

UPPSALA UNIVERSITET

Particle Accelerators: Transverse Beam Dynamics

Volker Ziemann

Department of Physics and Astronomy Uppsala University

Research Training course in Detector Technology Stockholm, Sept. 8, 2008

V. Ziemann, PA2: Transverse Dynamics

Guiding charged particle

- (Varying) electric field changes their energy
 - determines the energy and arrival time
- Dipole magnets change their direction
 - defines a reference trajectory
- Consider motion with respect to reference
 - six-dimensional: x,x',y,y',τ,dp/p
 - small deviation \rightarrow linear oscillatory motion *if stable*
- Ensemble of particles \rightarrow Distribution, Moments
- We will here focus on one transverse direction

Single Particles

- Reference trajectory is determined by design and labelled by x₀,y₀,z₀
- and reference time t_o

- Describe position of a particle by how much it differs from the reference particle
- 3D space \rightarrow 6D phase space of positions and momenta
- New coordinates:
 - horizontal: x, x'= p_x/p_0
 - vertical: y, y'= p_y/p_0
 - longitudinal: τ, $\delta = \Delta p/p_0$
- Subtle differences in MAD that vanish in ultra-relativistic limit.

UNIVERSITET

Tranverse Beam Optics

- So far we talked about the particles and how to represent them.
- Now we need to talk about the elements that make them go from one place to the other.
- Or affect the beam in any other way, for example accelerate, or do
- Nothing, a.k.a. beam pipe
- Magnets: quadrupoles, dipoles
- We will consider only one degree of freedom, i.e. horizontal *x*,*x*′
- Need stable situation \rightarrow restoring force

Drift Space

- Particles go on a straight line in the absence of external forces
- From right to left (will become clear in a minute)
- Map particle with initial coordinate x₁ and x'₁ to final coordinates x₂ and x'₂

$$x_2 = x_1 + Lx'_1$$

 $x'_2 = x'_1$

- Linear set of equations
- Equivalent for vertical y, y'
- Write this in matrix form

$$\left(\begin{array}{c} x_2 \\ x_2' \end{array}\right) = \left(\begin{array}{cc} 1 & L \\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_1' \end{array}\right)$$

 Concatenation of two drift spaces works, it's a matrix multiplication, try it!

Thin Quadrupole

- Similar to an optical lens
- Twice the distance gets twice the deflection such that both rays make it through the focus
- Linear restoring force
- Requires linearly rising magnetic field (turn head to left)
 → linear again

- Transfer matrix maps input x₁ and x'₁ to output coordinates
 x₂ and x₂'
- Parallel rays (x₁,0) going through thin quad and drift of length *f* go through zero, independent of x₁

$$\left(\begin{array}{cc} 1 & 0 \\ -\frac{1}{f} & 1 \end{array}\right)$$

V. Ziemann, PA2: Transverse Dynamics

Quadrupoles, both planes

UPPSALA UNIVERSITET

- Quads focus in one plane, but defocus in the other
- A consequence of Maxwell's equations $dB_y/dx = dB_x/dy$ $\nabla \times \vec{B} = 0$
- The 4 x 4 matrix therefore looks like

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ -\frac{1}{f} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 1 \end{array}\right)$$

UPPSALA UNIVERSITET

Beamlines and Rings

- Now we have the most important elements of an accelerator: dipoles, drifts and quadrupoles.
- There is a fundamental difference between beamlines and rings
 - Beamlines: initial value problem
 - transient problem
 - Rings: periodic boundary condition
 - equilibrium (which might not exist)
 - The beam bites its tail
 - We will stick to periodic systems (rings)

FODO lattice

• Consider straight beamline with alternating drifts and quads:

• Represent by a transfer matrix

$$M = \begin{pmatrix} 1 & 0 \\ -1/2f & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/2f & 1 \end{pmatrix}$$

• Multiplying up all matrices yields

$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L + \frac{L^2}{4f} \\ -\frac{1}{4f^2} + \frac{L^2}{16f^3} & 1 - \frac{L^2}{8f^2} \end{pmatrix}$$

080908

V. Ziemann, PA2: Transverse Dynamics

Particle motion in FODO

- Assume that we have an infinite sequence of FODO cells \rightarrow periodic boundary conditions
- Use L = 1 m, f = ± 1 m.
- Start at x=0.01 m, x'=0
- Iterate 100 times
- Observe x and x' in QF
- Center of first straight
- Poincare map

UPPSALA

Betatron Oscillations

- Unwind the transverse motion of a single particle along s → oscillations
- called betatron oscillations
- If plotted modulo cell length, we observe that the trajectory of a single particle has an envelope
- remember β as the maximum excursion at a given location s
- Envelope is given by $\beta(s)$
- Action variable J scales amplitude, but not shape

Parametrizing the Transfer matrix

UPPSALA UNIVERSITET

- Observation:
 - Motion is oscillatory \rightarrow rotation
 - Matrices have unit determinant \rightarrow 3 parameters
 - Two parameters for 'shape' $M = \begin{pmatrix} \sqrt{\beta} & 0\\ -\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}} \end{pmatrix} \begin{pmatrix} \cos \mu & \sin \mu\\ -\sin \mu & \cos \mu \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{\beta}} & 0\\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta} \end{pmatrix}$ $= \begin{pmatrix} \cos \mu + \alpha \sin \mu & \beta \sin \mu\\ -\frac{1+\alpha^2}{\beta} \sin \mu & \cos \mu - \alpha \sin \mu \end{pmatrix}.$ Periodic !
- Rotation matrix describes a circle and $\alpha,\,\beta$ describe how it is deformed into an ellipse
- By construction the same $\alpha,\,\beta$ as used before

Calculations for FODO

Try out the parametrization for periodic FODO

$$\begin{pmatrix} \cos\mu + \alpha \sin\mu & \beta \sin\mu \\ -\frac{1+\alpha^2}{\beta}\sin\mu & \cos\mu - \alpha \sin\mu \end{pmatrix} = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L + \frac{L^2}{4f} \\ -\frac{1}{4f^2} + \frac{L^2}{16f^3} & 1 - \frac{L^2}{8f^2} \end{pmatrix}$$

- Sum of diagonal elements
- Use 1-cos μ = 2 sin²(μ /2)
- From the 12 element
- $\sin(\mu/2) = \frac{L}{4f}$ $\beta = L \frac{1 + L/4f}{\sin \mu} = L \frac{1 + \sin(\mu/2)}{\sin \mu}$

 $\cos\mu = 1 - \frac{L^2}{8f^2}$

- Difference of diagonal elements: $\alpha=0$
- Can calculate μ , α , β from transfer matrix!

Tune

UPPSALA UNIVERSITET

- Imagine having calculated the transfer matrix for and arbitrary ring
- and do the trick from the slide before
- µ is the phase advance for one turn
- $Q=\mu/2\pi$ is the number of oscillations per turn
- and is called tune of the ring
- Q_x: horizontal, Q_y: vertical
- The tune Q is independent of where we start calculating the transfer matrix

Why are beta-functions useful?

- They give an indication where the particle amplitude is large $\rightarrow \textbf{envelope}$
- They tell where the beam is **sensitive** to perturbations
 - use the parametrization in (#)
 - calculate R_{12} which tells you the response of the particle position x at (2) to a kick θ at (1)

$$- x(at 2) = R_{12} \theta(at 1)$$

- and $R_{12} = \sqrt{\beta_1 \beta_2} \sin \mu$

Stability

- Observe that the tune is calculated from the sum of the diagonal elements of the transfer matrix
- $2\cos(2\pi Q) = M_{11} + M_{22} = Tr(M)$
- This can actually fail if Tr(M) > 2 or < -2
- an constitutes the limit of stability
- Lesson: You can place your quadrupoles in a stupid way such that no stable operation is possible.

The Beam or Sigma-matrix

- So far, we mostly discussed the magnets setup, the lattice and single particle motion
- Now we have a look at the beam as a ensemble om many particles
- Determine how the moments of a distribution propagate through a beamline or ring
- Consider transfer matrix R_{ij} and state vector of individual particle x_i where i,j is 2,4,6, depending on what dynamics we discuss

Propagating Moments 1

Single particle is mapped by

$$\bar{x}_i = \sum_{j=1}^n R_{ij} x_j$$

The first moment is mapped according to

$$\bar{X}_i = \langle \bar{x}_i \rangle = \langle \sum_{j=1}^n R_{ij} x_j \rangle = \sum_{j=1}^n R_{ij} \langle x_j \rangle$$
$$= \sum_{j=1}^n R_{ij} X_j$$

• First Moment or center-of-gravity maps just like a single particle.

UNIVERSITET

Propagating Moments 2

Central second moment (COM removed) is

$$\sigma_{ij} = \langle (x_i - X_i)(x_j - X_j) \rangle$$

• For simplicity use $X_i = 0$, then σ_{ii} propagates like

$$\bar{\sigma}_{ij} = \langle \bar{x}_i \bar{x}_j \rangle = \langle \sum_{k=1}^n R_{ik} x_k \sum_{l=1}^n R_{jl} x_l \rangle = \sum_{k=1}^n R_{ik} \sum_{l=1}^n R_{jl} \langle x_k x_l \rangle$$
$$= \sum_{k=1}^n \sum_{l=1}^n R_{ik} R_{jl} \sigma_{kl}$$

- or in matrix form
- Theory behind TRANSPORT and other codes

 $\bar{\sigma} = R\sigma R^{\prime}$

Emittance and Beam beta-function

• Take the determinant of $\bar{\sigma} = R \sigma R^T$

 $\det \bar{\sigma} = \det(R\sigma R^T) = \det(R)\det(\sigma)\det(R^T) = \det \sigma$

- The determinant of the sigma-matrix is constant
- Let's call it emittance squared $\varepsilon^2 = \det \sigma$
- Sigma matrix is 2x2 and symmetric \rightarrow three independent parameters, choose ε , α , β , such that $\sigma = \varepsilon \begin{pmatrix} \beta & -\alpha \\ -\alpha & \gamma \end{pmatrix}$
- Why is this useful? What is the relation of α, β to the previously defined quantities?

UPPSALA UNIVERSITET

The Pink Floyd effect

Dispersion

- Dipoles deflect particles with different energies by a dfifferent angle
- Sorting according to dp/p
- Spectrometer-function

Chromaticity

- Quadrupole focusing is energy dependent
- higher energy larger focal length f

$$f(\delta) = f(1+\delta)$$
 or $k_1 \to \frac{k_1}{1+\delta} \approx k_1 - k_1\delta$

quadrupole error kδ

- Beam parameters become energy dependent
 - Tune
 - Beam size

UNIVERSITET

Example: LHC

V. Ziemann, PA2: Transverse Dynamics

Summary

UNIVERSITET

- Beta functions all over the place
 - unique in a circular or periodic systems
 - appears in parametrization of the transfer matrix
 - appears in parametrization of the sigma matrix
 - describes beam size

$$\sigma_{11} = \sigma_x^2 = \varepsilon \beta$$

- describes the envelope of the single particle motion and the maximum amplitude.
- describes sensitivity to perturbations
- Courant-Snyder action variable J: single particle
- Emittance: rms property of the beam