Particle Accelerators: Transverse Beam Dynamics

Volker Ziemann

Department of Physics and Astronomy Uppsala University

Research Training course in Detector Technology Stockholm, Sept. 8, 2008

Guiding charged particle

- (Varying) electric field changes their energy
- determines the energy and arrival time
- Dipole magnets change their direction
- defines a reference trajectory
- Consider motion with respect to reference
- six-dimensional: x, x^{\prime}, y, y,',, dp / p
- small deviation \rightarrow linear oscillatory motion if stable
- Ensemble of particles \rightarrow Distribution, Moments
- We will here focus on one transverse direction

Single particles

- Reference trajectory is determined by design and labelled by $\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$
- and reference time t_{0}

- Describe position of a particle by how much it differs from the reference particle
- 3D space $\rightarrow 6 \mathrm{D}$ phase space of positions and momenta
- New coordinates:
- horizontal: $\mathrm{x}, \mathrm{x}^{\prime}=\mathrm{p}_{\mathrm{x}} / \mathrm{p}_{0}$
- vertical: $y, y^{\prime}=p_{y} / p_{0}$
- longitudinal: $\mathrm{t}, \delta=\Delta \mathrm{p} / \mathrm{p}_{0}$
- Subtle differences in MAD that vanish in ultra-relativistic limit.

Tranverse Beam Optics

- So far we talked about the particles and how to represent them.
- Now we need to talk about the elements that make them go from one place to the other.
- Or affect the beam in any other way, for example accelerate, or do
- Nothing, a.k.a. beam pipe
- Magnets: quadrupoles, dipoles
- We will consider only one degree of freedom, i.e. horizontal x, x^{\prime}
- Need stable situation \rightarrow restoring force

Drift Space

- Particles go on a straight line in the absence of external forces
- From right to left (will become clear in a minute)
- Map particle with initial coordinate x_{1} and x_{1} to final coordinates x_{2} and x_{2}^{\prime}

$$
\begin{aligned}
x_{2} & =x_{1}+L x_{1}^{\prime} \\
x_{2}^{\prime} & =x_{1}^{\prime}
\end{aligned}
$$

- Linear set of equations
- Equivalent for vertical y, y'
- Write this in matrix form

$$
\binom{x_{2}}{x_{2}^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{1}}{x_{1}^{\prime}}
$$

- Concatenation of two drift spaces works, it's a matrix multiplication, try it!

Thin Quadrupole

- Similar to an optical lens
- Twice the distance gets twice the deflection such that both rays make it through the focus
- Linear restoring force
- Requires linearly rising magnetic field (turn head to left) \rightarrow linear again

- Transfer matrix maps input x_{1} and x_{1}^{\prime} to output coordinates x_{2} and x_{2}^{\prime}
- Parallel rays $\left(x_{1}, 0\right)$ going through thin quad and drift of length f go through zero, independent of X_{1}

Quadrupoles, both planes

- Quads focus in one plane, but defocus in the other
- A consequence of Maxwell's equations $\mathrm{dB}_{\mathrm{y}} / \mathrm{dx}=\mathrm{dB}_{\mathrm{x}} / \mathrm{dy}$

$$
\nabla \times \vec{B}=0
$$

- The 4×4 matrix therefore looks like

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{f} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{f} & 1
\end{array}\right)
$$

Beamlines and Rings

- Now we have the most important elements of an accelerator: dipoles, drifts and quadrupoles.
- There is a fundamental difference between beamlines and rings
- Beamlines: initial value problem
- transient problem
- Rings: periodic boundary condition
- equilibrium (which might not exist)
- The beam bites its tail
- We will stick to periodic systems (rings)

FODO lattice

- Consider straight beamline with alternating drifts and quads:

- Represent by a transfer matrix

$$
M=\left(\begin{array}{cc}
1 & 0 \\
-1 / 2 f & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 / 2 f & 1
\end{array}\right)
$$

- Multiplying up all matrices yields

$$
M=\left(\begin{array}{cc}
1-\frac{L^{2}}{8 f^{2}} & L+\frac{L^{2}}{4 f} \\
-\frac{1}{4 f^{2}}+\frac{L^{2}}{16 f^{3}} & 1-\frac{L^{2}}{8 f^{2}}
\end{array}\right)
$$

Particle motion in FODO

- Assume that we have an infinite sequence of FODO cells \rightarrow periodic boundary conditions
- Use $L=1 \mathrm{~m}, \mathrm{f}= \pm 1 \mathrm{~m}$.
- Start at $x=0.01 \mathrm{~m}, \mathrm{x}^{\prime}=0$
- Iterate 100 times
- Observe x and x' in QF
- Center of first straight
- Poincare map

UPPSALA UNIVERSITET

Betatron Oscillations

Parametrizing the Transfer matrix

UNIVERSITET

- Observation:
- Motion is oscillatory \rightarrow rotation
- Matrices have unit determinant $\rightarrow 3$ parameters
- Two parameters for 'shape'

$$
\begin{aligned}
M & =\left(\begin{array}{cc}
\sqrt{\beta} & 0 \\
-\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}}
\end{array}\right)\left(\begin{array}{cc}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{\beta}} & 0 \\
\frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta}
\end{array}\right) \quad \text { Periodic ! } \\
& =\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\frac{1+\alpha \alpha^{2}}{\beta} \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right) .
\end{aligned}
$$

- Rotation matrix describes a circle and α, β describe how it is deformed into an ellipse
- By construction the same α, β as used before

Calculations for FODO

- Try out the parametrization for periodic FODO

$$
\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu & \beta \sin \mu \\
-\frac{1+\alpha^{2}}{\beta} \sin \mu & \cos \mu-\alpha \sin \mu
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L^{2}}{8 f^{2}} & L+\frac{L^{2}}{4 f} \\
-\frac{1}{4 f^{2}}+\frac{L^{2}}{16 f^{3}} & 1-\frac{L^{2}}{8 f^{2}}
\end{array}\right)
$$

- Sum of diagonal elements

$$
\cos \mu=1-\frac{L^{2}}{8 f^{2}}
$$

- Use 1 - $\cos \mu=2 \sin ^{2}(\mu / 2)$

$$
\sin (\mu / 2)=\frac{L}{4 f}
$$

- From the 12 element $\beta=L \frac{1+L / 4 f}{\sin \mu}=L \frac{1+\sin (\mu / 2)}{\sin \mu}$
- Difference of diagonal elements: $\alpha=0$
- Can calculate μ, α, β from transfer matrix!

Tune

- Imagine having calculated the transfer matrix for and arbitrary ring
- and do the trick from the slide before
- μ is the phase advance for one turn
- $Q=\mu / 2 \pi$ is the number of oscillations per turn
- and is called tune of the ring
- Q_{x} : horizontal, Q_{y} : vertical
- The tune Q is independent of where we start calculating the transfer matrix

Why are beta-functions useful?

- They give an indication where the particle amplitude is large \rightarrow envelope
- They tell where the beam is sensitive to perturbations
- use the parametrization in (\#)
- calculate R_{12} which tells you the response of the particle position x at (2) to a kick θ at (1)
$-x($ at 2$)=R_{12} \theta$ (at 1)
- and
$R_{12}=\sqrt{\beta_{1} \beta_{2}} \sin \mu$

Stability

- Observe that the tune is calculated from the sum of the diagonal elements of the transfer matrix
- $2 \cos (2 \pi Q)=M_{11}+M_{22}=\operatorname{Tr}(M)$
- This can actually fail if $\operatorname{Tr}(\mathrm{M})>2$ or <-2
- an constitutes the limit of stability
- Lesson: You can place your quadrupoles in a stupid way such that no stable operation is possible.

The Beam or Sigma-matrix

- So far, we mostly discussed the magnets setup, the lattice and single particle motion
- Now we have a look at the beam as a ensemble om many particles
- Determine how the moments of a distribution propagate through a beamline or ring
- Consider transfer matrix R_{ij} and state vector of individual particle x_{i} where i, j is $2,4,6$, depending on what dynamics we discuss

Propagating Moments 1

- Single particle is mapped by $\quad \bar{x}_{i}=\sum_{j=1}^{n} R_{i j} x_{j}$
- The first moment is mapped according to

$$
\begin{aligned}
\bar{X}_{i} & =\left\langle\bar{x}_{i}\right\rangle=\left\langle\sum_{j=1}^{n} R_{i j} x_{j}\right\rangle=\sum_{j=1}^{n} R_{i j}\left\langle x_{j}\right\rangle \\
& =\sum_{j=1}^{n} R_{i j} X_{j}
\end{aligned}
$$

- First Moment or center-of-gravity maps just like a single particle.

Propagating Moments 2

- Central second moment (COM removed) is

$$
\sigma_{i j}=\left\langle\left(x_{i}-X_{i}\right)\left(x_{j}-X_{j}\right)\right\rangle
$$

- For simplicity use $X_{i}=0$, then $\sigma_{i j}$ propagates like

$$
\begin{aligned}
\bar{\sigma}_{i j} & =\left\langle\bar{x}_{i} \bar{x}_{j}\right\rangle=\left\langle\sum_{k=1}^{n} R_{i k} x_{k} \sum_{l=1}^{n} R_{j l} x_{l}\right\rangle=\sum_{k=1}^{n} R_{i k} \sum_{l=1}^{n} R_{j l}\left\langle x_{k} x_{l}\right\rangle \\
& =\sum_{k=1}^{n} \sum_{l=1}^{n} R_{i k} R_{j l} \sigma_{k l}
\end{aligned}
$$

- or in matrix form

$$
\bar{\sigma}=R \sigma R^{T}
$$

- Theory behind TRANSPORT and other codes

Emittance and Beam beta-function

- Take the determinant of $\quad \bar{\sigma}=R \sigma R^{T}$

$$
\operatorname{det} \bar{\sigma}=\operatorname{det}\left(R \sigma R^{T}\right)=\operatorname{det}(R) \operatorname{det}(\sigma) \operatorname{det}\left(R^{T}\right)=\operatorname{det} \sigma
$$

- The determinant of the sigma-matrix is constant
- Let's call it emittance squared $\quad \varepsilon^{2}=\operatorname{det} \sigma$
- Sigma matrix is 2×2 and symmmetric \rightarrow three independent parameters, choose ε, α, β, such that

$$
\sigma=\varepsilon\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right)
$$

- Why is this useful? What is the relation of α, β to the previously defined quantities?

UPPSALA UNIVERSITET

The Pink Floyd effect

Dispersion

- Dipoles deflect particles with different energies by a dfifferent angle
- Sorting according to dp/p
- Spectrometer-function

Chromaticity

- Quadrupole focusing is energy dependent
- higher energy larger focal length f

- Beam parameters become energy dependent
- Tune
- Beam size
- quadrupole error k δ

Example: LHC

- Arc cell, FODO
- IR1,5: ATLAS, CMS
- injection, collision

Tune vs. dp/p

Summary

- Beta functions all over the place
- unique in a circular or periodic systems
- appears in parametrization of the transfer matrix
- appears in parametrization of the sigma matrix
- describes beam size
- describes the envelope of the single particle motion and the maximum amplitude.
- describes sensitivity to perturbations
- Courant-Snyder action variable J: single particle
- Emittance: rms property of the beam

