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Guiding charged particle

● (Varying) electric field changes their energy
– determines the energy and arrival time

● Dipole magnets change their direction
– defines a reference trajectory

● Consider motion with respect to reference
– six-dimensional: x,x',y,y',τ,dp/p

– small deviation → linear oscillatory motion if stable

● Ensemble of particles → Distribution, Moments
● We will here focus on one transverse direction 
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Single Particles

● Reference trajectory is 
determined by  design and 
labelled by x

0
,y

0
,z

0

● and reference time t
0

● Describe position of a particle by 
how much it differs from the 
reference particle

● 3D space → 6D phase space of 
positions and momenta

● New coordinates:

– horizontal: x, x'=p
x
/p

0

– vertical: y, y'=p
y
/p

0

– longitudinal: τ, δ=Δp/p
0

● Subtle differences in MAD that 
vanish in ultra-relativistic limit.
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Tranverse Beam Optics
● So far we talked about the particles and how to 

represent them.

● Now we need to talk about the elements that make 
them go from one place to the other.

● Or affect the beam in any other way, for example 
accelerate, or do

● Nothing, a.k.a. beam pipe

● Magnets: quadrupoles, dipoles

● We will consider only one degree of freedom, i.e. 
horizontal x,x'

● Need stable situation → restoring force
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Drift Space

● Particles go on a straight line 
in the absence of external 
forces

● From right to left (will become 
clear in a minute)

● Map particle with initial 
coordinate x

1
 and x'

1
 to final 

coordinates x
2
 and x'

2

● Linear set of equations

● Equivalent for vertical y, y'

● Write this in matrix form

● Concatenation of two drift 
spaces works, it's a matrix 
multiplication, try it!
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Thin Quadrupole
● Similar to an optical lens

● Twice the distance gets twice 
the deflection such that both 
rays make it through the focus

● Linear restoring force

● Requires linearly rising 
magnetic field (turn head to left) 
→ linear again

● Transfer matrix maps input x
1
 

and x'
1
 to output coordinates 

x
2
 and x

2
'

● Parallel rays (x
1
,0) going 

through thin quad and drift of 
length f go through zero, 
independent of x

1
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Quadrupoles, both planes

● Quads focus in one plane, but 
defocus in the other

● A consequence of Maxwell's 
equations dB

y
/dx = dB

x
/dy

● The 4 x 4 matrix therefore 
looks like
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Beamlines and Rings
● Now we have the most important elements of an 

accelerator: dipoles, drifts and quadrupoles.
● There is a fundamental difference between 

beamlines and rings
– Beamlines: initial value problem

● transient problem

– Rings: periodic boundary condition
● equilibrium (which might not exist)
● The beam bites its tail

– We will stick to periodic systems (rings)
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FODO lattice

● Consider straight beamline with alternating drifts and quads:         
        

                    

● Represent by a transfer matrix 

● Multiplying up all matrices yields
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Particle motion in FODO

● Assume that we have an infinite sequence of 
FODO cells → periodic boundary conditions

● Use L = 1 m, f = ± 1 m.  
● Start at x=0.01 m, x'=0
● Iterate 100 times
● Observe x and x' in QF
● Center of first straight
● Poincare map
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Betatron Oscillations
● Unwind the transverse motion of 

a single particle along s → 
oscillations

● called betatron oscillations

● If plotted modulo cell length, we 
observe that the trajectory of a 
single particle has an envelope

● remember β as the maximum 
excursion at a given location s

● Envelope is given by β(s)

● Action variable J scales 
amplitude, but not shape
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Parametrizing the Transfer matrix

● Observation:
– Motion is oscillatory → rotation

– Matrices have unit determinant → 3 parameters

– Two parameters for 'shape'

● Rotation matrix describes a circle and α, β 
describe how it is deformed into an ellipse

● By construction the same α, β as used before

Periodic !
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Calculations for FODO

● Try out the parametrization for periodic FODO

● Sum of diagonal elements
● Use 1-cosμ = 2 sin2(μ/2) 
● From the 12 element
● Difference of diagonal elements: α=0
● Can calculate μ, α, β from transfer matrix!
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Tune
● Imagine having calculated the transfer matrix for 

and arbitrary ring
● and do the trick from the slide before
● μ is the phase advance for one turn
● Q=μ/2π is the number of oscillations per turn
● and is called tune of the ring

● Q
x
: horizontal, Q

y
: vertical

● The tune Q is independent of where we start 
calculating the transfer matrix 
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Why are beta-functions useful?

● They give an indication where the particle 
amplitude is large → envelope 

● They tell where the beam is sensitive to 
perturbations
– use the parametrization in (#)

– calculate R
12

 which tells you the response of the 

particle position x at (2) to a kick θ at (1)

– x(at 2) = R
12

 θ(at 1)  

– and   
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Stability

● Observe that the tune is calculated from the sum 
of the diagonal elements of the transfer matrix

●  2 cos(2πQ) = M
11

 + M
22

 = Tr(M)

● This can actually fail if Tr(M) > 2 or < -2
● an constitutes the limit of stability
● Lesson: You can place your quadrupoles in a 

stupid way such that no stable operation is 
possible.
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The Beam or Sigma-matrix

● So far, we mostly discussed the magnets setup, 
the lattice and single particle motion

● Now we have a look at the beam as a ensemble 
om many particles

● Determine how the moments of a distribution 
propagate through a beamline or ring

● Consider transfer matrix R
ij
 and state vector of 

individual particle x
i
 where i,j is 2,4,6, depending 

on what dynamics we discuss
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Propagating Moments 1

● Single particle is mapped by 
● The first moment is mapped according to

● First Moment or center-of-gravity maps just like 
a single particle.
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Propagating Moments 2
● Central second moment (COM removed) is

● For simplicity use X
i
=0, then σ

ij
 propagates like

● or in matrix form 
● Theory behind TRANSPORT and other codes
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Emittance and Beam beta-function
● Take the determinant of 

● The determinant of the sigma-matrix is constant
● Let's call it emittance squared 
● Sigma matrix is 2x2 and symmmetric → three 

independent parameters, choose ε, α, β, such 
that

● Why is this useful? What is the relation of α, β 
to the previously defined quantities?
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Dispersion

The Pink Floyd effect
● Dipoles deflect particles 

with different energies by 
a dfifferent angle

● Sorting according to dp/p
● Spectrometer-function



070330 Transverse Beam Optics 2 22

Chromaticity

● Quadrupole focusing is 
energy dependent

● higher energy larger focal 
length f

● quadrupole error kδ

● Beam parameters 
become energy 
dependent

– Tune

– Beam size
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Example: LHC

● Arc cell, FODO

● IR1,5: ATLAS, CMS
– injection, collision

Tune vs. dp/p
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Summary

● Beta functions all over the place
– unique in a circular or periodic systems

– appears in parametrization of the transfer matrix

– appears in parametrization of the sigma matrix

– describes beam size  

– describes the envelope of the single particle motion 
and the maximum amplitude.

– describes sensitivity to perturbations

● Courant-Snyder action variable J: single particle 
● Emittance: rms property of the beam


