Tracking detectors

Lecture 1

Basic considerations and gaseous detectors

Material for this lecture taken from lectures given by Fabio Sauli at

RADIATION DETECTION AND MEASUREMENT

Prof. Glenn Knoll, organizer Short Courses November 10-11 2002 IEEE NSS/MIC Norfolk, November 10-16, 2002

GAS (STP)	Helium	Argon	Xenon	CH4	DME
dE/ dx (keV/ cm)	0.32	2.4	6.7	1.5	3.9
n (ion pairs/ cm)	6	25	44	16	55

3X the number of primary ionisations.

A large number of measurements lead to a distribution with a long tail towards high energy loss- the Landau fluctuation $\int_{-(\lambda+e^{-\lambda})}^{-(\lambda+e^{-\lambda})} dx$

$$f(\lambda) = \sqrt{\frac{e^{-(\lambda + e^{-\lambda})}}{2\pi}}$$

Some more considerations on detecting charge

• • • • • • • • •

Without electric field in the tracking volume the charge created by the ionisation will diffuse

With electric field the charge (ions and electrons) will drift

Diffusion equation gives the fraction of ions at a distance x at a given time t

$$\frac{dN}{N} = \frac{1}{\sqrt{4Dt}} e^{-\frac{x^2}{4Dt}} dx$$
, where D is the diffusion coefficient
The RMS for linear diffusion is $\sigma_x = \sqrt{2Dt}$
$$\sigma_x = \sqrt{2Dt}$$

Diffusion is not very efficient for
charge transportbut an enemy
for charge collection

Drift of electrons in an electric field

Electric Field (V/cm)

Drift of positive ions is much slower than electrons. In CO_2 the difference is about 1000 The drift speed is almost linear with the electric field.

$$v_{ion} = \mu_{ion} \times E$$

GAS	ION	µ⁺ (cm² V⁻¹ s⁻¹) @STP
Ar	Ar⁺	1.51
CH ₄	CH_4^+	2.26
Ar-CH ₄ 80-20	CH_4^+	1.61

Now lets build a detector

• • • • • • • • •

Build a wire chamber

Build a wire chamber

Gas amplification and saturation effects in gaseous detectors

• When the electrical field is increased in the detector the kinetic energy of the drifting electrons increase

• The electrons with kinetic energy will collide creating new free electrons and ions

High field is also developed near the anode wire-for a simple geometry e.g. a straw tube

Distance from anode in units of anode radius

image from cloud-avalanche chamber

 $n(x) = n_0 e^{\alpha x}$

Multiplication factor (gain)

$$M(x) = \frac{n}{n_0} = e^{\alpha x}$$

Development of avalanche close to the anode wire

Detector in magnetic field:

 $\vec{E} \perp \vec{B}$

$$\tan \theta_B = \omega \tau$$
$$v_B = v_0 \frac{1 + \omega \tau}{1 + \omega^2 \tau^2}$$

 τ : mean collision time $\omega = eB/m$ Larmor frequency

 $\vec{E} \parallel \vec{B}$

$$v_B = v_0$$

$$\sigma_L = \sigma_0$$

$$\sigma_T = \frac{\sigma_0}{\sqrt{1 + \omega^2 \tau^2}}$$

Magnetic field distortion of electric field in drift chambers

 \Rightarrow The magnetic field will distort the position of the collected charge (cluster)

Quenching

1: To get a stable behavior over a large range of particle rates and ionisation levels a quenching gas is added. The gas should have a large electron capture cross- section for energetic electrons to not let the avalanches to grow enormous and a low cross-section for thermal electrons.

2: An other problem is that noble gases emit photons above the ionisation threshold of other molecules. Poly-atomic gases works as quenchers absorbing the photons.

Oxygen has a good electron capture cross-section \Rightarrow why not use CO₂

CF4 is a good quenching gas

And now some more realistic detector designs

1: Split the drift chamber in a low field drift volume and a high field amplification volume

2: To control and reduce the drift time and accumulated space charge of of slow positive ions one may use gating techniques.

Gate closed

The Time Projection Chamber (TPC) is the ultimate tracking detector giving 3D space points (and dE/dx) for track reconstruction and adding little mass in tracking volume keeping multiple scattering small.

Novel high resolution gaseous detectors for tracking are:

• Micro-Strip Gas Chambers (MSGC)

Drift electrode

•Gas Electron Multiplier (GEM)

Thin kapton foil pierced with holes. The foil is metallised on both sides and a potential difference between the two sides gives an amplification of electrons up 1000 when traversing the hole in most common gases.

Thickness:	~ 50 µm
ΔV :	400 - 600 V
Hole Diameter:	~ 70 µm
Pitch:	~140 µm

• MICROMEGAS-thin gap parallel plate chamber

END LECTURE