure 24: Effect of a quadrupole on particle with different energies. The fo-
cal point of the higher energy particle is further downstream than that of the
reference and lower energy particle.

which gives the fractional change of the circumference normalized to the energy
(∆C/C)/δ. This quantity plays a central role in the stability of the longitudinal
motion of the particles in a storage ring.

4.15 Chromaticity

In the same way that the dispersion describes the effect of a relative momen-
tum error in dipole magnets is the chromaticity the corresponding effect in of
quadrupole magnets. The effect of a quadrupole on the beam is given by the
gradient normalized to the particle momentum and if the latter is different from
that of the reference particle, the quadrupole does not do to the particles what
it is intended to do. As an example we consider a thin quadrupole with focal
length f which varies according to

f(δ) = f(1 + δ) or k1 →
k1

1 + δ
≈ k1 − k1δ (89)

and a quadrupole focuses a high energy particle less than the reference particle
and consequently the focal point is further downstream. A lower energy particle is
correspondingly stronger focused and its focal point lies closer to the quadrupole.

This effect can be quantified by considering the effect of an error in a single
(thin) quadrupole in an otherwise perfect ring. For simplicity, assume that the
ring is described by a transfer matrix

R =

(
cos(2πQ)µ β sin(2πQ)
− sin(2πQ)/β cos(2πQ)

)
(90)

with beta function β and tune Q. We introduce a ’weak’ thin quad with focal
length f and obtain the combined transfer matrix by multiplication with the
result (

cos(2πQ) β sin(2πQ)
− sin(2πQ)/β − sin(2πQ)/f cos(2πQ)− β sin(2πQ)/f

)
(91)
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Figure 25: The mechanism that causes the excitation of betatron oscillations by
a random energy loss.

and we remember that the trace of the matrix is related to the new tune Q+∆Q
of the perturbed system

2 cos(2πQ)− β

f
sin(2πQ) = 2 cos(2π(Q+ ∆Q)) (92)

= 2 cos(2πQ) cos(2π∆Q)− 2 sin(2πQ) sin(2π∆Q)

and assume that the tune change ∆Q is small we can expand the cosine and sine
to first order and compare coefficients to obtain

∆Q =
β

4πf
(93)

which is a very well-used equation that describes the tune change due to a small
quadrupole change. If the quadrupole is not thin but of finite length and with
excitation error k1 and length l we can write the tune change as an integral over
the quadrupole length

∆Q =
1

4π

∫ l

0
β(s)k1ds . (94)

earlier in this paragraph we discussed that in the presence of finite energy error
δ the excitation error of the quadrupole is given by −k1δ. If the momentum
of a particle is different from the reference momentum all quadrupoles in the
accelerator have the ’wrong’ focusing strength. Thus the chromaticity being the
change of the tune as a function of energy error is given by

∆Q

δ
≈ 1

4π

∫
all quadrupoles

β(s)k1(s)ds (95)

where we assume that the nominal quadrupole excitations k1(s) are different for
different quadrupoles and therefore depnd on the longitudinal position s in the
accelerator.

4.16 Emittance growth due to random energy kicks

In the previous sections we found that the dispersion trajectory D(s) is the closed
orbit of a particle with momentum offset δ. If we assume that a particle with en-
ergy offset δ1 is initially on its equilibrium orbit, the dispersion trajectory Dδ1 as
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is shown in Fig. 25. If that particle looses energy and has the new energy offset
δ2 < δ1 at a position with non-zero dispersion it will stay at transverse position
Dδ1 but has energy δ2. The equilibrium orbit of the particle with momentum δ2
is, however, Dδ2 and the particle finds itself away from its new equilibrium orbit
and will therefore start oscillating around the new equilibrium orbit. In sum-
mary: initially the particle is on its equilibrium orbit, but through the energy
loss the euilibrium orbit has jumped away and the particle starts betatron oscil-
lations around the new equilibrium orbit. The same argument holds for D′ the
derivative of the dispersion. Note that this process is the dominant mechanism
that determines the emittance in electron storage rings and synchrotron radiation
sources.

The change in betatron state vector (x, x′) that the particle through a relative
momentum loss δ at a position with dispersion D receives is given by(

x
x′

)
= −δ

(
D
D′

)
(96)

or ~x = −δ ~D In the m−th turn the particle experiences the momntum change δm
with corresponding betatron state change ~x = (xm, x

′
m). After n turns we then

have to add all ~xm over the previous turns with m ≤ n(
x
x′

)
= −

n∑
m=1

δmR
n−m

(
D
D′

)
. (97)

In Ref. [1] a very elegant method is used to explictely calculate the emittance εn

after n turns as defined in Eq. 29 as

εn = γx2
n + 2αxnx

′
n + βx′2n (98)

where α, β, and γ are the twiss parameters at the location of the momentum
kicks. Following Ref. [1] one finds for the emittance

εn = (γD2 + 2αDD′ + βD′2)
n∑
k,l

δkδl cos(2π(k − l)Q) . (99)

If we assume that the δ from different turns are statistically independent and
have rms δrms we can write the sum as

n∑
k,l

δkδl cos(2π(k − l)Q) = nδ2
rmsδkl (100)

wher δkl is the Kronecker delta which is unity for k = l and zero else. For the
final result we find

dε

dt
=
γD2 + 2αDD′ + βD′2

T
δ2
rms (101)
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Figure 26: The tune diagram with all resonance up to fifth order.

where T is the revolution time.
We find that the susceptibility of the emittance growth dε/dt to the energy

variation δrms is proportional to the factor

H = γD2 + 2αDD′ + βD′2 (102)

and we immediately see that zero dispersion is desirable at location where the
particles change their momentum, as is the case for RF cavities and, especially
important for synchrotron light sources, for dipole magnets, where the beam
looses energy due to synchrotron radiation. The design of small emittance lattices
is focussed on designing magnet configurations that have small beta functions and
small dispersion, in particular in the dipoles.

4.17 Sextupoles, Octupoles and other Multipoles

In an accelerator often higher multipoles are used for various purposes, some of
which we will briefly discuss further below. The kicks that the multipoles cause
to the beam are given by

∆x′ + i∆y′ =
knL

n!
(x+ iy)n (103)
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where we use the definition of the magnetic multipoles we will encounter in the
section on magnets normalized to the particle momentum Bρ by

knL =
L

Bρ

∂nBy

∂xn
(104)

and for n = 1 we recover the integrated quadrupole gradient k1L.
In the previous section we that the chromaticity describes the momentum

dependence of the tune, which means that particle with different energies see a
different tune. Since the particles in a circular accelerator behave like a harmonic
oscillator or a swing and we know that pushing a swing in the right beat will
excite very large oscillations if the perturbation is in phase.

One prominent use of sextupoles is the correction of the chromaticity which we
found to be the energy dependence of the tune due to the energy dependence of
the focussing of quadrupoles. To compensate this we need other energy dependent
focussing elements and a sextupoles located at a position with dispersion provides
just this feature as we will see when considering the horizontal kick that particles
with momentum offset δ experience in a sextupole. This is given by

∆x′ = k2L(x+Dδ)2 = k2L(x2 + 2Dδx+D2δ2) . (105)

The second term then behaves like an energy-dependent quadrupole with the
focal length defined by

1

f
= 2k2LDδ . (106)

By suitably choosing the locations and excitations of the sextupoles we are then
able to adjust the energy dependent part of the tune, preferably such that is small
to reduce the spread in the tune diagram in Fig. 26.

In the section about the emittance growth we found that in order to achieve
small equilibrium emittances in synchrotron radiation sources the beta func-
tions and the dispersion must be kept small whci requires closely spaced, strong
quadrupoles, but many strong quadrupoles will cause the chromaticity to be large
according to eq. 95 which in turn requires strong sextupoles to correct the chro-
maticity, which is a beneficial effect but they also add non-linear transverse kicks
proportional to x2 to the dynamics which might cause stability problems as we
will discuss in the next section.

4.18 Non-linear Dynamics

The stability problems alluded to in the previous section can be visualized in
simple one-dimensional model of a storage ring with tune Q and a single sextupole
of unit strength. The map that describes this system is given by(

xn+1

x′n+1

)
=

(
cos(2πQ) sin(2πQ)
− sin(2πQ) cos(2πQ)

)(
xn

x′n + x2
n

)
(107)
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Figure 27: The x − x′ phase space for the map shown in Eq. 107 with tune
Q = 0.2516.

which is often called the Henon-map and is one of the often-used examples when
discussing non-linear effects in circular accelerator. The dynamics of a non-linear
map is nicely visualized by displaying the phase-space (xn, x

′
n) on consecutive

turns which is called a Poincare section of the dynamics. In Fig. 27 we show the
phase plot of particles subjected to the map in eq. 107 with tune Q = 0.2516. As
starting positions we use x0 = 0.1, . . . , 0.9.

For small amplitudes we find that the phase plot is almost circular as can be
expected, because for small amplitudes the quadratic non-linearity is negligible.
As the starting amplitude is increased the circles become more square, which is
a consquence of the choice of tune that is close to 1/4. For starting amplitude
x0 = 0.2 there are four islands that are visited on consecutive turns. If the
starting amplitude exceeds about 0.4 we observe a chaotic layer (deterministic
chaos!) and eventually for even larger starting amplitudes the motion becomes
unstable and the amplitude grows without bounds. The boundary that separates
the motion limited to a finite phase space around the origin and the un-bounded
motion is called the dynamical aperture. Note that this aperture is not a physical
boundary or a wall like the vacuum chamber, but it is entirely determined by the
dynamics of the system, which in turn is given by the magnets.

correct with octupoles
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Hamiltonian dynamics, John Irwin’s tricks

4.19 Steering Correctors

Steering dipole correctors are physically the same type of dipoles as the dipoles
that define the reference trajectory. In simulation programs, however, they do
not change the design trajectory, but only change the angle with respect to the
reference trajectory of a particle ∆x′ or ∆y′ by a small amount. In this way they
generate betatron oscillations with respect to the design orbit, but do not change
the design orbit itself. Note, that this is only a matter of interpretation of the
effect of the corrector. Physically such a magnet also produces a magnetic dipole
field, just as their bigger companions, the bending dipoles.

In an accelerator steering correctors are usually needed to correct for example
the effect of misaligned magnets or external stray fields on the beam. We will
discuss their use more carefully in the section on diagnostics and correction.

4.20 Simulation Program MAD

In the previous sections we calculated the properties of the accelerator such as
tune and beta functions by analytical means for some simple examples. In the
real world, however, the accelerators and beam lines are too complex to analyze
in such a way alone and computer programs were written to perform the tedious
matrix manipulations and the extraction of the physical relevant quantities from
the matrices. One of the first programs was TRANSPORT [12] written by Karl
Brown in the late 1960s and one of the most used ones in more recent times is
MAD [8], originally written by Christoph Iselin and Hans Grote at CERN. MAD
is still under active development and is continuously updated and improved,
especially for the design and commissioning of LHC. Apart from these programs
there is a plethora of others such as DIMAD [14], TRACE3D [15], PARMILA [16],
WINAGILE [17], updated TRANSPORT [13].

Since MAD is one of the most widely used codes and has a very usable input
language we will also use it in this course. The executables for Windows and
Linux can be downloaded from [8]. On the same web-site also the manual is
available and instructions to compile and install MAD on MAC-OSX. Of course,
MAD has evolved over the decades and the most recent version is called MADX
which is what we will use in the following sections.

We start by reconsidering the FODO cell that we discussed in section 4.3. An
input file with name FODO.MADX that we can run by writing

madx < FODO.MADX

on the command line in either Windows or Linux is shown in Fig 28. Running
the file produces a postscript file with name madx.ps that can be viewed with
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// file: FODO.MADX

// MADX Example 1: FODO cell

// Author: V. Ziemann, Uppsala University

// Date: 060910

BEAM, PARTICLE=ELECTRON,PC=3.0;

D: DRIFT,L=1.0;

QF: QUADRUPOLE,L=0.5,K1=0.2;

QD: QUADRUPOLE,L=0.5,K1=-0.2;

FODO: LINE=(QF,5*(D),QD,QD,5*(D),QF);

USE, PERIOD=FODO;

TWISS,SAVE,BETX=15.0,BETY=5.0;

PLOT,HAXIS=S, VAXIS=BETX, BETY;

MATCH, SEQUENCE=FODO;

PLOT,HAXIS=S, VAXIS=BETX, BETY;

Figure 28: The input file for a FODO cell.

any postscript interpreter such as Ghostview [18]. The two plots generated by
running FODO.MADX are shown in Fig. 29 and 30.

We will now briefly discuss the contents of the FODO.MADX input file for MADX
and go through it line by line. For a detailed description of all the commands,
please consult the MADX manual from Ref. [8]. First we note the header infor-
mation with lines that are preceeded by // which signifies a comment that can
be added to make the input file more readable for humans. The program simply
ignores in a line whatever comes after a // for people that like C++ or ! for
people that like Fortran. The first real data line contains the BEAM statement
which informs MADX about the type of beam and the momentum we are dealing
with. More parameters such as the emittances or the current can be defined in
a BEAM statement. Notice that use of commas and semicolons. MADX is rather
picky about missing separators, so be careful. In the next three lines the elements
in the beam line are defined, first a drift, labeled D and half-length quadrupoles.
Note that the needed parameters length and K1 for the quadrupoles are also de-
fined here. The quadrupoles were chosen to be of half-length to make the FODO
cell start and end in the center of a quadrupole for symmetry reasons. In the
subsequent line the element sequence is defined to consist of a QF element 5 drift
spaces of 1m length, two (half-length) QD, 5 drift spaces and the other half of the
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Figure 29: The beta functions from the first plot in FODO.MADX with fixed initial
beta functions.
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Figure 30: The beta functions after matching the periodic solution.
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// file: FODO2.MADX

// MADX Example 2: FODO cell with dipoles

// Author: V. Ziemann, Uppsala University

// Date: 060911

BEAM, PARTICLE=ELECTRON,PC=3.0;

DEGREE:=PI/180.0; // for readability

QF: QUADRUPOLE,L=0.5,K1=0.2; // still half-length

QD: QUADRUPOLE,L=1.0,K1=-0.2; // changed to full length

B: SBEND,L=1.0,ANGLE=15.0*DEGREE; // added dipole

FODO: SEQUENCE,REFER=ENTRY,L=12.0;

QF1: QF, AT=0.0;

B1: B, AT=2.5;

QD1: QD, AT=5.5;

B2: B, AT=8.5;

QF2: QF, AT=11.5;

ENDSEQUENCE;

USE, PERIOD=FODO;

MATCH, SEQUENCE=FODO;

PLOT,HAXIS=S, VAXIS=BETX, BETY, INTERPOLATE=TRUE;

PLOT,HAXIS=S, VAXIS=DX, INTERPOLATE=TRUE;

Figure 31: The input file for a FODO cell with dipole magnets.

QF. We could have used a single drift space of 5m length but then the output
would look less nice with straight lines instead of, at least approximate, parabo-
las. In the line that starts with a USE command we inform MAD which beam
line we will work on from here on.

Now that we have defined the beam line we apply the TWISS command to
calculate the beta functions through the beam line with initial values specified
in the TWISS command. Then the beta functions βx, βy are plotted versus the
longitudinal position. The result of this plot is shown in Fig. 29. We note that
the beta functions start at the indicated values of 15 and 5m an then propagate
through the FODO cell. We have not specified αx and αy which therefore are
assumed to be zero. Note that the beta functions at the end of the cell are
different from those at the beginning. If we assume that this cell is just one
building block of many that constitute a periodic sequence we want to know
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what initial beta functions reproduce themselves at the end of the sequence.
MADX provides a so-called matching module that can vary parameters in order
to achieve certain constraints. We will discuss this feature more further down,
but the simplest matching is actually to find the periodic solution for the beta
functions and this is done in the line that starts with the command MATCH. We
then plot the resulting beta functions which are shown in Fig. 30 and verify that
the solution is periodic.

Note that MADX labels the graphs such that it is easy to identify which beta
function is which. Furthermore the magnet sequence is depicted on the top of the
graph where focusing quadrupoles (K1 > 0) are shown as boxes above the line
and defocusing quadrupoles as boxes below the line. We will see in the second
example that dipoles extend above and below the line.

In the second example we add the dipoles in the center of the straight section
between the quadrupoles and we use the second format for the description of a
beam line as a sequence of elements. At the top of the file that is shown in Fig. 31
we define the variable DEGREE which we use to convert degrees to radians. Note
the := sign which implies that whenever one of the variables on the right hand
side changes anywhere in the file, the variable on the left hand side is recomputed.
This is not needed here, but may serve as an example of this feature. Then the
elements of the beam line are defined. Note the comments following the //. In
the lines following the one starting with FODO: we define the beam line sequence.
Observe that we only specify magnets. The drift spaces are generated by MADX
automatically. In the line with FODO: we specify the reference position of the
elements as ENTRY which means that the subsequent AT= commands refer to the
entrance of the magnets, rather than the CENTRE which is the default. The total
length of the beam line is specified here as well. The definition of the sequence
is completed with the ENDSEQUENCE command. Again note all the semicolon!
Then we instruct MADX to USE the just-defined beam line sequence, MATCH for
the periodic optical functions and display the results in two plots. Note that
the plots here use the INTERPOLATE option of the plot command to make them
smoother. We see that we can use DX as keyword to display the dispersion. Other
variables that can be displayed, apart from the beta functions, are explained in
the MADX manual in the section about variables.

In the previous sections we showed how to extract the beta functions and
the dispersion and now we show how to display other beam optical quantities
such as tunes or chromaticities. MADX actually prepares an internal table called
SUMM with global beam optical quantities as soon as the TWISS command or the
MATCH command is executed. The table values for tunes can be accessed with the
following command

Value, TABLE(SUMM,Q1);

Value, TABLE(SUMM,Q2);

which prints the horizontal and vertical tune to standard output. The chromatic-
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Figure 32: The periodic solution for the FODO cell with dipoles included. The
upper plot shows the beta functions and the lower plot shows the horizontal
dispersion function.
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ities are accessible via

Value, TABLE(SUMM,DQ1);

Value, TABLE(SUMM,DQ2);

and other variables such as the maximum and rms values of beta functions and
dispersions are also available in this table. See the section on Variables in the
SUMM table in the MADX manual for the available quantities.

Sometimes it is useful to have direct access to the beta functions, phase ad-
vances and dispersion in numerical, tabular form instead of graphical output.
Moreover, the transfer matrices in a beam line are sometimes also useful to have
available in numerical format. The following sequence of commands performs the
trick and writes two output files.

SELECT,FLAG=SECTORMAP,clear;

SELECT,FLAG=TWISS,column=name,s,betx,bety;

TWISS, file=optics.dat,sectormap;

The first line registers the demand to write the sectormap file which contains the
transfer matrices. the second command selects the columns that will be written
to the optics.dat file and sectormap directive causes the TWISS command to
write the sectormap data to file called sectormap. Note that all variables from
the summary table are also written to optics.dat.

An often encountered problem that appears in the disgn of beam optical
system is that certain constraints must be fulfilled using a number of magnets
that can be varied in order to achieve the desired objective. This process is called
matching and there is a corresponding command in MADX that allows he user
to define the constraints and the magnets to be varied. As an example we will
match the phase advance of the FODO cell encountered in example 1. If inserted
immediately after the USE statement the following sequence of commands

MATCH, SEQUENCE=FODO;

CONSTRAINT,SEQUENCE=FODO,RANGE=#E,MUX=0.16666666,MUY=0.25;

VARY,NAME=QF->K1,STEP=1E-6;

VARY,NAME=QD->K1,STEP=1E-6;

LMDIF,CALLS=500,TOLERANCE=1E-20;

ENDMATCH;

will vary the quadrupole excitations in example 1 to achieve the phase advance
per cell of 0.1666 ∗ 360 = 60 degree in the horizontal plane and 90 degree in the
vertical. Note that the command sequence is started by the keyword MATCH with
the definition of the sequence FODO that will be matched. In the second line the
CONSTRAINT is defined. The specifier #E specifies the end of the sequence and
MUX and MUY specify the phase advance in tune-units, i.e. in radians divided by
2π. More than one line of constraints can be used. The following two lines define
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Figure 33: The initial beta functions aer matched to twice their value at the aned
of the cell.

the parameters that will be varied and QF->K1 denotes the normalized strength,
the k1-value of magnet with name QF. The step size specifies the approximate
initial step size for varying the variable. The next line specifies the minimizer,
here LMDIF is specified and the maximum number of iterations CALLS and the
desired tolerance of the cost-function is specified. The ENDMATCH command exits
matching module. Note that this matching task is usually done when designing a
beam line and one wants to find a standard module that is then used repeatedly.
The arcs of a collider or a long beam line are examples.

Another often encountered task is finding quadrupole excitations that will
transform the beta functions at the start of the beam line to desired beta functions
at the end of a beam line. An example is the matching of the beta function at
the interaction point to a small value. Here, however, we illustrate the procedure
by using the FODO cell from example 1.

MATCH, SEQUENCE=FODO,BETX=16,BETY=5;

CONSTRAINT,SEQUENCE=FODO,RANGE=#E,BETX=32,BETY=10;

VARY,NAME=QF->K1;

VARY,NAME=QD->K1;

LMDIF,CALLS=500,TOLERANCE=1E-20;

ENDMATCH;

60



5 BEAM OPTICS EXAMPLES Draft, November 14, 2006

PLOT,HAXIS=S, VAXIS=BETX, BETY;

Note that we specify the initial beta functions in the first line of the MATCH state-
ment and the desired betafunctions at the end of the beam line in the contraint
section. The definition of the varied magnets and the optimizer is the same as
in the previous example. We added a PLOT statement in order to verify that the
matching succeeded and generate a display of the result of the match which is
shown in Fig. 33.

The matching module of MADX is very powerful and versatile and for details
you should consult the manual available at [8]. Most parameters can be varied
and constraints can be very general, either fixed values can be defined, or ranges
or maximum values for beta functions, dispersion or global values such as the
tune or chromaticity.

5 Beam Optics Examples

In this section we discuss several examples of how the beam optics of accelerators
is designed. The general strategy is one of ’divide-and-conquer’ in the sense
that one designs suitable modules that are optimized individually and then used
repeatedly. Another guiding principle is that of using optics concepts borrowed
from ray light optics.

We start by considering a circular collider such as LHC and the beam optical
elements that consitute it and then we will discuss design criteria for synchrotron
light sources and finally some special sections such as bunch compressors. But,
let’s start with the collider.

5.1 FODO arcs

In a large circular collider the interaction regions (IR) are separated by long arcs
in which the beam must be transported from IR to another. Therefore a simple
lattice, which is what a magnet configuration called, is desireable unless other
constraints are important. In a collider the arcs are mostly transport-sections
that get the beam around. The FODO lattice that we encountered in the previ-
ous section fulfills this requirement. It is easily tunable since the horizontal and
vertical beam sizes are large in their alternate quadrupoles which means that the
QF mostly affect the horizontal beta function, because the vertical beam size is
small in them and we remember that the tune shift due to a quadrupole change
is given by β/4πf . This decouples correction of the respective tunes in an almost
natural way. If the constraints on the beam size ar moderate the distance be-
tween qudrupoles can be made large and the excitation of the quadrupoles rather
moderarte, which means few quadrupoles are required and the power consump-
tion is small. The dispersion function will oscillate between its normally non-zero
extreme values.
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Figure 34: Illustration of the missing magnet dispersion suppressor, borrowed
from Ref. [29].

5.2 Dispersion suppressor

At the interaction point (IP) of a collider we want the beam size as small as pos-

sible and recalling that it is given by
√
εβ + (D∆p/p)2 we require the dispersion

D to be zero at the IP. Since the dispersion can not be zero in the arcs, because
it is generated in the bending dipoles, we need to design a piece of beamline at
the intersection between the arcs and the interaction region where the dispersion
is matched to zero. This section is called a dispersion suppressor.

Several methods are possible to match the dispersion to zero if at least six
quadrupoles are available to independently adjust the six parameters βx, αx,
βy, αy, D,D

′. One method, called the missing-magnet scheme is illustrated in
Fig. 34 where a periodic FODO lattice with bending dipoles between the quadrupoles
is matched to D = D′ = 0 at the right. The dispersion suppressor consists of one
cell (between cosecutive QF quadrupoles) and one cell with dipoles. Provided
the phase advance of the lattice is chosen suitably the two missing dipoles cause
a perturbation that interferes to zero with the normal dispersion oscillations. See
Ref. [29] for a more thorough discussion of dispersion suppressors.

5.3 Telescope and mini-beta

After the dispersion suppressor we haveD = D′ = 0 and are faced with the task to
make the beams small. This is normally done very similar to light ray optics with
a telescope. There is a particular difference due to the quadrupoles . They focus
in one plane, but defocus in the other plane as we already discussed earlier. It
is, however, possible to assemble quadrupoles in doublets that almost behave like
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Figure 35: Illustration of a doublet and the mathched beta functions.

light lenses and focus in both planes. One example is a doublet, which consists of
two quadrupoles close (compared to their focal length) to each other. The other
example is a triplet with three quadrupoles in a row with excitation pattern
(1,−2, 1) which means that the center quadrupole has twice the excitation or is
twice as long as the outer quadrupoles and the distance between the quadrupoles
is short compared to the involved focal lengths.

Using two doublets or triplets with a distance between them it is possible
to build an optical telescope that has the optical properties that it does point-
to-point image of the image plane (near the arc) to the IP which means that
the R12 and the R34 are made zero. Moreover, we also require that the imaging
is parallel-to-parallel, which means that the R21 and R43 are zero. Consider a
simple one-dimensional optical system as indicated in Fig. 36 where the beam
comes from the right and first passes through a lens with focal length f1 and
then a distance of length f1 + f2 whence the beam passes the second lens with
focal length f2 and after another drift space of length f2 it arrives at the IP. We
can easily write down the transfer matrix for the first drift-lens-drift module with
index 1 with the result(

1 l1
0 1

)(
1 0

−1/f1 1

)(
1 l1
0 1

)
=

(
1− l1/f1 2l1 − l21/f1

−1/f1 1− l1/f1

)
. (108)
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Figure 36: A telescope.

since we have chosen l1 = f1 the matrix simplifies to(
0 f1

−1/f1 0

)
(109)

and we also have a similar matrix for the second drift-quadrupole-drift system
with index 2. Multiplying the two matrices with index 1 and 2 we arrive at the
following transfer matrix R that represents the beam optical system between the
source plane and the IP

R =

(
−f2/f1 0

0 −f1/f2

)
(110)

and we see that it describes a system that demagnifies the x coordinate by the
factor M = −f2/f1 which means that the ratio of the focal lengths. The minus
sign describes the inversion of a picture that is commonly encountered in normal
telescopes. In practice we now have to realize such a system with quadrupole
magnets and the matching module discussed in an earlier section is very handy
to find the quadrupole values once the geometry, i.e. the magnet lengths and
distances are decided upon.

Conceptually we thus find that the interaction region of a collider consists
of a dispersion suppressor that often doubles up as a matching section to adjust
the beta functions and a telescope that demagnifies the beam to very beam sizes
which are required to reach high collision rates and thereby high count rates for
the experiments.

5.4 SLC Final focus system

The situation in linear colliders such as the SLC, ILC or CLIC is very similar
and we follow Ref. [30] to discuss the SLC final focus as a prototype system. The
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Figure 37: The conceptual layout of the SLC final focus, borrowed from Ref. [30].
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conceptual layout is shown in Fig. 37. The first section, called the FFS-BEND,
suppresses the dispersion from the arcs and matches the beta functions of the
arcs to the telecopes that follow. There are also some skew quadrupoles to adjust
the x − −y coupling. The next section, called the INITIAL TRANSFORMER,
is a telescope that demagnifies the beam size by a factor Mx = 8.5 in the hori-
zontal plane and My = 3.1 in the vertical plane. The FINAL TRANSFORMER
demagnifies by another factor of 4 in both planes. Especially the final triplet
quadrupoles just upstream the IP are very strong in order to squeeze the beam
to micron size at the IP. As a consequence the beam and the beta functions is
very large as well. But strong quadrupoles together with large beta functions
imply that the chromaticity is large. In the context of a linear collider this means
that the focus for particles with different energies has a different distance from
the last quadrupole and the beam size at the IP is diluted and enlarged. In order
to compensate this chromatic effect due to the strong final focus quadrupoles
we need a chromatic correction section (CCS) that is just upstream of the final
transformer. In the CCS a little dispersion is generated by weak dipoles and sex-
tupoles are placed at locations with non-zero dispersion. This allows correcting
the chromaticity, because, as we discussed earlier, this produces effective momen-
tum dpendent quadrupoles,which, properly adjusted will cancel the chromaticity
of the real quadrupoles.

Sextupoles are -1 transform apart but families are interleaved. This cancels
the geometric aberrations of the sextupoles to first order but the sextupoles of the
different families mix and cause octupolar aberrations. In a later stage actually
real octupoles were installed to compensate this. This I need to explain much
better in the next version.

After discussing the interaction regions of colliders we will now turn to syn-
chrotron radiation sources and their design concepts.

5.5 Double Bend Achromat

Storage ring based synchrotron radiation sources are usually designed to produce
high intensity synchrotron radiation with a high degree of coherence as possible.
This implies that as many electrons as possible should be forced into a small
bunch in all three dimensions. This defines the the following criteria

• low transverse emittances,

• much space for undulators and wigglers with zero dispersion,

• high beam current,

• short bunches.

The latter two points are normally achieved by paying careful attention to the
beam pipe and make it very smooth to avoid beam instabilities, as we will discuss
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Figure 38: Basic layout of the double bend achromat.

Figure 39: Basic layout of the triplet achromat lattice.

further below. Short bunches can be achieved to some extent by beam optical
tricks but the normal way is to increase the RF voltage. This will become clear
in the following chapter. Much space for insertion devices, as indulators and
wigglers are commonly known is created by clustering the normal magnets dipoles
and quadrupoles in groups with lang spaces inbetween.

The first requirement for small emittance defines the transverse beam size σ
according to σ2 = εβ and, as we saw in section 4.16, the emittance is generated
by the emission of photons at locations with dispersion. This was quantified in
eq. 102 by the parameter H and we obviously want small beta functions and
small dispersion in the dipoles. There are several ways to achieve this and one
lattice type is the Double Bend Achromat (DBA) which has the layout shown in
Fig. 38. One or several central quadrupoles between two dipoles is used to bend
the disperison back before growing too large and the phase advance between the
centers of the dipoles is roughly 180 degrees. the remaining quads are used to
match the beta functions to small values inside the dipoles. An optimized version
of this DBA lattice is also named Chasman-Green lattice. THis type of lattice is
for example used in the ESRF in Grenoble.

A very thorough discussion of the emittance optimization of the DBA and
other synchrotron radiation source lattice types can be found in Ref. [4].

5.6 Triplet Achromat lattice

A variant of the previous DBA lattice is the Triplet Achromat lattice, where three
quadrupoles are placed inbetween the dipoles and all the beat matching is done
by these three quadrupoles. These type of lattices can be made very compact
and was realized in the small light source ACO in Orsay near Paris, which is,
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Figure 40: Basic layout of the triple bend achromat lattice.

Figure 41: Basic layout of simple bunch compressor.

however, decommisioned.

5.7 Triple Bend Achromat

A further lattice type found in synchrotron light sorces is the so-called triple
bend achromat which consists of a section with three dipoles and a number of
quadrupoles. The latter make sure that the beta function is small in the dipoles.

All these lattices are optimized to have small beta functions and dispersion
in the bending dipoles. We now turn to a special insertion that plays an im-
portant role in linear accelerators that desire to achieve very short bunches and
corresponding high peak currents, which is especially the case for linacs used for
Free-electron lasers such as the FLASH facility at DESY or LCLS at SLAC in
Stanford.
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5.8 Bunch compressor

In a bunch compressor we seek to reduce the bunch length at the expense of the
momentum spread. This is achieved by accelerating the bunch off-crest in the RF-
system. In this way the head of the bunch can be made to receive a lower energy
than the tail of the bunch. We now have to produce a device that translates
momentum difference into arrival time difference. A chicane is such a device
where three dipole magnets wih bending angles φ, −2φ, and φ, respectively, are
arranged as is shown in the upper plot of Fig. 41. The idea is to give particles
with different energies different path lengths. In particular a particle with higher
energy will be deflected less in the dipoles and will take a shortcut on the inside
of he chicane, resulting in a shorter path length. This effect can be calculated by
first considering the length of the unperturbed path

l =
2L

cosφ
≈ 2L

1− φ2/2
≈ 2L

(
1 +

φ2

2

)
(111)

If the momentum offset is δ the bending angle will be reduced by φ→ φ/(1 + δ)
and we find

l(δ) = 2L

(
1 +

φ2

2(1 + δ)2

)
≈ 2L

(
1 +

φ2

2

)
− 2Lφ2δ (112)

where we observe that the first term is equal to l(0). For the R56 which describes
the path length change as a function of momntum change we thus find

R56 =
l(δ)− l(0)

δ
≈ −2Lφ2 (113)

which is proportional to the total length of the chicane and the square of the
bending angle φ.

5.9 Collimation

To be written

6 Longitudinal Dynamics

In this section we will discuss the motion of particles in the longitudinal phase
space which consists of the arrival time τ = z/c where z is the longitudinal dis-
tance to the reference particle and δ = ∆p/p the relative momentum deviation.
The arrival time is determined by the speed of the particle (a small effect pro-
portional to 1/γ2) and the path length in the magnetic structure. The latter
effect we already discussed in section 4.14 about the momentum compaction fac-
tor α in a circular accelerator which describes the relative change in path length
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Figure 42: A pillbox cavity

or circumference ∆C/C with momentum deviation δ. Any effect or device that
changes the energy or momentum of the particles will also affect its longitudinal
dynamics. Of course RF-cavities that are used to apply longitudinal electric fields
to the particle with the intent to accelerate of, as we shall see, focus the beam
fall into this category. Other effects that will change the energy is, for example,
the emission of synchrotron radiation or the energy loss in a target.

6.1 RF-cavity

The rapidly oscillating field in a radio-frequency cavities will affect the energy
change ZeV where Ze is the charge of the particle and V (t) = Ez(t)l is the
longitudinal voltage that the particle experiences during the passage through the
cavity. As an example of a cavity we show so-called pillbox cavity in Fig. 42.
The particle beam will travel from the left to the right and will experience a
longitudinal electric field, as indicated by the arrow. Depending on its arrival time
it will experience a field pointing either in the direction of travel or anti-parallel.
In the latter case the cavity would thus decelerate the particle. The longitudinal
electric field component Ez(t) will oscillate with a frequency f according to

Ez(t) = Êz cos(2πft) (114)

where Êz is the peak electric field in the cavity. The frequencies that are possible
in a cavity are mostly determined by its geometry and we will in the next sections
discuss several aspects.

The first aspect we consider depends on the fact that the cavity has a finite
length l and the particle a finite speed βc and that the electric field changes
during the passage of the particle. The reduction of the electric field experienced
by a particle can be calculated by averaging the electric field in Eq. 114 over the
transit time τ = l/βc and normalizing to the peak field with the result

ηttf =
sin x

x
with x =

πfl

βc
(115)
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where ηttf is called the transit time factor of a cavity. It is rarely explicitely
mentioned when discussing cavities, but usually absorbed in the peak field.

As mentioned above are the electro-magnetic fields determined by the geom-
etry of the cavity and we will consider a very simplified one which is circular
with radius R and has length l. For simplicity we ignore the perturbation due
to the entrance and exit hole for the beam pipe. Of course the dynamics of the
electro-magnetic fields i governed by Maxwell’s equations

~∇× ~H =
∂ ~D

∂t
+~j , ~∇ · ~B = 0 ,

~∇× ~E = −∂
~B

∂t
, ~∇ · ~D = ρ (116)

with the additional equations that define the material properties

~D = εε0
~E and ~B = µµ0

~H (117)

where ε is the relative permittivity and µ the relative permeability of the material.
Moreover, in some materials Ohm’s law is valid

~j = σ ~E (118)

where σ is the conductivity of the material.
Inside the cavity we can assume that we have vacuum and no sources ρ = 0

and ~j = 0 and also µ = ε = σ = 0. By multiplying the first of Maxwell’s equations
with ~∇× and using the vector-analysis identity

~∇× (~∇× ~A) = ~∇(~∇ · ~A)−4 ~A (119)

we arrive at the well-known wave equation

4 ~E − µ0ε0
∂2 ~E

∂t2
= 0 (120)

and find that the propagation speed in vacuum is given by

c2 =
1

µ0ε0

. (121)

Since our cavity has cylindrical symmetry we write the Laplace-operator 4 in
cylindrical coordinates (r, φ, z) and moreover look for a time-harmonic solution
with frequency ω = 2πf which reduces Eq. 120 to

1

r

∂

∂r

r∂ ~E
∂r

+
1

r2

∂2 ~E

∂φ2
+
∂2 ~E

∂z2
+ k2 ~E = 0 (122)
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with k = ω/c. Note that the previous equation holds for every component of the

Electric field vector ~E. We now select to investigate the z−component Ez(r, φ, z)
further and try to solve Eq. 122 by a separation ansatz Ez = f(r)g(φ)h(z) which
we insert and obtain

1

rf

∂(rf ′)

∂r
+

1

r2

g′′

g
+
h′′

h
+ k2 = 0 . (123)

Obviously h′′/h only depends on z and all the other terms depend on r or φ or
are constant. Therefore h′′/h must be constant which we call −k2

z and therfore
have

h′′

h
+ k2

z = 0 or h′′(z) + k2
zh(z) = 0 (124)

which is solved by
h(z) = E0e

±ikzz . (125)

The remaining equation for f and g is given by

1

rf

∂(rf ′)

∂r
+

1

r2

g′′

g
= −(k2 − k2

z) = −k2
c (126)

where we implicitly define the cutoff wave-number kc. This equation can be rewrit-
ten as

r

f

∂(rf ′)

∂r
+ k2

cr
2 =

g′′

g
. (127)

Again, since the left hand side only depends on r and the right hand side only
on φ each side must be constant independently with constant k2

r and we obtain
the two equations

r2f ′′(r) + rf ′(r) + (k2
cr

2 − k2
r)f(r) = 0

g′′(φ)− k2
rg(φ) = 0 . (128)

The second equation is solved by exponentials or sine and cosine functions with
argument krφ which, if we require periodicity in φ, implies that 2πkr = 2πm or
that kr needs to be an integer. For g(φ) we then obtain

g(φ) = e±imφ . (129)

We now insert kr = m into the first equation and make a variable substitution
s = kcr with the result

s2f ′′ + sf ′ + (s2 −m2)f = 0 (130)

which is just the defining equation for the Bessel functions of integer order [19],
denoted by J±m(s) and the solution of the first equation is

f(r) = Jm(kcr) (131)
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where we have substituted back the original variable r.
Collecting the solutions for f, g, and h we find the solution for the longitudinal

electric field component

Ez(r, φ, z, t) = E0Jm(kcr)e
±imφe±ikzzeiωt (132)

in side the cavity. If we assume that the cavity boundaries are perfectly conduct-
ing, we have Ez = 0 at r = R and this implies that Jm(kcR) = 0 and we conclude
that the Bessel-function has to have a zero on the surface of the cavity. If we
denote the n−th zero of the Bessel function Jm by γmn we must have kcR = γmn.
For example, the mode with m = 0 therefore requires kcR = 2.405 where 2.405 is
approximately the first zero of J0. The requirement that the electric field vanishes
at z = 0 and at z = l can be fulfilled by combining the two exponentials with
argument ±ikzz to a cosine with the same argument that vanishes at z = 0 and
l whereby we get kzl = pπ with integer p. Collecting these constraints for kz and
kc we obtain a dispersion relation for the resonance frequencies

k2 =
ω2

mnp

c2
=
(
γmn

R

)2

+
(
pπ

l

)2

(133)

with integersm,n, and p. Obviously, if the geometry of the cavity is given through
its radius R and length l the admissible frequencies are given by fmnp = ωmnp/2π
in Eq. 133. Only these frequencies satisfy the boundary conditions that the field
must vanish on the metallic boundaries.

We can turn the argument around and use Eq. 133 to design a cavity that
has the desired frequency that we deem useful for our accelerator. A value for
the frequency that is often chosen is 500MHz and we now have to choose R and
l suitably. We also require that 500MHz is the fundamental mode, or the lowest
possible eigenfrequency. We therfore pick m = 0 and n = 1, the first zero of the
zeroth Bessel function. Solving Eq. 133 for R we obtain

R =
2.405λ

2π
√

1− (pλ/2l)2
= 0.287 m (134)

where we introduced the wave length λ = c/f = 0.6 m. If we select p = 0 we find
the relation between the radius and the wavelength

R =
2.405λ

2π
(135)

for the mode characterized by (mnp) = (010) and since it can be shown that
this mode cannot have a non-zero longitudinal magnetic field component Bz it is
called a TM010 (for transverse magnetic) mode.

In the previous paragraph we have focused on the fundamental TM010 mode,
but there are, of course, other modes at higher frequency that can be excited
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either by the beam or externally and perturb the beam at a later time. These
higher order modes can provide a means by which the beam can ’talk to itself’
and can cause a feedback-like interaction that often leads to an instability. But
this aspect we will discuss in a later section on instabilities.

6.2 Cavity losses

In the previous section we worked out the electro-magnetic oscillation modes that
are admissible in a resonant cavity under the assumption that the walls of the
cavity are perfectly conducting and that no field penetrates into the material. In
a real cavity, however, the walls have finite conductance and the fields penetrate
into the material where they can dissipate energy. The field intensity therefore
diminishes and energy is lost by heating the cavity walls. The losses are propor-
tional to the field intensity and can be modelled by a friction coefficient that can
be written by

dU

dt
= −ω

Q
U (136)

with the quality factor Q which intuitively describes how many oscillation cycles
it takes to reduce the energy by 1/e. The detailed calculation of the Q−value of
a cavity in terms of the geometry and the conductance is discussed in Ref. [21].

The electric field in the cavity that provides the acceleration voltage Uz = Ezl
is excited by an external current I via, for exmaple, a small antenna and the
electro-magnetic fields inside the cavity behave like a damped resonator circuit
we can write Uz = ZI with

Z(ω) =
Rs

1 + iQ
(

ω
ω0
− ω0

ω

) (137)

in resemblance to Ohm’s law. A current provides a voltage and the proportion-
ality constant is resembles a generalized impedance Z(ω) that depends on the
frequency. The way the impedance Z is written is just a convenient way to ex-
press the response function Uz(ω)/I(ω) of forced and damped harmonic oscillator

U ′′z + 2αU ′z + ω2
0Uz = ω2

0RsI sin(ωt) (138)

with the shunt impedance of the cavity Rs and α = ω0/2Q. The description of a
RF-cavity in terms of impedances will also become very useful in later sections
about instabilities.

6.3 Phase Stability and Synchrotron Oscillations

In a circular accelerator it is obvious that a RF-cavity has to operate at a multiple
of the revolution frequency in order to avoid that just a sequence of quasi-random
kicks is applied to the particle. This integer number is called the harmonic number
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Figure 43: Cavity gain

of the RF-system and is given by h = fRF/f0 where f01/T0 is the revolution
frequency and T0 is the revolution time. In a linear accelerator the relative phase
of the cavities has to be adjusted to the distance between cavities and the speed
of the particles.

The design phase φd of the RF-cavity that the reference particle should ex-
perience is determined by external requirements, such as to achieve maximum
acceleration which is indicated by the particle located at the crest of the oscil-
lation in Fig. 43. In other accelerators the design phase can be determined by
the requirement to replenish the losses experienced for example by the emission
of synchrotron radiation or the interaction with a target. For definiteness sake
we consider for the moment a storage ring where the beam looses energy Ul per
turn, which must be replenished in the RF system. The design phase φd is then
given by

Ul = eV̂ sinφd (139)

where V̂ is the peak acceleration voltage that a particle can experience in the
cavity. Another particle arriving at a slightly different time τ from the reference
particle that arrives at phase φd will experience the following energy gain in the
cavity

∆E = eV̂ [sin(φd + ωRF τ)− sinφd] . (140)

This situation is illustrated in Fig. 43 where the reference particle is located at
a given phase and an early and a late particle are also shown that experience a
energy kick with respect to the reference particle given by the previous equation.
We note that it is convenient to use the phase variable φ instead of arrival time
τ. These variables are related by φ = ωRF τ.

In order to find equations of motion for the longitudinal dynamics we have
to relate the energy change ∆E to the relative momentum deviation δ = ∆p/p
which is given by some manipulations involving relativistic kinematics

∆E

E
= β2 ∆p

p
= β2δ . (141)
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Finally we make the assumption that the energy chnage that the particle ex-
periences in a cavity is small compared to its energy which means that we can
replace a derivative with respect to time d/dt by averaging the change over one
revolution period T0. For the temporal variation of δ we then find

dδ

dt
≈ 1

T0β2

∆E

E
=

eV̂

T0β2E
[sin(φd + φ)− sinφd] (142)

which relates the change in relative momentum per revolution period dδ/dt to
the arrival time τ, here expressed in terms of the phase variable φ = ωRF τ.

The time difference with respect to the reference particle that it takes for a
particle with momentum deviation δ = ∆p/p to travel around the accelerator is
given by

τ

T0

=
1

T0

(
C(δ)

v(δ)
− T0

)
=

(
α− 1

γ2

)
δ = ηδ (143)

where we used that the circumverence is dependent on the momentum of the
accelerator as given my the moemntum compaction factor α and that the speed
v also depends on the momentum deviation δ. Eq. 143 describes the variation
of the arrival time τ . If we multiply this equation with ωRF we observe that it
describes the change of the phase over one revolution period. If we again use the
assumption that the variables τ or φ and δ change slowly we can again replace
the temporal derivative d/dt by an abverage over the revolution period T0 and
can write

dφ

dt
≈ ωRF τ

T0

= ωRFηδ (144)

which relates the changes in the phase to the relative momentum deviation δ.
Together with Eq. 142 this describes the longitudinal dynamics of a particle
under the influence of a cavity and the phase slip it encounters when traversing
the accelerator. Average losses are accounted for by the design phase φd.

As an aside we observe that Eq. 143 which defines η can be also be rewritten
in the following way

∆T

T
= −∆f

f
=

(
α− 1

γ2

)
δ = ηδ (145)

which implies that a small change in momentum (or energy) of the particle δ
causes the revolution time to change a little bit, which corresponds to the negative
change in revolution frequency of that particle.

Returning to Eq. 142 and 144 we observe that we can differentiate the latter
equation once more with respect to time and insert δ̇ from Eq. 142 with the result

φ̈− ωRFη

T0β2

eV̂

E
[sin(φd + φ)− sinφd] = 0 . (146)
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We observe that for small phase deviations φ the previous equation can be rewrit-
ten by using sin(φd + φ)− sinφd ≈ φ cosφd which allows us to express Eq. 146 in
the following form

φ̈+ Ω2
sφ = 0 (147)

where we introduce the synchrotron frequency Ωs by

Ω2
s = −ωRFη cosφd

T0β2

eV̂

E
(148)

and which is valid for small oscillations. Equation 147 is the differential equation
for a harmonic oscillator and describes oscillations with angular frequency Ωs.
These oscillations in the phase-momentum phase space are called synchrotron os-
cillations. The motion of the phase and momentum deviation δ will be according
to φ = φ̂ sin Ωst) and δ = δ̂ cos Ωst) where φ̂ and δ̂ are the maximum amplitudes
of the phase and the momentum deviation. Note that φ̂ and δ̂ are related by
φ̂ = (ωRFη/Ωs)δ̂.

Note that there are only stable oscillations if Ω2
s is positive, which implies

that −η cosφd must be positive. Considering the definition of the phase slip
factor η = α − 1/γ2 in terms of the momentum compaction factor α and the
kinematic factor γ we see that for low energies the γ−factor dominates and makes
η negative which implies that the cosφd must also be positive. The energy for
which η is zero is called transition energy, and at low energies we are, colloquilally
speaking, below transition, and at energies with 1/γ2 ≤ α above transition. In
the latter case we find that cosφd must be negative and consequently the phase
must be around 180 degrees, near the point where the RF voltage crosses zero
from positive to negative voltages. In a real ring the particles will assemble at
the design-phase where the motion is stable: below transition around zero phase
and above transition around 180 degrees.

In the previous paragraphs we discussed small amplitude oscillations and here
we will drop this approximation, but will assume for the sake of simlifying the
algebra that we have no losses Ul and therefore the design phase φd is either zero
or 180 degree. Equation 146 in this case simplifies to

φ̈+ Ω2
s sinφ = 0 (149)

which is formally identical to Eq. 147 if the oscillation amplitudes are small. In
the general case Eq. 149 is the equation of a mathematical pendulum and we can
exploit the theory that was developed.

We start by noting that the equation of motion has an integral of motion
because multiplying Eq. 149 with φ̇ yields

0 = φ̇φ̈+ Ω2
sφ̇ sinφ =

d

dt

[
1

2
φ̇2 − Ω2

s cosφ
]

(150)
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Figure 44: Phase portrait of the longitudinal phase space.

which means that the quantity in the square bracket is constant and does not
change with time t. This leads to

1

2
φ̇2 − Ω2

s cosφ = A . (151)

The constant A we can express in terms of the maximum phase excursion φ̂
because at φ = φ̂ we have φ̇ = 0 and get A = −Ω2

s cos φ̂. Inserting into the
previous equation yields

1

2
φ̇2 + Ω2

s(cos φ̂− cosφ) = 0 . (152)

What we have doe here is that we characterized the possible trajectories that the
equation of motion describes by the maximum amplitude in much the same way
as we can distinguish different oscillations of a children’s swing by their maximum
amplitude. A alternative way would be to describe the trajectories by their total
energy.

We can now solve Eq. 152 for φ̇ and plot it as a function of φ and obtain

φ̇ = Ωs

√
2(cosφ− cos φ̂) (153)
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and plot φ̇ with φ̂ as parameter that assumes values of φ̂ = π/5, 2π/5, . . . , π.
We show the plots in the φ, φ̇ phase plane in Fig. 44 and observe that for small
maximum phase amplitude φ̂ the phase space is elliptical, but as the amplitude
increases, the phase space is increasingly distorted up to a limiting curve for
φ̂ = π which is called the separatrix and is the limit of stable oscillations.

Note that φ̇ is related to the energy deviation δ = ∆p/p by Eq. 144, which
implies that the vertical axis in Fig. 44 is actually just a rescaled δ where the
rescaling is given by φ̇ = ηωRF δ. This implies that there is a maximum momentum
acceptance δmax, namely the height of the separatrix which is often called the
bucket half-height. It is given by

δmax =
2Ωs

ηωRF

= 2

√√√√ 1

ηωRFβ2T0

eV̂

E
(154)

which clearly shows that the momentum acceptance is proportional to the root of
the cavity voltage V̂ . If a particle should for some reason such as badly injected or
having received an anomalously large energy loss in the interaction with a target
should lie outside the separatrix, it will not be able to perform stable synchrotron
oscillations.

We found that the particles with small phase angles φ perform harmonic
synchrotron oscillations. This will, however, change as the amplitude increases
and the motion becomes increasingly anharmonic. To illustrate this we calculate
the oscillation period Tp as a function of the amplitude by rearranging Eq. 153
in the following way

Ωs

∫ Tp/4

0
dt =

ΩsTp

4
=
∫ φ̂

0

dφ√
2(cosφ− cos φ̂)

=
1

2

∫ φ̂

0

dφ√
(sin2(φ̂/2)− sin2(φ/2)

(155)

where we calculate the time to get from one zero to the extreme phase φ̂ which
constitutes a quarter an oscillation period Tp/4. The integral on the right hand
side can be brought into the standard form of a complete elliptic integral K(x)
by the substitution sinψ = sin(φ/2)/ sin(φ̂/2) whence we arrive at

ΩsTp

2
= 2

∫ π/2

0

dψ√
1− sin2(φ̂/2) sin2 ψ

= 2K(sin(φ̂/2)) . (156)

For the oscillation period we the obtain

T =
4

Ωs

K(sin φ̂/2) = Ts0

(
2

π

)
K(sin φ̂/2) (157)
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Figure 45: The synchrotron period.

where we define the small oscillation amplitude revolution period Ts0. We can use
the series expansion for the elliptic function [19]

K(x) =
π

2

[
1 +

x2

4
+

3x4

8

]
(158)

and for small oscillation amplitudes we find for the amplitude dependence of the
revolution period

T ≈ Ts0

(
1 +

φ̂2

16
+

3φ̂4

128
+ . . .

)
. (159)

For the entire range of values 0 ≤ φ̂ ≤ π we plot the revolution period Tp

normalized to the small amplitude period Ts0 as a function of the amplitude φ̂ in
Fig. 45. Note that the osillation period diverges as the amplitude φ̂ approaches π
which corresponds to a starting phase close to one of the nodes of the separatrix.

This concludes the discussion of the longitudinal phase space and we now turn
to the discussion of the diagnostic equipment that is used in accelerators to find
out how much beam is where and how big.
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Figure 46: Conceptual schematic of a faraday cup.

7 Diagnostics

We now discuss various methods that are usually emplyed in accelerators to
measure properties of the beam, which is required to optimize the performance
and sometimes find out what is wrong with the accelerator.

7.1 Zeroth Moment: Current

The simplest method to measure the beam current, provided the beam power
is suffciently low, is to just dump it in a metal block that is connected via an
Ampere-meter to ground. If positively charged ions are diagnosed electrons from
the absorber material will rush towards the ions and try to compensate their
charge, thus constituting an electronic current that can be measured. Just using
a metallic block is not very accurate and the more refined version that shields
secondary electrons by magnetic fields and separates the absorber from the accel-
erator vacuum is called a Faraday-cup. Careful attention must be paid to stray
capacitances and inductances, if the device must be fast, meaning measure rapid
changes in the current. At higher beam currents and beam powers the absorber
must be cooled and one must make sure that the beam is really stopped inside
the absorber. This type of beam current measurement device is, since it stops
the beam, by its nature, invasive.

Another device to measure the current is a wall-gap monitor shown in Fig. 47
which is based on the measurement of the image currents in the beam pipe. The
vacuum chamber shields the magnetic fields that the beam generates such that no
magnetic field is visible outside. On the other hand, inside the vacuum chamber
the magnetic field is given by Ampere’s law∮

~B~dl = µ0Ibeam (160)
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Figure 47: Schematic of a wall-gap monitor.
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Figure 48: Schematic of a beam current transformer.

which implies that in the vacuum chamber a current propagates, which is equal in
magnitude but has opposite sign. This wall current can be measured by inserting
a ceramic in the beam pipe and bypassing the ceramic with resistors such that
the wall currents are forced to travel through the resistors. Across the resistors a
voltage drop develops that can be measured with a sensitive voltmeter. Provided
that careful attention is paid to shielding and electrical design very fast signals
into the GHz range can be resolved which corresponds to a time resolution on
the pico-second scale. Note that a wall-gap monitor does not intercept the beam
and is therefore a non-invasive current measurement system.

In the wall-gap monitor we picked up the image currents with a resistor, but
we can also directly detect the magnetic field of the beam by placing a circular
iron core around the beam inside the beam pipe. A passing bunched beam induces
a temporally varying flux inside the iron that can be detected by winding several
windings around the iron which act as secondary windings of a transformer, hence
the name current transformer. The device is illustrated in Fig. 48.

Note that the current transformer detects the magnetic field due to a tempo-
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Figure 49: Schematic of a DCCT and a hysteresis curve.

rally changing beam current, which works well for bunched beams, but does not
work for circulating beams that are un-bunched, so-called coasting beams. This
type of situation is common in nuclear physics rings that are equipped with an
electron cooler. A current measurement device that is able to measure the aver-
age or DC component of the current is called a direct current charge transformer
or DCCT. The operation method is illustrated in Fig. 49. Similar to the normal
beam transformer discussed in the previous paragraph an iron ring is encirceling
the beam. There are two coils wound onto the ring. The first one is coupled to
an oscillator which excites the ring such that the magnetic field inside the ring is
driven into saturation. The voltage that is induced in a second winding around
the ring will contain not only the driving signal from the oscillator, but also har-
monics at higher frequencies. Since the hysteresis curve, also shown in Fig. 49,
is antisymmetric normally only odd harmonics are generated. If, on the other
hand, an extra beam current is passing through the ring, the hysteresis curve
will be shiften up or downwards and will no be asymmetric any more. Therefore
even harmonics are generated in the secondary coil. If a second wire, carrying
a DC current, is passed through the ring, and adjusted as to cancel the second
harmonic, we can very acurately measure the compensating current. The mesure-
ment is thus based on a null-measurement which is typically very accurate. Note,
however, that the bandwidth of the DCCT is limited by the exciting frequency
of the driving oscillator.

We point out that a more thorough discussion of the transformers can be
found in Ref. [3].

7.2 First Moment: Position

We now turn to the discussion of devices that allow to measure the transverse
position of the beam which is of paramount importance for the operation of
accelerators because a ’wrong’ beam position is normally one of the first and
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Figure 50: Button beam position monitor.

most easily recognized indicator if something is wrong. Furthermore, often only
the desired performance is only achievable if the beam is well-centered in the
magnets. Under some circumstances highly accurate measurements are desirable
that determine the beam position to an accuracy within µm or better, and in other
circumstances the position must be measured on a turn by turn base, which is
rather demanding, especially for small rings with a high repetition rate. Another
extreme requirement, that may occur, is the desire to measure the positions of
two counter-propagating beams near the interaction point of a collider. This
requires direction sensitive devices. Since we normally want to use the beam
in an experiment, rather than use it in the measurement procedure itself, we
need non-invasive diagnostics. This implies that either the wall-currents that
we discussed earlier in the context of a wall-gap monitor or the electro-magnetic
fields that accompany the beam will be analyzed and the beam position deduced.

The first BPM we discuss is a a so-called Button BPM of which a schematic
is shown in Fig. 50. There are usually four small isolated buttons mouted in
the vacuum chamber that pick up part of the wall currents. The isolated button
appears like a capacitor and a displacement current flows into it. The BPM
therefore only measures the AC component of the beam current which makes it
especially suitable for short bunches that carry a high number of harmonics. The
positions can be deduced from the signals in the four buttons in the following
way

x = kx
(A+D)− (B + C)

A+B + C +D
, y = ky

(A+B)− (C +D)

A+B + C +D
(161)

where we have kx = ky = R/
√

2 if the beam pipe is circular and the size of the
buttons is small compared to the radius R of the pipe. The latter requirement
implies that the signal induced in the buttons is rather small, because only a
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Figure 51: Schematic of a stripline beam position monitor.

small portion of the wall currents are intercepted and this makes these BPM
more suitable for high intensity beams. Button BPMs normally are the preferred
choice for synchrotron radiation sources, due to the requirement for short bunches
and high intensity.

The proportionality constant is easily calculated by noting that the wall cur-
rent density in the wall is proportional to the electric field of the bunch on the
beam pipe wall. One may envision this by the longitudinally compressed electric
field pushes the charges in the wall back and forth, while the beam passes. The
electric field on the pipe wall can be easily calculated by the method of image
charges and by conformal mapping.

Exercise: calculate the coefficients kx and ky in Eq. 161 for a round and an
infinitely wide horizontal beam pipe.

The second BPM that we consider is a stripline BPM of which a schematic
is shown in Fig. 51. A conducting strip is mounted isolated on the inside of the
vacuum chamber and the magnetic field of the passing beam changes the flux
in the area between the beam pipe and the stripline, which induces a voltage in
the stripline. If the bunch length is shorter than the length of the stripline two
pulses, one positive and one negative, can be picked up at eiher terminal of the
stripline. This allows to distinguish signals from couter-propagating beams. The
signals from four striplines arranged in much the same way as in the button BPM
allows to extract the position information from these BPM.

Another technique is based on placing a diagonally sliced box inside the beam
pipe which has the advantage that the sense-electrodes are particularly large,
making these BPM suitable for ion-storage rings, that often operate at very low
intensities. The position is then deduced from the difference of the signals from
one and the neighboring electrode and normalized to the sum. A picture of such a
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Figure 52: Shoebox beam position monitor.

shoebox bpm is shown in Fig. 52. Normally one box, that can have a rectangular
cross-section, as shown, or a round cross-section, is used for the horizontal and
one for the vertical direction.

A fourth position sensotive device is a cavity BPM which is based on a res-
onating structure that supports a mode which is spatially anti-symmetric and
that has a zero on the beam axis, for example a TM210-mode, as is shown in
Fig. 53. If the beam is centered it can not excite the shown mode, but if it is
off center the charges in the beam can work agains the electric field and thereby
excite the mode. The shown mode can then excite the electrons in the antenna
shown on the bottom, providing a means to couple out the signal. The infor-
mation whether the beam is too high or too low can be obtained from phase
comparing the signal from the antenna with a reference signal.

7.3 Second Moment: Beam Size

We now turn to the discussion of devices to measure the transverse and longi-
tudinal size of the beam. Of course the most straightforward way of measuring
the transverse beam size is by placing a luminescent screen into the beam and
observing the emitted light with a video camera and digitizing the picture on
a computer as is shown in Fig. 54. This is obviously an invasive measurement,
especially at low energies where the beam is absorbed in the screen. There are
often problems with these type of screens due to blind spots where the screen
material is not as effective as on the surrounding area. Limited dynamic range
and saturation of the intensity are other problems as well as cameras failing due
to high radiation doses.

A variant of the luminescent screen are screens based on optical transition
radiation (OTR) where the screen is made of a very thin foil of, for example
AlO2, which disturbs some beams, such as high energy electron beams, very
little. The screen has an index of refraction larger than unity which causes light
to travel slower as the speed of light in vacuum such that it can match the
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Figure 53: Cavity based beam position monitor.

also slowed-sown beam particles. Therefore electro-magnetic waves can couple
to the beam particles. This is an effect very similar to the emission of Cerenkov
radiation. The emitted radiation is then picked up by a camera, possibly after
being transported in an optical beam line made of lenses and mirrors.

Another monitor is based on the ionization of very thin, typically a few µm,
thick wires, as illustrated in Fig. 55, which is called a secondary emission monitor
(SEM) grid. The electrons that are knocked out of the wire by the intercepted
beam cause a small current to flow in the wires that is first amplified and then
measured in an ampere-meter. Of course all wires must be read out in parallel
which requires one amplifier per wire and all of them must have be well-balanced.
Moreover, a large number of wires must be passed from the inside of the beam
pipe, where the SEM-grid is located to the outside, where the amplifiers are
located, which requires advanced vacuum feedthroughs. All of this make SEM
grids rather expensive apart from the mechanical problems due to heat deposition
in the wires that can lead to melting. The result of SEM grid measurements are
normally displayed as a histogram of the current in the wires as a function of the
wire position, showing a transverse beam profile. The center and the width of
the distribution in the histogram then represent the beam position and width.

Instead of having a large number of wires permanently in the beam we can use
a wire-scanner which consists of a fork that moves a thin wire through the beam.
In this case only a single amplifier for the wire is used, but some mechanical
devices such a stepper-motors or pneumatic pistons are required to move the
wire. Of course, the position of the wire must be known while it traverses the
beam which is usually done by resistive or optical position encoders. Often it is
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Figure 54: Schematics of the operating principle of a luminescent screen.

possible to avoid electronic readout of the secondary emission current from the
wire but observe nearby fast ion chambers for radiation protection which will
generate a signal related to the number of beam particles hitting the wire. It
should also be noted that the wires are normallyb only several micrometer thich
but nevertheless represent a thick target for the beam and perturb it which can
be critical especially for circular accelerators.

A variant of the wire scanner is the Magnesium Jet profile monitor developed
in Novosibirsk for VEPP-3 but a copy was installed in CELSIUS. In the Mag-
nesium Jet profile monitor the wire is replaced by a thin stream of Magnesium
vapour that is transversely swept across the beam and the mechanical position
of the nozzle is recorded. The Magnesium is ionized by the beam and the elec-
trons are collected by a transverse electric field into a photo-multiplier which
will produce a signal proportional to the number of Magnesium atoms hit by the
beam.

A further variant of the same theme is the residual gas monitor where the
Magnesium Jet is replaced by the residual gas that is normally present in the
beam pipe to some extent. The gas is ionized and the electrons are collected by
transverse and magnetic fields onto a multichannel plate that is position sensitive
and yields information about the beam size.

Electron and positrons at high energies emit synchrotron light in bending
dipole magnets which can be imaged onto a camera with e.g. a pinhole and
thereby a direct image of the transverse elecron beam distribution is obtained.
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Figure 55: Schematics of a secondary emission monitor grid.

The second moment of the longitudinal distribution or the arrival times of
bunches longer than several nano-seconds can be obtained by directly observing
the sum signal of a BPM on a fast oscilloscope. This works well with long bunches
with a length of several meters, but once the bunches get shorter other means
are required.

Very short electron bunches down to the pico-second range (0.3mm) can be
measured with a streak camera which is a mechanical fast rotating mirror that
smears the short light-pulse spatially onto a light detector. The width of the
’streak’ is related to the pulse length of the original light pulse. More modern
designs focus the light pulse onto a photocathode and the emitted and accelerated
electrons are ’streaked’ transversely by a transversely varying electric field onto
a screen.

The same trick can also be applied to the primary electron beam if it is
transversely deflected by a transversely deflecting mode in a cavity. This works
like a backwards version of a cavity BPM, shown in Fig. 53. Here the antenna
excites a deflecting mode and depending on the arrival time longitudinal slices of
the beam receive different transverse kicks that can be streaked over a luminescent
screen. Such a transversely deflecting cavity called LOLA is installed at the
FLASH facility at DESY. Alternatively, a longitudinal accelerating cavity can be
used to give different longitudinal slices different energies that will show up as a
streak on a screen at a downstream location with dispersion.

Measuring the length of bunches in the femto-second range requires techniques
borrowed from ultra-short laser science. See Ref. [31] for a recent review. In one
case the electric field of an electron bunch that is passed close to an electro-
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Figure 56: Schematics of an electro-optical sampling experiment.

Figure 57: Schematics of the optical replica synthesizer.

optical crystal changes the polarization properties of the crystal which in turn
affects a laser pulse that is passed through the crystal simultaneously, as is shown
in Fig. 56. Normally the relative polarization of crystal and laser is chosen such
that all laser power is absorbed in the crystal, and only if the polarization of the
crystal is changed due to the electric field of the passing electron bunch a laser
pulse that resembles the longitudinal profile of the electron bunch appears on
the other side of the crystal. Several variations of this theme are in operation at
DESY, SLAC and other laboratories.

Another novel idea that exploits laser diagnostic capabilities to completely
diagnose femto-second light pulses is the Optical Replica Synthesizer (ORS),
which creates an optical copy of the longitudinal electron distribution and utilizes
frequency resolved gating (FROG) techniques [32] to diagnose the profile of the
light pulse. In the ORS a seed laser modulates the energy of the electron bunch
in an undulator where the transverse electric field of the laser couples to the
transverse velocity component of the electron motion. The energy modulation
is turned into a longitudinal density modultion with a period length of the laser
wavelength in a small chicane. The micro-bunched beam is then made to radiate
in a second undulator tuned to the same wavelength. The emitted light pulse
has the wavelength of the seed laser and the envelope of the longitudinal electon
distribution. A prototype of the ORS will be installed in FLASH at DESY in
2007 with active participation of Uppsala University.
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Figure 58: Quadrupole scan.

7.4 Emittance and Beta Function

Turning back to the transverse beam size measurements we now want to discuss
methods of how to experimentally determine the emittance and beta function
from size measurements. We will restrict ourselves to the one-dimensional case
where the beam sigma-matix is only a 2× 2 matrix which has three independent
parameters, namely

σ =

(
σ11 σ12

σ12 σ22

)
=

(
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)
= ε

(
β −α
−α γ

)
(162)

with γ = (1 + α2)/β. All we can directly measure is the beam size but we still
want to beable to determine the other parameters such as emittance or 〈xx′〉 as
well and we obviously need at least three measurements to determine the three
independent parameters, either the three second moments such as 〈x′2〉 or ε, β, α.
We start by determining the moments first and later calculate the emittance and
beta from them.

Consider Fig. 58 which shows the spot on a luminescent screen for two different
settings of an upstream quadrupole. In the first case on the left, the quadrupole
is focussing weakly and the beam is horizontally wide, but vertically small. If
we increase the quadrupole excitation, the horizontal beam size will shrink, but
the vertical beam size will increase, because quadrupoles focus in one plane but
defocus in the other. We will now see how the horizontal beam size will change
as a function of the quadrupole excitation for an input beam specified by its mo-
ments. For this we need the transfer matrix from the entrance of the quadrupole
to the screen

R =

(
1 l
0 1

)(
1 0

−1/f 1

)
=

(
1− l/f l
−1/f 1

)
(163)

where l is the distance from the quadrupole to the screen and f is the focal length
of the quadrupole. We now transport the input beam σ from Eq. 162 with the
transfer-matrix R from Eq. 163 to the screen by σ̄ = RσRt and obtain for the 11
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component of σ̄ which is the beam size squared on the screen

σ̄11 = R2
11σ11 + 2R11R12σ12 +R2

12σ22

= (1− l/f)2σ11 + 2l(1− l/f)σ12 + l2σ22 (164)

=

(
l

f

)2

σ11 −
(
l

f

)
(2σ11 + 2lσ12) + (σ11 + 2lσ12 + l2σ22)

which shows that the squared beam size on the screen plotted as a function of
the relative quadrupole excitation l/f is a parabola and the coefficients of the
parabola are related to the beam parameters of the incoming beam. By setting
the quadrupole to at least three different values an recording the beam sizes on
the screen we can therefore determine the three moments σij.

From the three moments we can in turn determine the emittance from

ε =
√

detσ =
√
σ11σ22 − σ2

12 (165)

and the beta and alpha functions from

β =
σ11

ε
and β = −σ12

ε
(166)

An alternative to measuring the emittance from a quadrupole scan is to mea-
sure the beam size at at least three consecutive location. The transfer matrices
from the start location to the screens or wire scanners labelled n are denoted by
a superscript n such as Rn. The measured beam size squared at screen n we will
denote by σ2

n. The dependence of the measurements on the incoming beam at an
upstream location, labelled 0 is then determined by the following set of equations

σ2
1 = (R1)2

11σ11 + 2R1
11R

1
12σ12 + (R1)2

12σ22

σ2
2 = (R2)2

11σ11 + 2R2
11R

2
12σ12 + (R2)2

12σ22

σ2
3 = (R3)2

11σ11 + 2R3
11R

3
12σ12 + (R3)2

12σ22

(167)

which can be written in matrix form as σ2
1

σ2
2

σ2
3

 =

 (R1)2
11 2R1

11R
1
12 (R1)2

12

(R2)2
11 2R2

11R
2
12 (R2)2

12

(R3)2
11 2R3

11R
3
12 (R3)2

12


 σ11

σ12

σ22

 (168)

and we can solve for the unknown σij by simple matrix inversion. If there are
more measurements in for example one or more addiational screens, we can just
one ore more equations to Eq. 167 which leads to more rows in the corresponding
matrix equation 168 which then is over-determined and we can solve it in the
least-square sense using the usual (AtA)−1 tricks from Numerical Recipes..

These measurements can be extended to determine the coupled 4 × 4 beam
matrix if there are skew quadrupoles available to change the coupling.
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Figure 59: Schottky spectrum of 248.25MeV/u deuterons in CELSIUS at the sec-
ond harmonic (4.500480MHz, 1020Hz full bandwidth) when stepping the HVPS
in steps of 20V around 136 kV. Time runs from top to bottom.

7.5 Schottky Signals

In circular proton or ion accelerators the accelerating radiofrequency can be
turned off because the particles do not loose energy due to synchrotron radi-
ation. With absent RF the longitudinal focussing is absent and the beam will
smear out around the entire ring without a bunch structure. This is commonly
called a coasting beam. Since the momentum spread of the beam σp is non-zero,
the particles will have a spread of revolution frequencies, proportional to ησp. In
practice every particle has its particular energy and revolution frequency. This
means that each particle will induce a signal in a sensitive detector, a ’ping’ de-
pending on it revolution frequency. Since there are very many particles in the
ring, we can expect to observe a distribution of frequencies, representing the mo-
mentum distribution of the beam. This is called the Schottky signal. In Fig. 59
we show a spectrogram recorded on a fast spectrum analyzer in CELSIUS. The
horizontal axis represents the revolution frequency and vertically time increases
from top to bottom. The colors encode the signal intensity. In the experiment
documented in Fig. 59 we have deliberately changed the revolution frequency by
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Figure 60: Schottky signal of deuterons in CELSIUS at the 2nd harmonic at
4.50048MHz with full span of 4.07 kHz. Time increases from top to bottom.
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Figure 61: Beam beam deflection curve

changing the high voltage of the electron cooler in CELSIUS which changes the
speed of the, in this case, deuterons, which shows up as a changed revolution
frequency. The width of the distribution corresponds to the momentum spread.

In another experiment shown in Fig. 60 we had a target used in nuclear physics
experiments present and the beam is initially narrow due to the presence of the
electron cooler, which is, however, turned off after a short while, which causes
the beam to widen and also the average frequency changes to lower values which
is due to the energy lost by the beam in the target. Normally it is replenished
by the electron cooler, but that was turned off in this case. Since the target
thickness is proportional to the rate of energy loss which shows up as a frequency
change of the Schottky signal. We routinely used this method to determine the
target thickness in CELSIUS.

7.6 Beam-Beam Diagnostics

at SLAC and for future linear colliders

95



8 IMPERFECTIONS AND THEIR CORRECTION Draft, November 14, 2006

7.7 Timing

Technically, timing diagnostic is also a is also a measurement of the first moment,
but ...

8 Imperfections and their Correction

In this chapter we will discuss imperfections of the magnets used in an accelerator,
how to diagnose them and finally how to correct them. In this context it is useful
to recall how magnets are chracterized in terms of their multipolarity. The field in
magnet has to fulfill Maxwell’s equations and it can be shown that the magnetic
field therefore can be derived from a magnetic potential.

The effect of a thin multipole of order n, where n = 1 denotes quadrupole,
n = 2 denotes the sextupole and so forth, on the beam is that of a kick that
depends on the initial position x and y of the particle when entering the magnet
and is given by

∆x′ + i∆y′ =
knL

n!
(x+ iy)n (169)

where ∆x′ and ∆y′ denote the horizontal and vertical kick that the particle
receives and knL is the integrated strength of the magnet, normalized to momen-
tum, or Bρ, of the beam

knL =
dnB/dxn

Bρ
L . (170)

where L is the length of the magnet. The kick that a particle receives in the
corresponding skew-magnets can be calculated by multiplying the right hand
side by the imaginary unit i.

The most obvious magnetic imperfection is an excitation error which can come
from a power supply error or a mis-calibration of the magnet itself. In this case
the type of the error is equal to the magnet type, the field pattern is correct, but
the the magnitude of the field is wrong. This can be represented by a somewhat
erroneous knL of the magnet.

Another type of magnetic error is misalignment which can be visualized by
a magnet not standing of the design orbit, either longitudinally, or transversely.
The effect of transverse misalignment by for example a horizontal distance ∆x

can be most easily undersood by a change of coordinates and the kick that a
particle receives is no longer given by Eq. 169, but by

∆x′ + i∆y′ =
knL

n!
(x+ ∆x+ iy)n . (171)

If we restrict ourselves to the horizontal plane, consider a sextupole with n = 2
and expand the term in the bracket we see that the particle receives a horizontal
kick ∆x′ given by

∆x′ =
1

2
k2L(x2 + 2∆xx+ ∆2

x) . (172)
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Figure 62: One-to-one tseering.

Note that the particle now receives a kick that is proportional x2 as before but also
a kick proportional to x and a kick independent of x the latter which represents
a dipole kick of magnitude k2L∆2

x/2 that affects a particle, even though it is on
the design orbit. No surprise here, the particle is on the design orbit, but the
sextupole is not. The term linear in x affects the particles in the same way as
an additional quadrupole with strength (or inverse focal length) k2L∆x. Observe
that a misaligned sextupole gives rise to a quadrupole and dipole errors. This is
a general behavior of misaligned multipoles that give rise to a multitude of lower
multipoles. This effect is called feed-down of the multipoles.

A further source of magnetic errors are the end-fields of magnets, which always
be described by their multipolar contents in terms of a sequence of knL. The
magnitude of these coefficients can usually only be determined experimentally by
magnetic bench measurements or by numerical codes that model the magnetic
field from the the geometry of the magnet and the excitation of the coils.

In the following sections we now turn to some of the more common imper-
fections that appear in the daily operation of accelerators and see how they are
diagnosed and corrected.

8.1 Orbit

The most common correction in accelerators is arguably orbit correction. The
orbit of the stored beam is usually observed with beam position monitors (BPM)
and often the the orbit that is displayed on a computer screen is nowhere near the
design orbit which should read zero on all BPM, if these were properly aligned
initially. The source of a non-zero orbit are dipole errors in the accelerator which
can come from all the error sources we discussed in the previous section such as
misaligned magnets. Normally there are also dipole steering magnets installed
in an accelerator that can be used to deflect the beam in such a way as to zero
the position on the BPM. If for example there is on steering magnet upstream of
every BPM with a large R12 transfer matrix element between the corrector and
the BPM a position error ∆x can be corrected by exciting the corrector as to give
a deflection angle θ with R12θ such that ∆x +R12θ = 0. If there is one corrector
for every BPM this method is called one-to-one steering of a beam line. Observe
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Figure 63: Closed orbit.

that in a straight beam line a corrector will only affect the orbit downstream of
its position.

Note that the situation in a circular accelerator is slightly different because
exciting a single steering magnet will cause a perturbation of the orbit everywhere
in the accelerator, because the orbit perturbation must be periodic with the
circumference. The equilibrium orbit in a ring is therefore often referred to as
closed orbit. The concept of the closed orbit is shown in Fig. 63 where the
dipole corrector at the top of the ring gives the beam a kick of magnitude θ
which causes the orbit to oscillate around the ring. The orbit immediately after
the corrector we denote by (x, x′)co and follow the orbit vector around the ring
by first propagating around the ring with a transfermatrix and then applying
the kick (0, θ). To simplify the algebra we assume that we have α = 0 and the
transfermatrix that describes the propagarton of the beam around the ring is
then only characterized by the beta function β and the tune Q. After one turn
the requirement for a closed solution yields the following equation(

x
x′

)
co

=

(
cos(2πQ) β sin(2πQ)

− sin(2πQ)/β cos(2πQ)

)(
x
x′

)
co

+

(
0
θ

)
(173)

Solving for the closed orbit results in

xco =
β

2
cot(πQ) , x′co =

θ

2
(174)

which implies that the kick-angle θ is affects the closed orbit in the way shown in
Fig. 63. Furthermore note that the position at the corrector xco changes as well
and the change depends on the beta function β and the tune Q.
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An important point to note is the dependence on the tune through the cotan-
gent which has a singularity at multiples of π which implies that the orbit is
exceedingly sensitive to dipole perturbations if the tune Q is an integer.

In order to find out the position change of the closed orbit change xi at the
BPM i that the steerer caused we need to propagate the closed orbit change
at the corrector labelled j to the BPM using the transfer matrix between the
corrector and the BPM. Such a transfer matrix between two positions with beta
functions βi and βj and phase advance ψij is given by

xi =

√
βiβj

2 sin(πQ)
cos(ψij − πQ)θj (175)

Note that the factor in front of the kick angle θj takes the role of he R12 transfer
matrix element ih a beam line in the sense that it describes the change in or-
bitb poition at a point i due to a change in angle at position j, but taking the
constraint that the orbit must be closed into account. The factor is commonly
called response coefficient decause it describes the response of the BPM reading
to a change of the steering magnet. If we tolerate a little sloppy notation, we can
write this response coefficient by Cij = ∂BPMi/∂CORj. In the case of a straight
beam line the response coefficients are equal to the earlier encountered transfer
matrix elements such as R12 for the horizontal plane or R34 in the vertical plane.

In the previous paragraph we expressed the response coefficients between po-
sitions in terms of beta functions and phase advances. Which is the commonly
used way to operate if the beamline is un-coupled, which means that changing
horizontal corrector will only affect the horizontal orbit and not the vertical. In
the more general case with arbitrary 4× 4 possibly coupled transfer matrices we
can still calculate the response coefficients. We will denote the 4 × 4 transfer
matrix that propagates the beam from a point labelled j to itself by Rjj and call
it the full-turn matrix at point j. The orbit perturbation that we have at point
j we denote by a vector with 4 components ~θj = (0, θx, 0, θy)

t where θx/y are the
kick angles in the horizontal and vertical plane, respectively. The closed orbit
perturbation ~xj immediately after point j is then given by

~xj = Rjj~xj + ~θj (176)

where we denote orbit vectors with four components by an arrow. Similarly to
what we did in the previous paragraph we solve for ~xj

~xj = (1−Rjj)−1~θj (177)

where the 1 in the brackes denotes a a 4× 4 unit matrix. Now we have the effect
of a general perturbation at the source location labelled j. If we want to know it
at another location labelled i we simply have to propagate the orbit vector ~xj by
the 4× 4 transfer matrix Rij from point j to point i and get

~xi = Rij~xj = Rij(1−Rjj)−1~θj = Cij~θj (178)
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where we introduced the 4 × 4 response matrix Cij between location j and i
defined by

Cij = Rij~xj = Rij(1−Rjj)−1 . (179)

It is useful to norte that the response matrix element in a straight beam line were
Rij and the closed-orbit constraint is accounted for by the term (1−Rjj)−1.

The response matrix Cij is a 4 × 4 matrix and the response of a horizontal
position observation to a horizontal angle kick is the matrix element Cij

12 in the
horiontal plane. In a coupled beam line the matrix element Cij

32 denotes the
variation of the vertical orbit (first lower index ’3’) to a horizontal kick (second
lower index ’2’). If the accelerator is uncoupled all matrices R and C are block-
diagonal and the 32 element is zero.

By now it should be obvious that the calculations of the response coefficients
is largely an exercise in linear algebra once the transfer matrices Rij are known
and the latter can often easily obtained by numerical accelerator optics codes,
such as MAD [8] where thesectormap command provides a file with all transfer
matrices of beam line that can be used to subsequently calculate the response
coefficients.

We now address the question how the knowledge of the response coefficients
can be used to correct the orbit of a circular accelerator globally. We assume
that we have a number N of BPM in the ring and M corrector magnets. To
simplify the notation we assume that we only correct the orbit in the horizontal
plane and that due to the reasons discussed in the first secton of this chapter the
BPMs read a non-zero orbit, that we want to correct to zero or some other ’golden
orbit’ that was determined by some other means, such as favourable background
situation. The readings of the N BPM we denote by xi with i = 1, . . . , N and the
desired orbit by x̂i. The kick angles of the steering or correction magnets, here
assumed to be horizontal, are denoted by θj with θ = 1, . . . ,M. If we knew (note
the conditional!) all the M corrector values we could calculate the the change of
position at the i−th BPM ∆xi by summing over the correctors, weighted by the
response coefficients Cij

12 between corrector j and BPM i

∆xi =
M∑

j=1

Cij
12θj (180)

where the sum extends over all corrector magnets. The desired change in orbit
is of course he difference between the measured orbit xi and the desired orbit x̂i,
or ∆xi = xi − x̂i. We just make the correctors add the negative of the measured
orbit to the beam, thus zero’ing the difference between the desired and initially
measured orbit. We can now explitely write Eq. 180 in matrix form

x1 − x̂1

x2 − x̂2
...

xN − x̂N

 =


C11

12 C12
12 . . . C1M

12

C21
12 C22

12 . . . C2M
12

...
...

. . .
...

CN1
12 CN2

12 . . . CNM
12




θ1

θ2
...
θM

 . (181)
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Since the BPM usually have a finite measurement resolution σi which may be
different from BPM to BPM we might want to trust the better BPM with smaller
σi (say 10µm) more than those with worse resolution of 100µm. This we can
incorporate into the matrix inversion by dividing the corresponding rows by the
respective BPM resolution, thereby giving the proper weight to the corresponding
equations. Explicitely rewriting Eq. 181 in this case reads

(x1 − x̂1)/σ1

(x2 − x̂2)/σ2
...

(xN − x̂N)/σN

 =


C11

12/σ1 C12
12/σ1 . . . C1M

12 /σ1

C21
12/σ2 C22

12/σ2 . . . C2M
12 /σ2

...
...

. . .
...

CN1
12 /σN CN2

12 /σN . . . CNM
12 /σN




θ1

θ2
...
θM

 . (182)

or somewhat loosely ~x − ~̂x = A~θ where the quantities with an arrow denote the
respective column vectors and A denotes the matrix with the response coefficients
in Eq. 181. The way we formulated the problem was backwards: we assumed
knowledge of the correctors and deduced the change in the BPM readings. In
practice we normally want to know the converse: we want to determine the
corrector excitations θj that minimizes the BPM readings xi− x̂i. To this end we
observe that we just have to invert the matrix A. If the number of BPM N and
correctors M is equal we indeed can determine the required corrector excitations
θj from

~θ = −A−1(~x− ~̂x) (183)

where the minus sign makes sure that adding this zeroes the orbit. Here we
made the simplifying assumption that the matrix is square (N = M) and non-
degenerate, but this is not always the case.

First we treat the case where there are more BPM to measure the orbit than
steering magnets to correct it which is often the case, because saving steerers saves
magnets and power supplies and therefore money. We thus have N > M and
there are more rows than columns. Imagine an accelerator with only one steering
magnet. In that case the matrix a would be a N × 1 matrix or a column vector.
Having more constraints, which is what the BPM readings are, than unknowns,
which is what the corrector excitations are, we have an over-determined linear
system, which we can solve in the least-square sense, which means that we try to
determine ~θ such that the rms orbit

∑
i(x − x̂)2/N is minimized. In ref. [26] we

find that solving the linear least squares problem ∆~x = A~θ is done by

~θ = (ATA)−1AT ∆~x . (184)

where AT is the transpose of matrix A. This so-called pseudo-inverse can be
calculated by normal matrix inversion provided that the matrix ATA is non-
degenerate. In the case of non-degeneracy the inverse can still be calculated
using Singular Value Decomposition (SVD) which is also used if there are less
BPM than correctors. This case we treat in the next paragraph.
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If we have less BPM than correctors the matrix A in Eq. 181 has more columns
than rows. Imagine a single BPM and many correctors, in that case the matrix a
is one long row vector, which cannot be ’inverted’ in the normal sense, because it
is highly degenerate. In such cases SVD comes to the rescue, because it constructs
a set of basis vectors for the subspace of the matrix A that is degenerate and also
that for the non-degenerate subspace. The trick is now to project out the non-
degenerate part of the matrix and invert only that part and simultaneously set
the projection of the solution vector ~θ onto the degenerate subspace to zero. The
effect of this somewhat bizarre operation is that the rms of the orbit is minimized
using the corrector excitation ~θ with the minimum rms, i.e.

∑
j θ

2
j is minimum

while simultaneously minimizing the orbit on the BPMs. The interested reader
is referred to Ref. [26] for the very readable discussion of SVD. I will make this
paragraph more explcit in a later version.

Another often used algorithm to ’invert’ the matrix A is the MICADO algo-
rithm, which is especially suitable for rings with many (up to several hundreds,
like LEP) BPM and correctors. MICADO operates according to the following
principle. First pick the corrector that improves the orbit the most and correct.
Then repeat this procedure with the remaining orbit and correctors. This ap-
pears like a lot of searching, but the algorithm can be very efficiently coded using
Householder-transformations of the matrix A [27].

In synchrotron radiation sources the beam also has to be stabilized on the
monochromator used to select the photon energy of the emitted synchrotron
radiation. Often the position of this signal on the can be monitored and be used
as a virtual BPM. It can be included in beam optics codes that are used for
modelling and correcting accelerators by using a trick due to Martin Lee from
SLAC and introduce a module with the transfer-matrices

(L)(BPM)(−L) (185)

at the source point of the synchrotron radiation in the bending or undulator
magnet. Here (L) denotes the transfer matrix for a drift space and (BPM)
resulting in a measurement value xi of the position and (−L) is the inverse
transfer-matrix transporting the ’virtual’ beam back onto the orbit.

There are many articles covering orbit correction and ref. [28] is a good start-
ing point for further studies.

8.2 Bumps and Knobs and Rock & Roll

Occasionally particular displacement or angle of the orbit at a special point is re-
quired without affecting other parameters. An examples is changing the position
of the beam at the interaction point without changing the angle. This is used to
bring colliding beams that initially miss each other into collision as isillustrated
in Fig. 64. Another example is the steering of the synchrotron radiation light
onto a monochromator as is shown in Fig. 65.
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Figure 64: Two steering dipole correctors are used to change the position of the
beam at the IP without affecting the angle.

Figure 65: The angle of the source point of the emission of synchrotron radiation
must be adjusted such that the radiation hits the monochromator at the end of
an often long synchrotron radiation beam line.

Often it is desirbale to only affect the orbit locally, meaning that a certain
position of the orbit is steered to, but the total effect of the perturbation should
be kept as local as possible. This brings us to the concept of a local bump which
is illustrated in Fig. 66. The first two steerers, labelled 1 and 2, at the right will
adjust the orbit to achieve displacement and angle x0 and x′0, at a center point.
The following two correctors 3 and 4 will undo the changes of the orbit. This
type of local orbit bump is often encountered close to an injection septum or a
collimator. Even the entire orbit of a ring or a beam line can be steered using a
sequence of such bumps.

To calculate the excitation of the steerers for such a bump is straight-forward.
We denote the kick angles of the steerers by θj and the transfer matrix between
corrector j and the center point R0j and to the final point Rfj. Then we write
down how every corrector affects the position and angle at the respective points

Figure 66: Illustration of a bump with four dipoles.
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where we thus formulate as constraints in Eq. 187
x0

x′0
xf = 0
x′f = 0

 =


R01

12 R02
12 0 0

R01
22 R02

22 0 0

Rf1
12 Rf2

12 Rf3
12 Rf4

12

Rf1
22 Rf2

22 Rf3
22 Rf4

22



θ1

θ2

θ3

θ3

 . (186)

The interpretation of this equation is very intuitive. Consider the first equation,
that defines the upper row of the matrix appearing in Eq. 187. We want to have
x0 at the center point and only the upstream correctors 1 and 2 can affect it.
The next line does the same thing for the angle x′0 at the center point. The third
and fourth row come from the requirement that the position and angle at the end
of the bump should be zero, colloquially called closing the bump. Here all four
correctors are involved.

This set of equations triagonal and the upper two equations can be solved by
themselves by inverting a 2×2 matrix. The thus found angles θ1 and θ2 can then
be inserted in the two lower equations leading to another linear system for the
unknowns θ3 and θ4 that can be solved by inverting another 2× 2 matrix.

To illustrate the procedure we assume that involved transfer matrices are
driftspaces and that all elements are l=1m apart from another. Eq. 187 for this
simplified example then reads

x0

x′0
0
0

 =


2l l 0 0
1 1 0 0
4l 3l l 0
1 1 1 1



θ1

θ2

θ3

θ3

 . (187)

Solving the first two equations we find

θ1 = x0/l − x′0 and θ2 = −x0/l + 2x′0 (188)

and inserting in the last two equations yields(
0
0

)
=

(
x0 + 2lx′0 + lθ3

x′0 + θ3 + θ4

)
(189)

which is trivially solved for θ3 and θ4. We can summarize all results in the
following matrix form 

θ1

θ2

θ3

θ3

 =


1/l −1

−1/l 2
−1/l −2

1/l 1


(
x0

x′0

)
(190)

Note that this is a prescription of how to change the steerer excitations θj in order
to achieve the desired bump amplitude x0 and x′0. This is an example of a so-
called multi-knob, which is a prescription for moving a group of power summplies
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! ===============================================

! SCNFF IP: ELECTRON X POSITION KNOB

! USING A3X AND A6X NORTH

! UNITS: BDES[KG-M]/MICROMETER

!

SET/LABEL=EXIP36

SET/SENS=64

SET/NOWARN

DEF/DEV=(XCOR,FF11,5170,BDES)/COEF= -29.563E-6 ! A6X NORTH

DEF/DEV=(XCOR,FB69, 520,BDES)/COEF= 309.008E-6 ! A3X NORTH

Figure 67: A multiknob used in the SLC final focus to change the horizontal
position of the electron beam at the IP.

or other devices in a coordinated fashion in order to achieve some objective. If
we wanted for example a knob that moves the position x0 without affecting the
angle x′0, we just take the first column of the matrix in Eq. 190.

These type multi-knobs are often found in accelerators and we show an ex-
ample that was used in the SLC final focus in Fig. 67.

8.3 Tune

The tune of a circular accelerator is one of the most important parameters for the
stability of operating the ring and therefore needs to be adjusted to values found
to be advantageous. Apart from the orbit the tune is probably the most adjusted
parameter. To correct it, we must, however, first measure it. This is usually
done by feeding the analog signal from the difference channel of a beam position
monitor to a spectrum analyzer. Alternatively, if available, one can use a fast
turn-by-turn position measurement system that records the position of the beam
for every turn and perform a Fourier analysis by e.g. FFT, of the thus obtained
time series. Especially in rings with small circumference and consequently high
revolution frequency turn-by-turn systems are difficult an/or expensive to build.
In some accelerators systems based on PLLs are in use. The horizontal tune can
be obtained from the horizontal positions of the BPMs and the vertical tune from
the vertical positions.

We need to digress on the measurement procedure for a moment and consider
a single BPM that is used to measure the tune by recording the turn-by-turn po-
sition signals and calculating the FFT. Since the BPM is at a fixed position in the
ring, it cannot obeserve the integer number of full oscillations between successive
passes of the beam and consequently only the fractional part of the tune is mea-
sured. This is also obvious from the FFT which results in a spectrum between 0
and 0.5 if only the modulus is displayed. Consequently only the fractional part
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of Q, denoted by [Q] or that of 1−Q is determined in this way. Normally Q and
1−Q can be distinguished by changing a horizontally focussing quadrupole and
observing the change of the tune, which should increase for increasing quadrupole
excitation.

Typical sources of tune errors are the fringe fields of magnets that were not
properly taken into account in the modelling of the accelerator or power supply
calibration errors. Even swapped cables resulting in quadrupoles with wrong
polarity are not unheard of.

We now assume that the have a system that returns the measured fractional
tunes Qx and Qy and two quadrupoles with a power supply that allows indepen-
dent adjustment of their excitation. For simplicity we assume that they are thin
quadrupoles with focal strength f1 and f2. The effect of quadrupole 1 on the
tunes is given by

∆Qx =
β1x

4πf1

and ∆Qy = − β1y

4πf1

(191)

where beta1x and β1y are the horizontal and vertical beta function at the location
of quadrupole 1 and corresponding equations for quadrupole 2. Note the minus
sign in the second equation, because the quadrupole is focussing in one plane and
defocussing in the other. If the changes are small the tune changes from the two
quadrupoles can be simply added with the result

∆Qx =
β1x

4πf1

+
β2x

4πf2

∆Qy = − β1y

4πf1

− β2y

4πf2

(192)

which can be written in matrix form(
∆Qx

∆Qy

)
=

1

4π

(
β1x β2x

β1y β2y

)(
1/f1

1/f2

)
(193)

and the desired correction strengths 1/fi can be obtained by inverting the 2× 2
matrix in the previous equation which yields the result(

1/f1

1/f2

)
=

4π

β1xβ2y − β2xβ1y

(
β2y −β2x

−β1y β1x

)(
∆Qx

∆Qy

)
. (194)

Selecting the negative of the calculated 1/fi will allow to correct the measured
∆Q, provided the changes in the tune are small. If the measured tune errors are
large, the correction can be iterated a few times and normally converges, unless
the beta-functions are completely changed in the process.

8.4 Coupling

In most parts of this note we discussed the un-coupled motion in an accelerator,
where the horizontal and vertical betatron oscillations are independent of one
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Figure 68: Rotated Quadrupole.

another. This independence is normally perturbed by quadrupoles with a roll
error caused by a quadrupole tilted in the x− y−plane. An example is shown in
Fig. 68 The force component of a horizontally offset particle has both a horizontal
and a vertical component. A horizontal offset thus causes a vertical kick and
couples the horizontal and vertical betatron motion. Other sources of coupling are
solenoidal fields which are often part of the detectors in high energy accelerators
or electron coolers in nuclear physics storage rings.

A further source of betatron coupling is a misaligned vertical orbit in strong
sextupole magnets which often appear in synchrotron light sources for the com-
pensation of the chromaticity. The kick that a particle receives in a sextupole is
quadratic in the transverse coordinates and is given by Eq. 169 with n = 2. A
vertically misaligned orbit is described by y → y + ∆y and inserting in Eq. 169
we obtain

∆x′ + i∆y′ =
k2L

2
(x+ i(y + ∆y))2

=
k2L

2

[
(x+ iy)2 + 2∆y(ix− y)−∆y2

]
. (195)

The imaginary part of the right hand side describes the vertical kick and we
observe a contribution proportional to k2L∆yx of the vertical (imaginary) part.
This part describes a vertical kick from a horizontally displaced particle, which
is just what coupling is.

After having discussed the most common causes of coupling we need to con-
sider why coupling is unwanted or even dangerous. One reason is that in an un-
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Figure 69: Closest tune.

coupled lattice only horizontal and vertical lines in the tune diagram can appear.
In a coupled lattice resonances represented by diagonals in the tune diagram can
be excited and careful counting shows that the number of lines thereby doubles
and the regions between low-order resonances drastically shrinks. A second rea-
son why coupling is often unwated is that correction of orbit and tune becomes
more complicated. Consider orbit correction in an uncoupled accelerator where
correction involves the inversion of the horizontal and the vertical resonse matrix
independently. In a coupled accelerator only a single matrix with the combined
response of all correctors and all BPM, both horizontal and vertical must be
inverted. But this matrix is twice the size and inversion becomes numerically
more unstable, especially if the response matrix is only known to finite precision.
Moreover in a coupled lattice the notion of betafunction is not uniquely defined
and the straightforward tune calculation method discussed in the previous section
only works approximately.

In synchrotron light sources coupling will define the vertical emittance which
should ideally be as small as possible to minimize the vertical source size of the
emitted synchrotron radiation. In an earlier section we found that the horizontal
emittance is produced by the emission of synchrotron radiation in dipole magnets
if the dispersion function is non-zero in the dipoles. Thus only horizontal emit-
tance is generated naturally in a perfect ring, but coupling will transfer some of
this emittance, which can be visualized as transverse oscillation energy, into the
vertical plane, thereby increasing the vertical emittance. Normally all magnets
are carefully aligned initially and special attention is given to the vertical orbit
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Figure 70: Skew quadrupole.

in light sources to minimize this effect.
Coupling is diagnosed most often in the so-called closest-tune method, when

the (fractional) horizonal and vertical tune are brought close to each other by
tuning the normal quadrupoles suitably. If plotting the tunes as a function of
the excitation of the normal quadrupoles we find that for an uncoupled ring the
two tune lines cross each other, but for a coupled ring the tunes ’repel’ each
other, as is illustrated in Fig. 69. The horizontal axis is proportional to the
normal quadrupole excitation and as it is changed the betatron frequencies that
are plotted on the vertical axis change. Obviously they cannot cross in this case,
but in the case of an uncoupled lattice they were able to cross. Therefore, one can
experimentally minimize the coupling by exciting correction skew-quadrupoles or
solenoids in such a way as to allow the tunes to get closer in a closest-tune scan.

Another way to minimize the tune is to change a horizontal steering magnet
and observe a vertical orbit change on beam position monitors, though this is a
rather crude measurement.

Coupling can be corrected by introducing suitable magnets that cause cou-
pling by themselves and exciting them in a way as to cancel the coupling gen-
erated in unknown or un-wanted ways. A cooler-solenoid is often compensated
by a nearby so-called anti-solenoid that has the same integrated excitation

∫
Bds

as the primary solenoid. Strong Detector solenoids are often corrected by skew
quadrupoles which are quadrupoles rotated by 45 degrees around their longitu-
dinal axis as is shown in Fig. 70. Placing four skew quadrupoles in the ring will
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allow full compensation of all coupling degrees of freedom.

8.5 Chromaticity

The chromaticity was already discussed earlier and is caused by the energy de-
pendence of the focussing strength of the quadrupoles. Higher energy particles
have larger foacl lengths and therefore will make the tune energy dependent and
will spear out the working point of the accelerator in teh tune diagram. Moreover
it will affect the growth rate of instabilities. In a linear collider th chromaticity
will cause a dilution of the spot size and counteracts the demand for high lumi-
nosities which requires small spot sizes at the interaction point. The correction
of the chromaticity is typically done by sextupoles placed at dispersive locations
which will create an effective momentum dependent focussing force, that can be
tuned to counteract the naturally occuring chromaticity in the quadrupoles.

8.6 Beta function measurements

The beata functions play such a central role in the design of an accelerator that
one often wants to directly measure them in order to verify that the magnet
lattice really behaves as expected. A simple way to measure the beta functions
is to utilize

∆Q =
β

4π∆f
=

∆k1lβ

4π
(196)

where β is the average beta function inside a quadrupole of length l whose ex-
citation k1 is changed by a small amount ∆k1. Observing the tune change as
a function of the excitation change of the quadrupole allows the calculation of
the beta function inside the manipulated quadrupole. Often several quadrupoles
are powered in series by a single power supply which prevents the independent
change of a quadrupole and only the sum of the beta functions of all quadrupoles
can be determined. In order to overcome this limitation the quadrupoles in some
rings have so-called shunt resistor coupled in parallel that diverts some of the
current through the resistor, thereby lowering the current flowing through the
quadrupole by a known amount allowing the determination of the quadrupole at
the location of a single quadrupole only.

Shunting the quadrupoles has a second very attractive feature: It allows the
determination of the misalignmenty of the quadrupole, because a misaligned
quadrupole, whose excitation is changed will give the particles a kick proportional
to ∆k1l∆x if the misalignment ∆x is horizontal. The kick can be measured by
the beam position system and knowing the quadrupole excitation change ∆k1

will permit the calculation of the misalignment ∆x. Of course the vertical mis-
alignment of the quadrupole can be determined in the same way by looking at
the vertical orbit.
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8.7 Response Matrix

In order to obtain detailed information about quadrupole gradients, BPM, orbit
correctors, and other parameters we carefully compare the BPM-corrector re-
sponse matrix, measured by varying a corrector and observing the changing BPM
signal, with model predictions from MAD[8] or other beam optics modeling pro-
grams. The response coefficients are calculated by propagating the closed orbit
change due to a corrector to a BPM. This leads to Ĉij

12/34 = [Rij(1−Rjj)−1]12/34,

where index 12 refers to the horizontal and 34 to the vertical plane. Rij is the
transfer matrix between the corrector and the BPM and Rjj is the full-turn
matrix starting after the corrector location. In addition, a horizontal corrector
kick Θj changes the length of the closed orbit by DjΘj, where Dj is the dis-
persion at the corrector. In the presence of RF the beam’s energy changes by
∆p/p = −DjΘj/(α− 1/γ2)C in order to keep the revolution frequency constant,
where α is the momentum compaction factor, γ is the normalized energy, and C
is the circumference. This energy shift will be visible at BPM i as an additional
orbit shift, proportional to the dispersion Di at the BPM. Thus, the complete
response is given by

Cij
12 =

[
Rij(1−Rjj)−1

]
12
− DiDj

(α− 1/γ2)C
. (197)

Clearly the second term, which is often ignored, will be important in some ac-
celerators, particularly near transition, where 1γ2 approaches the momentum
compaction factor α. In the response matrix approach we can hope to reach very
high accuracies due to the large number measurements, which is on the order of
2×Nbpm×Ncor and can be very large, but only fitting for a number of parameters
on the order of 2× (Nbpm +Ncor) +Nquad. In such a high precision measurement
systematic errors in the response matrix would appear if neglecting the term with
the dispersion in Eq. 197. These systematic errors are easily avoided by including
the dispersive term.

The analysis is done by two codes, CALIF[33] and LOCO[34]. CALIF sets up
equations that relate the measured (C̄ij) and the model (Cij) response coefficients
in a Taylor-series

xiC̄ijyj = Cij +
∑
k

∂Cij

∂gk

δgk (198)

where xi is the BPM scale, yj is the corrector scale, and gk is the quadrupole
gradient error. The derivative can be calculated in differencing two MAD runs.
CALIF then does a linear fit to either {xi, δgk} while keeping yj fixed or to
{yj, δgk} while keeping xi fixed. This process is iterated while adjusting the
BPM resolution errors until the χ2/DOF is close to unity.

LOCO[34] fits for the deviations of the scales from unity ∆xi,∆yj, and the
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gradient errors δgk with measured BPM resolution error bars using

C̄ij = Cij +
∑
k

∂Cij

∂gk

δgk + Cij∆xi − Cijyj . (199)

As a further refinement LOCO also fits for the energy change from the correctors
due to the presence of RF. Equation 199 shows a global degeneracy between BPM
and corrector scale errors, which leads to a degenerate linear system, which can,
however, be solved using Singular Value Decomposition solvers[26]. Moreover,
note that gk can be any parameter, it need not necessarily be a gradient, but
could equally be the length of a drift space, offset in a sextupole or any other
parameter.

Equations 198 or 199 can be cast into a linear set of equations of the standard
form ~y = A~x, where ~y is based on measured data and ~x is the vector of parameters
to be found. The solution is simply ~x = (ATA)−1ATy, where (ATA)−1 is the
covariance matrix[26], containing the errors on the fitted parameters.

9 Instabilities

In the previous sections we treated the particles in an accelerator as indepen-
dent of each other, and ignored current dependent effects where particles within
the beam affect and possibly perturb their neighboring particles. One obvious
candidate of such forces are space-charge forces coming from the fact that all
particles within a beam have the same charge and therefore repel each other. For
low-intensity beams this will play only a minor role but as the beam current or
charge per beam increases the repulsion within the beam increases. In this sec-
tion we will discuss this and other similar effects where parts of the beam affect
other parts and often this type of interaction between parts of the beam leads
to instabilities. In some cases even to beam loss. The investigation of these in-
tensity dependent effects is often of very practical necessity, because these effects
limit the achievable storable beam current and therefore the performance of an
accelerator. This is particularly true for modern machines, so-called factories,
that are in use or planned to do experiments on nuclear or sub-nuclear reactions
with minute cross-sections and require large numbers of accelerated particles in
order to achieve useable count-rates in the experiments.

We start by looking at the simplest intensity dependent effect, the repulsion
between particles of equal charge within the same beam.

9.1 Space charge

Consider a round beam with radius a of constant charge density ρ. The electric
field ~E on a surface of radius r inside the beam can be calculated from Gauss’
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Figure 71: Electric field on the surface of a homogenously charged cyclider.

law by integrating Maxwell’s equations

1

ε0

∫
ρd3V =

∫
~∇ · ~Ed3V =

∫
~E · d2A . (200)

The first integral can be evaluated to yield πr2lρ/ε0 and the surface integral yields
2πrlE where E is the radial component of the electric field which evaluates to

E =
ρ

2ε0

r =
I

2πa2ε0βc
r (201)

where we expressed the chrage density ρ by the current I and the speed of the
particles βc which are related by I = ρπa2βc. We find that the force eE is linear
in the distance from the beam center r and repulsive due to the equal charge of
all involved particles.

All charged particles in the beam move with speed βc and therefore constitute
an electric current I that will create an azimuthal magnetic field B as given by
Ampere’s law. The current Ir inside the circle of radius r is Ir = Ir2/a2 and we
find for the magnetic field

B =
µ0I

2πa2
r =

I

2πε0c2a2
r . (202)

A particle moving at radius r will therefore experience the Lorenz force F = evB.
The direction of the the magnetic field can be determined from the right-hand rule
where the thumb denotes the source particle motion and the other fingers indicate
the direction of the magnetic field. The force that a probe-particle experiences
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can equally be determined by the other right-hand rule, namely that the thumb
denotes the direction of the probe particle and the index finger the direction of
the magnetic field. The diretion of the force is then given by the middle finger
which in this case points at the center of the source current. In summary we find
that the magnetic forces are attractive.

Adding the forces from the electric repulsion and the magnetic attraction we
find the total space charge force F to be

F =
eI

2πa2ε0βc
r − eIβc

2πε0c2a2
r =

eIr

2πa2ε0βc
(1− β2) =

eIr

2πa2ε0γ2βc
. (203)

Here we see very clearly that the electric and magnetic forces nearly cancel and
especially at high energy with large kinematic factor γ the direct space charge
force, as the force described in eq. 203 is called, is strongly suppressed by a factor
1/γ2. It therefore only plays a role in low-energy accelerators that operate at high
intensities.

Note that the direct space-charge force is repulsive and linear in the transverse
coordinate r. This will affect the motion of the particles within the beam but not
the center of gravity of the entire beam, because the center of the force coincides
with the center of the beam. This additional force behaves like a defocussing
quadrupole in both planes and will cause the tune of the particles to be reduced
by the amount

∆Qx,y = − r0N

2πεx,yβ2γ3
(204)

where r0 is the classical particle radius and εx,y is the emittance in the repsective
planes. It should be noted that the tune shift is not visible in the centroid motion
of the beam visible on BPM and is called an incoherent tune-shift as opposed to
a coherent tune-shift that were visible on the BPM.

The tune shift we discussed in the previous paragraphs was the direct space-
charge, because only the beam was involved. In earlier sections we, however,
found that the beam environment, and especially the vacuum chamber plays an
important role for the electro-magnetic fields generated by the beam which are,
amongst other things, also responsible for space-charge forces. In short, the beam
pipe will affect the space-charge forces and that is what we will investigate now.
We start by considering a beam with line density λ centered between two parallel
horizontal plates that represent the vacuum chamber on which the electric field
lines have to arrive purely parallel in order to satisfy the boundary conditions
on a perfectly conducting metallic surface. This is achieved by introducing a
hirarchy of image charges as shown in Fig. 72. Note that the bounadry condition
of the lower side of the upper wall is satisfied by the image charge at 2h. But
now we habe two charges that we have to compensate on the lower wall. This
is accomplished by introducing an additional image charge at −4h that assures
that the field lines emanating from the image charge at 2h is perpendicular on
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Figure 72: Image currents.

the lower wall. The same argument holds for the images charges at −2h and 4h.
Of course the charges at ±4h require compensating charges at ±6h and so forth.
We therefore arrive at an infinite sum of image charges with alternating polarity.
The electric field at a vertical distance y from the center of the beam can then
be calculated from

Ey =
∞∑

n=1

(−1)n λ

2πε0

(
1

2nh+ y
− 1

2nh− y

)
=

λ

4πε0h2

π2

12
y (205)

where we made use of
∑∞

n=1(−1)n/n2 = π2/12. Again we find a vertical force
linear in the distance from the center of the beam y that is, in fact, focussing
in te sense that is points back towards the center of the beam. The horizontal
component of the force can be found from div ~E = 0 and can be found to have
the opposite sign but equal magnitude. It is therefore defocussing.

The focussing and defocussing forces due to the image charges that the beam
induces in the wall lead to tune shifts, similar to the direct space charge forces.
Note, however, that a displaced beam will alter the image charges and thereby
the fields. In this way the beam as a whole can affect its own motion that will be
visible on BPMs. The physics behind space charge tune shifts was first discussed
by L. Laslett [36] and the relative magnitude of the contributions for various
beam pipe geometries is characterized by so-called Laslett-coefficients and the
respective tune shifts are called Laslett tune-shift.

9.2 Negative Mass Instability

The focussing and defocussing forces discussed affected the tune of the particles
and could lead particle losses if the tune was equal to a strong resonance, but no
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Figure 73: Calculation of the longitudinal field.

feed-back like instability occured. In this section we will now consider a simple
system with an unbunched (or coasting) beam in a circular accelerator, whose
line charge-density λ is perturbed by a small amount. We will see that this small
perturbation in the charge density will induce longitudinal electric fields that in
some cases reduces the initial perturbation and in other cases increases the initial
perturbation. The latter case then leads to an instability.

We consider a round beam of radius a in a circular beam pipe of radius b and
calculate the longitudinal electric field Es in the center of the beam by

Er =
λ

2πε0r
and Bφ = µ0λβc

2πr
for r ≥ a

Er =
λr

2πε0a2
and Bφ = µ0λβcr

2πa2 for r < a (206)

∮
~E · d~l =

∂

∂t

∫
~B · d ~A (207)

∮
~E · d~l = (Es − Ew)ds

+
λ(s+ ds)

2πε0

[∫ a

0

r

a2
dr +

∫ b

a

dr

r

]
− λ(s)

2πε0

[∫ a

0

r

a2
dr +

∫ b

a

dr

r

]

=

[
Es − Ew +

∂λ/∂s

4πε0

(1 + 2 ln(b/a))

]
ds (208)

9.3 Wake Fields and Impedances

bla
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9.4 Robinson Instability

bla

9.5 Microwave Instability

bla

10 Making Luminosity

bla

10.1 Beam-Target Interaction

bla

10.2 Beam-Beam Interaction

bla

11 Technical Components

bla

11.1 Particle Sources

bla

11.2 Vacuum System

bla

11.3 RF-systems

bla

11.4 Injection

bla

11.5 Electron Cooler

bla
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11.6 Stochastic Cooling

bla

12 Magnets

bla

12.1 Normal-conducting Magnets

bla

12.2 Super-conducting Magnets

bla

12.3 Permanent Magnets

bla

13 Synchrotron Radiation

bla

14 Radiation Protection

bla

15 Spin Dynamics

bla
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