

Particle Accelerators

Volker Ziemann

Department of Physics and Astronomy Uppsala University

Research Training course in Detector Technology Stockholm, Sept. 8, 2008

080908

Course Outline

- UPPSALA UNIVERSITET
 - Part 1: History and Basic Concepts
 - Why? -- e vs. p -- circular vs. linear -- luminosity
 - Part 2: Transverse Beam Dynamics
 - Ray tracing -- orbit -- emittance -- correction
 - Part 3: Diagnostics and Correction
 - Devices -- Methods
 - Part 4: Accelerator Subsystems
 - Sources -- RF -- Magnets -- Diagnostics
 - Part 5: LHC and CLIC/ILC
 - Requirements -- Implementation -- What's special?

Accelerator Timeline

UPPSALA UNIVERSITET

- 1897: Cathode ray tube \rightarrow next slide
- 1929: van-deGraaff, Cyclotron
- 1932: Cockroft-Walton
- 1940: Betatron
- 1950: Phase stability
- 1957: CERN-PS
- 1957: Cancer therapy with protons
- 1962: Stanford Linear Accelerator
- 1960s: 1G light sources
- 1971: ISR, first hadron collider
- 1976: SPS

- 1970s: electron and stochastic cooling
- 1978: Tevatron (1992 as collider)
- 1980: SppS
- 1989: LEP and SLC
- 1990s: 3G light sources
- 1992: HERA
- 1993: SSC cancelled
- 1990s: Factories (KEKB,PEPII,DaΦne)
- 2000: RHIC
- 2004: decision that ILC will be s.c.
- 2008: LHC

Cathode Ray Tube

- It's a TV, well nearly
- Karl Braun, 1897
- Evacuated tube
- Thermionic cathode
- Accelerating voltage
- Electric or magnetic deflection system
- Luminescent screen

Why high energies?

UPPSALA UNIVERSITET

- To measure something small requires something smaller.
 - long wavelength waves in water do not produce a diffraction pattern off a buoy.
 - short wavelength waves produce such a pattern
 - Interference
- de'Broglie and the wave-particle dualism

 $\lambda = h/p$, p = momentum of particle

Large particle momentum needed to discern small structures

 \rightarrow Accelerators

- Make the beam particles behave as "short wavelength light" to probe the substructure of atoms or nuclei.
- → Create sufficient energy density to create new particles.
- Emit synchrotron radiation for experiments in solid state physics or biology or material science

Electrons vs. Protons

- Electrons are
 - point-like \rightarrow precision, clean
 - light \rightarrow limited in energy
 - emit synchrotron radiation

$$\Delta E[\rm keV] = 88.5 \frac{E^4[\rm GeV]}{\rho[\rm m]}$$

- Protons are
 - 2000 times more heavy than electrons \rightarrow high energies, but large magnets are required
 - conglomerates of quarks and gluons → a lot happens in a collision and is more difficult to interpret and hadronization is not fully understood.

UNIVERSITET

Circular vs. Linear

- Linear accelerator
 - every acceleration structure is only used once, but few magnets needed
 - negligible synchrotron radiation for electrons
 - low bunch repetition rate (SLC: 120 Hz)
- Circular accelerators
 - recycle acceleration structures, but many magnets
 - synchrotron radiation losses
 - high bunch repetition rate (LHC: 11 kHz) \rightarrow luminosity
 - iterated systed \rightarrow beam stability more difficult

- Consider the energy available to create new particles
- Momentum is conserved and therefore there is energy in the center-of-mass motion.
- The available energy is $E_{CM}=\sqrt{m_b^2c^4+m_t^2c^4+2m_tc^2E_L}$
- In head on collisions all energy is available

Luminosity

UPPSALA UNIVERSITET

- Count rate in experiment is determined by the
 - cross section σ [barn = 10^{-24} cm²]
 - machine dependent properties \rightarrow Luminosity [1/cm² s]
- Luminosity for fixed targets
 - L = (number of target particles/cm²) times (number of beam particles/s)
- Luminosity for colliding beams (equal and gaussian)

$$\mathcal{L} = N_1 N_2 f_c \int d^2 x \rho_1(\vec{x}; \sigma_x, \sigma_y) \rho_2(\vec{x}; \bar{\sigma}_x, \bar{\sigma}_y)$$
$$= \frac{N_1 N_2 f_c}{2\pi \sqrt{(\sigma_x^2 + \bar{\sigma}_x^2)(\sigma_y^2 + \bar{\sigma}_y^2)}} = \frac{N_1 N_2 f_c}{4\pi \sigma_x \sigma_y}$$

LEP and LHC at CERN, Geneva

- Both in-under Switzerland and France
- crosses border 22000/s
- LHC starts operation this Wednesday

- **SPS** (Nobel prize for W discovery in 82) is used as injector
- LEP: e+e- collider with 27 km circumference and 100 GeV maximum energy per beam
- LEP was built in the 80s to invetigate the electro-weak theory, Z and W bosons
- Only 3 families
- Enormous s.r. losses up to 3 GeV per turn
- Superconducting accelerating cavities
- LHC: p-p-collider up to 7.7 TeV
- 1200 Superconducting Magnets with 8 T field cooled by 1.8 K Helium
- Four major experiments: CMS, LHCb, ALICE, ATLAS

UPPSALA UNIVERSITET

Stanford Linear Collider

- 3 km long e+e- linac with 3GHz RF
- Microwave and Vacuum technology allowed RF to reach up to 20 GeV in the 60s
- Upgraded to 50 GeV in 80s
- Revolutionary concept: Linear collider
- low rep rate of 120 Hz, but micron size spots at interaction point
- Much new diagnostics and control: beam-beam, feedback
- in operation until 200?
- Now injector for the B-factory based on PEP
- Linac for SLAC's X-ray free-electron laser LCLS and its precursor SPPS

Scandinavian Accelerators

UPPSALA UNIVERSITET

- Astrid in Århus, Denmark
 - Electrons and Ions, C_{60} , ELISE
- MAXLAB in Lund
 - Synchrotron light sources Max I through IV?
- Cryring in Stockholm (to FAIR eventually)
 - Atomic physics, dissociative recombination
- CELSIUS in Uppsala until 6/2005
 - Electron Cooler Ring for Nuclear Physics
- GW-cyclotron and then SPTC for cancer treatment in Uppsala
- Jyväskylä, Finland: 130 MeV cyclotron
 - Ions for Nuclear Physics and Biology

Synchrotron Light Sources

- Generate Photons
 - Short wavelength \rightarrow resolve small structures
 - High intensity \rightarrow short time and weak processes
 - Short pulses \rightarrow fast processes, down to fs
- 1st generation: Parasitic at HEP accelerators
- 2nd generation: add special magnets (wiigler and undulators
- 3rd generation: Dedicated accelerators
- 4th generation: Free-Electron Laser, often SASE

SPEAR at SLAC

- Late 60s: 3.5 GeV e+e- collider $\rightarrow J/\psi \rightarrow \frac{1}{2}$ Nobel prize for Burt Richter '74
- 270 m circumference
- Turned in 80s to synchrotron radiation research from bending magnets (1st generation light source)
- Added Undulators and Wigglers in the 90s (2nd generation light source
- Major rebuild in early 2000s turned it into a 3rd generation light source with a low emittance optics
- 4G: X-ray Free-Electron laser \rightarrow LCLS