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The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is
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1

3
∇ ⋅ 𝑢 𝛿𝑖𝑗



෨𝑇𝑝𝑓
𝜇𝜈

=
4

3
෤𝜌 ෤𝑢𝜇 ෤𝑢𝜈 +

1

3
෤𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW

෤𝑢𝜇 = 𝛾(1, 𝒖)

Maxwell

4 variables ( ෤𝜌 & 𝒖) and 4 equations for the fluid → closed system! 

𝜕𝜇 ෨𝑇𝑝𝑓
𝜇𝜈

= ሚ𝑓𝑣𝑖𝑠𝑐
𝜈 + ሚ𝑓𝐿𝑜𝑟

𝜈

= ෨ℱ𝜈( ෤𝜌, 𝒖, ෩𝑬, ෩𝑩)

෤𝜎𝑖𝑗 = ሚ𝑆𝑖𝑗 −
1

3
∇ ⋅ 𝑢 𝛿𝑖𝑗



෨𝑇𝑝𝑓
𝜇𝜈

=
4

3
෤𝜌 ෤𝑢𝜇 ෤𝑢𝜈 +

1

3
෤𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW

෤𝑢𝜇 = 𝛾(1, 𝒖)

Maxwell

4 variables ( ෤𝜌 & 𝒖) and 4 equations for the fluid → closed system! 

How can we solve them numerically?

𝜕𝜇 ෨𝑇𝑝𝑓
𝜇𝜈

= ሚ𝑓𝑣𝑖𝑠𝑐
𝜈 + ሚ𝑓𝐿𝑜𝑟

𝜈

= ෨ℱ𝜈( ෤𝜌, 𝒖, ෩𝑬, ෩𝑩)

෤𝜎𝑖𝑗 = ሚ𝑆𝑖𝑗 −
1

3
∇ ⋅ 𝑢 𝛿𝑖𝑗



𝑇𝑝𝑓
𝜇𝜈

=
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW: conservation form

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇𝑝𝑓
𝜇𝜈

= ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

*all quantities are comoving



𝑇𝑝𝑓
𝜇𝜈

=
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW: conservation form

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇𝑝𝑓
𝜇𝜈

= ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇𝑝𝑓
00 = − 𝜕𝑗𝑇𝑝𝑓

𝑗0
+ ℱ0

𝜕0𝑇𝑝𝑓
0𝑖 = − 𝜕𝑗𝑇𝑝𝑓

𝑗𝑖
+ ℱ 𝑖

*all quantities are comoving



𝑇𝑝𝑓
𝜇𝜈

=
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW: conservation form

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇𝑝𝑓
𝜇𝜈

= ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇𝑝𝑓
00 = − 𝜕𝑗𝑇𝑝𝑓

𝑗0
+ ℱ0

𝜕0𝑇𝑝𝑓
0𝑖 = − 𝜕𝑗𝑇𝑝𝑓

𝑗𝑖
+ ℱ 𝑖

We need to choose the 4 variables to solve for  

*all quantities are comoving



𝑇𝑝𝑓
𝜇𝜈

=
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW: conservation form

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇𝑝𝑓
𝜇𝜈

= ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇𝑝𝑓
00 = − 𝜕𝑗𝑇𝑝𝑓

𝑗0
+ ℱ0

𝜕0𝑇𝑝𝑓
0𝑖 = − 𝜕𝑗𝑇𝑝𝑓

𝑗𝑖
+ ℱ 𝑖

𝑇00, 𝑇0𝑖 seems to be a natural choice

We need to choose the 4 variables to solve for  

*all quantities are comoving



𝑇𝑝𝑓
𝜇𝜈

=
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Relativistic MHD in FLRW: conservation form

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇𝑝𝑓
𝜇𝜈

= ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇𝑝𝑓
00 = − 𝜕𝑗𝑇𝑝𝑓

𝑗0
+ ℱ0

𝜕0𝑇𝑝𝑓
0𝑖 = − 𝜕𝑗𝑇𝑝𝑓

𝑗𝑖
+ ℱ 𝑖

𝑇00, 𝑇0𝑖 seems to be a natural choice

We need to choose the 4 variables to solve for  

However, we first need to express 𝜌, 𝑢 and 𝑇𝑖𝑗

in terms of the 4 variables 𝑇00, 𝑇0𝑖

*all quantities are comoving



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

A) Express 𝜌, 𝒖 and 𝑇𝑗𝑖 in terms of 𝑇00, 𝑇0𝑖 and 𝛾



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

A) Express 𝜌, 𝒖 and 𝑇𝑗𝑖 in terms of 𝑇00, 𝑇0𝑖 and 𝛾
𝑇00 =

4

3
𝜌 𝛾2 −

1

3
𝜌

𝑇0𝑖 =
4

3
𝜌 𝛾2𝑢𝑖

𝑇𝑗𝑖 =
4

3
𝜌 𝛾2𝑢𝑗𝑢𝑖 +

1

3
𝜌 𝛿𝑗𝑖



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

A) Express 𝜌, 𝒖 and 𝑇𝑗𝑖 in terms of 𝑇00, 𝑇0𝑖 and 𝛾
𝑇00 =

4

3
𝜌 𝛾2 −

1

3
𝜌

𝑇0𝑖 =
4

3
𝜌 𝛾2𝑢𝑖

𝑇𝑗𝑖 =
4

3
𝜌 𝛾2𝑢𝑗𝑢𝑖 +

1

3
𝜌 𝛿𝑗𝑖

𝜌 =
3𝑇00

4 𝛾2 − 1

𝑢𝑖 =
𝑇0𝑖

𝑇00
4𝛾2 − 1

4 𝛾2

𝑇𝑗𝑖 =
4𝛾2 − 1

4𝛾2
𝑇0𝑗𝑇0𝑖

𝑇00
+

𝑇00

4𝛾2 − 1
𝛿𝑗𝑖



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

B) Express 𝛾2 in terms of 𝑇00, 𝑇0𝑖



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

B) Express 𝛾2 in terms of 𝑇00, 𝑇0𝑖

𝑇00 =
4

3
𝜌 𝛾2 −

1

3
𝜌

𝑇0𝑖 =
4

3
𝜌 𝛾2𝑢𝑖

𝑇𝑗𝑖 =
4

3
𝜌 𝛾2𝑢𝑗𝑢𝑖 +

1

3
𝜌 𝛿𝑗𝑖



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

B) Express 𝛾2 in terms of 𝑇00, 𝑇0𝑖

𝑇00 =
4

3
𝜌 𝛾2 −

1

3
𝜌

𝑇0𝑖 =
4

3
𝜌 𝛾2𝑢𝑖

𝑇𝑗𝑖 =
4

3
𝜌 𝛾2𝑢𝑗𝑢𝑖 +

1

3
𝜌 𝛿𝑗𝑖

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
=

4/3 2𝛾4𝑢2

4/3 𝛾2 − 1/3 2

𝑢2 = 1 − 1/𝛾2



𝑇𝜇𝜈 =
4

3
𝜌 𝑢𝜇𝑢𝜈 +

1

3
𝜌 𝜂𝜇𝜈

Exercise no. 1: CONSERVATION FORM

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕𝜇𝑇
𝜇𝜈 = ℱ𝜈(𝜌, 𝒖, 𝑬, 𝑩)

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0 + ℱ0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 + ℱ 𝑖

𝛾2 = 1/(1 − 𝑢2)

B) Express 𝛾2 in terms of 𝑇00, 𝑇0𝑖

𝑇00 =
4

3
𝜌 𝛾2 −

1

3
𝜌

𝑇0𝑖 =
4

3
𝜌 𝛾2𝑢𝑖

𝑇𝑗𝑖 =
4

3
𝜌 𝛾2𝑢𝑗𝑢𝑖 +

1

3
𝜌 𝛿𝑗𝑖

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
=

4/3 2𝛾4𝑢2

4/3 𝛾2 − 1/3 2

𝑢2 = 1 − 1/𝛾2 𝛾2 =
1

2(1 − 𝑟2)
1 −

𝑟2

2
+ 1 −

3

4
𝑟2



𝑇𝑗𝑖 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2 = 𝑇𝑗𝑖 𝑇0𝜇

𝛾2 =
1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑟2 = 𝑇0𝑖𝑇0𝑖/ 𝑇00 2

Fluid dynamics in the conservation form*

*general 𝑐𝑠2



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

CONSERVATION FORM
𝜕𝜇𝑇

𝜇𝜈 = 0

𝑇𝑗𝑖 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2 = 𝑇𝑗𝑖 𝑇0𝜇

𝛾2 =
1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑟2 = 𝑇0𝑖𝑇0𝑖/ 𝑇00 2

Fluid dynamics in the conservation form*

*general 𝑐𝑠2



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇
How do we solve them in the lattice?

Fluid dynamics in the conservation form



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

After discretizing the derivatives we get equations of the form

The RHS is a function of the fields themselves

How do we solve them in the lattice?

Fluid dynamics in the conservation form

𝜕0𝑋
𝜇 = 𝒦𝜇[𝑋𝜈]



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝜕0𝑋
𝜇 = 𝒦𝜇[𝑋𝜈]

After discretizing the derivatives we get equations of the form

The RHS is a function of the fields themselves

How do we solve them in the lattice?

Natural algorithm for timestepping → explicit Runge-Kutta



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji

For a lattice of size 𝐿 with 𝑁 points per direction and
lattice spacing 𝛿𝑥 = 𝐿/𝑁 we have several possibilities



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji

For a lattice of size 𝐿 with 𝑁 points per direction and
lattice spacing 𝛿𝑥 = 𝐿/𝑁 we have several possibilities

∇𝑖
+𝑓 𝒙 =

𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙

𝛿𝑥
→ 𝜕𝑖𝑓 𝒙 ቚ

𝒙
+ 𝒪(𝛿𝑥)

Ƹ𝒊 unit vectors in the three spatial directions 

FORWARD DERIVATIVE



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji

For a lattice of size 𝐿 with 𝑁 points per direction and
lattice spacing 𝛿𝑥 = 𝐿/𝑁 we have several possibilities

∇𝑖
−𝑓 𝒙 =

𝑓 𝒙 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

𝛿𝑥
→ 𝜕𝑖𝑓 𝒙 ቚ

𝒙
+ 𝒪(𝛿𝑥)

Ƹ𝒊 unit vectors in the three spatial directions 

BACKWARD DERIVATIVE



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji

For a lattice of size 𝐿 with 𝑁 points per direction and
lattice spacing 𝛿𝑥 = 𝐿/𝑁 we have several possibilities

∇𝑖
(0)
𝑓 𝒙 =

𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

2𝛿𝑥

→ 𝜕𝑖𝑓 𝒙 ቚ
𝒙
+ 𝒪(𝛿𝑥2)

NEUTRAL DERIVATIVE



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0[𝑇0𝜇]

𝒦 𝑖[𝑇0𝜇]

𝒦0 𝑇0𝜇 ≡ ∇jT
j0

space discretization

𝒦𝑖 𝑇0𝜇 ≡ ∇jT
ji

For a lattice of size 𝐿 with 𝑁 points per direction and
lattice spacing 𝛿𝑥 = 𝐿/𝑁 we have several possibilities

∇𝑖
(0)
𝑓 𝒙 =

𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

2𝛿𝑥

→ 𝜕𝑖𝑓 𝒙 ቚ
𝒙
+ 𝒪(𝛿𝑥2)

NEUTRAL DERIVATIVE

Simpler at higher orders if
fields «live» at lattice sites



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

NEUTRAL DERIVATIVE

Fluid dynamics often requires higher order spatial derivatives
(shocks, nonlinearities…)

∇𝑖
0
𝑓 𝒙

(2)
=
𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

2𝛿𝑥
→ 𝜕𝑖𝑓 𝒙 ቚ

𝒙
+ 𝒪(𝛿𝑥2)



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

NEUTRAL DERIVATIVE

∇𝑖
0
𝑓 𝒙

(2)
=
𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

2𝛿𝑥

∇𝑖
0
𝑓 𝒙

(4)
=
−𝑓 𝒙 + 2𝛿𝑥 Ƹ𝒊 + 8𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 8𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊 + 𝑓 𝒙 − 2𝛿𝑥 Ƹ𝒊

12𝛿𝑥

→ 𝜕𝑖𝑓 𝒙 ቚ
𝒙
+ 𝒪(𝛿𝑥4)



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

NEUTRAL DERIVATIVE

∇𝑖
0
𝑓 𝒙

(2)
=
𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊

2𝛿𝑥

∇𝑖
0
𝑓 𝒙

(4)
=
−𝑓 𝒙 + 2𝛿𝑥 Ƹ𝒊 + 8𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 8𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊 + 𝑓 𝒙 − 2𝛿𝑥 Ƹ𝒊

12𝛿𝑥

→ 𝜕𝑖𝑓 𝒙 ቚ
𝒙
+ 𝒪(𝛿𝑥6)

∇𝑖
0
𝑓 𝒙

(6)
=
𝑓 𝒙 + 3𝛿𝑥 Ƹ𝒊 − 9𝑓 𝒙 + 2𝛿𝑥 Ƹ𝒊 + 45𝑓 𝒙 + 𝛿𝑥 Ƹ𝒊 − 45𝑓 𝒙 − 𝛿𝑥 Ƹ𝒊 + 9𝑓 𝒙 − 2𝛿𝑥 Ƹ𝒊 − 𝑓 𝒙 − 3𝛿𝑥 Ƹ𝒊

60𝛿𝑥



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀

A special property of the CONSERVATION FORM



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀

A special property of the CONSERVATION FORM

When using periodic boundary conditions we have that (Gauss theorem)

෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

∇𝑗𝑇
𝑗𝜇(𝑛) = 0



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀

A special property of the CONSERVATION FORM

When using periodic boundary conditions we have that (Gauss theorem)

෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

∇𝑗𝑇
𝑗𝜇(𝑛) = 0 ෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

𝜕0𝑇
0𝜇(𝑛) = 0



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀

A special property of the CONSERVATION FORM

When using periodic boundary conditions we have that (Gauss theorem)

෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

∇𝑗𝑇
𝑗𝜇(𝑛) = 0 𝜕0 ෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

𝑇0𝜇(𝑛) = 0



Fluid dynamics in the conservation form

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝒦0 𝑇0𝜇 ≡ ∇j
(0)
Tj0

𝒦 𝑖 𝑇0𝜇 ≡ ∇j
(0)
Tji

Runge-Kutta order Δ𝑡 𝑁 Neutral derivative order Δ𝑡 𝑀

A special property of the CONSERVATION FORM

When using periodic boundary conditions we have that (Gauss theorem)

෍

𝑎𝑙𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛

∇𝑗𝑇
𝑗𝜇(𝑛) = 0 𝜕0 𝑇0𝜇 = 0

Average 𝑇0𝜇 conserved at machine precision!



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

An alternative form is obtained by substituting 𝑇𝜇𝜈  with its 
expression in terms of the fluid primitive variables 𝜌 and 𝒖

𝑢𝜇 = 𝛾(1, 𝒖)

Fluid dynamics in the conservation form



Exercise no. 2: NON-CONSERVATION FORM

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

An alternative form is obtained by substituting 𝑇𝜇𝜈  with its 
expression in terms of the fluid primitive variables 𝜌 and 𝒖

𝑢𝜇 = 𝛾(1, 𝒖)



Exercise no. 2: NON-CONSERVATION FORM

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

An alternative form is obtained by substituting 𝑇𝜇𝜈  with its 
expression in terms of the fluid primitive variables 𝜌 and 𝒖

𝑢𝜇 = 𝛾(1, 𝒖)

Write the fluid equations (𝜕𝜇𝑇𝜇𝜈 = 0) in the form

𝜕0𝜌 = Ϝ0

𝜕0𝒖 = Ϝ𝑖
with Ϝ0, Ϝ𝑖  functions of 𝜌, 𝒖
and their gradients



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗(𝜌 𝛾

2 𝑢𝑗)

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

Exercise no. 2: NON-CONSERVATION FORM



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗(𝜌 𝛾

2 𝑢𝑗)

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

Exercise no. 2: NON-CONSERVATION FORM



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

Exercise no. 2: NON-CONSERVATION FORM



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

Exercise no. 2: NON-CONSERVATION FORM

A) Express 𝜕0𝛾2 in terms of 𝜕0𝜌   



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕0𝛾
2 = 𝛾42 𝑢𝑖𝜕0𝑢

𝑖 =
2𝛾2

𝜌 1 + 𝑐𝑠
2 [𝑢𝑖𝒦

𝑖 − 𝑢2 𝑐𝑠
2𝜕0𝜌 +𝒦0 ]

Exercise no. 2: NON-CONSERVATION FORM

A) Express 𝜕0𝛾2 in terms of 𝜕0𝜌   



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕0𝛾
2 = 𝛾42 𝑢𝑖𝜕0𝑢

𝑖 =
2𝛾2

𝜌 1 + 𝑐𝑠
2 [𝑢𝑖𝒦

𝑖 − 𝑢2 𝑐𝑠
2𝜕0𝜌 +𝒦0 ]

Exercise no. 2: NON-CONSERVATION FORM

B) Use the expression for 𝜕0𝛾2in the energy equation   



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕0𝛾
2 = 𝛾42 𝑢𝑖𝜕0𝑢

𝑖 =
2𝛾2

𝜌 1 + 𝑐𝑠
2 [𝑢𝑖𝒦

𝑖 − 𝑢2 𝑐𝑠
2𝜕0𝜌 +𝒦0 ]

Exercise no. 2: NON-CONSERVATION FORM

𝜕0𝜌 =
1

1−𝑢2𝑐𝑠
2 [ 1 + 𝑢2 𝒦0 − 2 𝑢𝑖  𝒦𝑖]

B) Use the expression for 𝜕0𝛾2in the energy equation   



𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖

𝑇00 = 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2 𝜌

𝑇0𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖

𝑇𝑗𝑖 = 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑗𝑢𝑖 + 𝑐𝑠

2𝜌 𝛿𝑗𝑖

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2 − 𝑐𝑠

2𝜌 = − 1 + 𝑐𝑠
2 𝜕𝑗 𝜌 𝛾2 𝑢𝑗 = 𝒦0

𝜕0 𝜌 1 + 𝑐𝑠
2 𝛾2𝑢𝑖 = − 1 + 𝑐𝑠

2 𝜕𝑗 𝜌 𝛾2 𝑢𝑖𝑢𝑗 − cs
2𝜕𝑖𝜌

= 𝒦 𝑖

𝑇𝜇𝜈 = 1 + 𝑐𝑠
2 𝜌 𝑢𝜇𝑢𝜈 + 𝑐𝑠

2𝜌 𝜂𝜇𝜈

𝑢𝜇 = 𝛾(1, 𝒖)

𝜕0𝛾
2 = 𝛾42 𝑢𝑖𝜕0𝑢

𝑖 =
2𝛾2

𝜌 1 + 𝑐𝑠
2 [𝑢𝑖𝒦

𝑖 − 𝑢2 𝑐𝑠
2𝜕0𝜌 +𝒦0 ]

Exercise no. 2: NON-CONSERVATION FORM

𝜕0𝜌 =
1

1−𝑢2𝑐𝑠
2 [ 1 + 𝑢2 𝒦0 − 2 𝑢𝑖  𝒦𝑖]

C) Use 𝜕0𝛾2 and 𝜕0𝜌 in the momentum equation   



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

After discretizing the RHS we are left with a system of equations of the form

𝜕0 ln 𝜌 = 𝒢0[ln 𝜌, 𝑢]

𝜕0𝑢𝑖 = 𝒢𝑖[ln 𝜌, 𝑢]



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

After discretizing the RHS we are left with a system of equations of the form

𝜕0 ln 𝜌 = 𝒢0[ln 𝜌, 𝑢]

𝜕0𝑢𝑖 = 𝒢𝑖[ln 𝜌, 𝑢]

The RHS depends on the fluid variables themselves

Natural algorithm for timestepping → explicit Runge-Kutta



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

We can easily discretize the RHS at order 𝛿𝑥 𝑁  considering ln 𝜌 and 𝒖 living at lattice sites



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

We can easily discretize the RHS at order 𝛿𝑥 𝑁  considering ln 𝜌 and 𝒖 living at lattice sites

𝛁 ⋅ 𝒖 → ∇j
0
uj

(𝑁)



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

We can easily discretize the RHS at order 𝛿𝑥 𝑁  considering ln 𝜌 and 𝒖 living at lattice sites

𝛁 ⋅ 𝒖 → ∇j
0
uj

(𝑁)
𝒖 ⋅ 𝛁 ln𝜌 → 𝑢j ∇j

0
ln 𝜌

(𝑁)



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

We can easily discretize the RHS at order 𝛿𝑥 𝑁  considering ln 𝜌 and 𝒖 living at lattice sites

𝛁 ⋅ 𝒖 → ∇j
0
uj

(𝑁)
𝒖 ⋅ 𝛁 ln𝜌 → 𝑢j ∇j

0
ln 𝜌

(𝑁)

𝒖 ⋅ 𝛁 𝑢𝑖→ 𝑢j ∇j
0
u𝑖

(𝑁)



Fluid dynamics in the non-conservation form

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

We can easily discretize the RHS at order 𝛿𝑥 𝑁  considering ln 𝜌 and 𝒖 living at lattice sites

𝛁 ⋅ 𝒖 → ∇j
0
uj

(𝑁)
𝒖 ⋅ 𝛁 ln𝜌 → 𝑢j ∇j

0
ln 𝜌

(𝑁)

𝒖 ⋅ 𝛁 𝑢𝑖→ 𝑢j ∇j
0
u𝑖

(𝑁)
∇𝑖 ln 𝜌 → ∇𝑖

0
ln 𝜌

(𝑁)



CONSERVATION vs NON-CONSERVATION FORM

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
𝛾2 =

1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑇𝑗𝑖 𝑇0𝜇 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2



CONSERVATION vs NON-CONSERVATION FORM

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
𝛾2 =

1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑇𝑗𝑖 𝑇0𝜇 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2

Both forms can be solved with a Runge-Kutta timestepping scheme and neutral derivatives



CONSERVATION vs NON-CONSERVATION FORM

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
𝛾2 =

1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑇𝑗𝑖 𝑇0𝜇 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2

Which one is better? 



CONSERVATION vs NON-CONSERVATION FORM

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑇
00 = − 𝜕𝑗𝑇

𝑗0

𝜕0𝑇
0𝑖 = − 𝜕𝑗𝑇

𝑗𝑖 𝑇0𝜇

𝑟2 =
𝑇0𝑖𝑇0𝑖

𝑇00 2
𝛾2 =

1

2(1 − 𝑟2)
1 −

2𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 + 1 −

4𝑟2𝑐𝑠
2

1 + 𝑐𝑠
2 2

𝑇𝑗𝑖 𝑇0𝜇 =
𝑇0𝑗𝑇0𝑖

𝑇00
1 −

1

𝛾2
𝑐𝑠
2

1 + 𝑐𝑠
2 + 𝛿𝑗𝑖 𝑇00

𝑐𝑠
2

𝛾2 1 + 𝑐𝑠
2 − 𝑐𝑠

2

Which one is better? It depends on the physical problem!



Sub-relativistic limit

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

NON-CONSERVATION FORM

𝑢2 ≪ 1



Sub-relativistic limit

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

NON-CONSERVATION FORM

𝑢2 ≪ 1

𝜕0 ln 𝜌 = −(1 + 𝑐𝑠
2) 𝛁 ⋅ 𝒖 +

1 − 𝑐𝑠
2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2 ∇𝑖 ln 𝜌 + 𝑢𝑖 𝑐𝑠

2 𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌



Sub-relativistic limit

𝜕0 ln 𝜌 = −
1 + 𝑐𝑠

2

1 − 𝑐𝑠
2𝑢2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2

∇𝑖 ln 𝜌

𝛾2
+ 𝑢𝑖

𝑐𝑠
2

1 − 𝑐𝑠
2𝑢2 𝛾2

𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

NON-CONSERVATION FORM

𝑢2 ≪ 1

𝜕0 ln 𝜌 = −(1 + 𝑐𝑠
2) 𝛁 ⋅ 𝒖 +

1 − 𝑐𝑠
2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2 ∇𝑖 ln 𝜌 + 𝑢𝑖 𝑐𝑠

2 𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌



Sub-relativistic limit

NON-CONSERVATION FORM

𝑢2 ≪ 1

𝜕0 ln 𝜌 = −(1 + 𝑐𝑠
2) 𝛁 ⋅ 𝒖 +

1 − 𝑐𝑠
2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2 ∇𝑖 ln 𝜌 + 𝑢𝑖 𝑐𝑠

2 𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌



Sub-relativistic limit

NON-CONSERVATION FORM

𝑢2 ≪ 1

𝜕0 ln 𝜌 = −(1 + 𝑐𝑠
2) 𝛁 ⋅ 𝒖 +

1 − 𝑐𝑠
2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2 ∇𝑖 ln 𝜌 + 𝑢𝑖 𝑐𝑠

2 𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

Missing factors in Pencil Code (in the default implementation they are 1) 
from erroneously taking 𝜕0𝛾2 = 0

lrelativistic_eos=T 



Sub-relativistic limit

NON-CONSERVATION FORM

𝑢2 ≪ 1

𝜕0 ln 𝜌 = −(1 + 𝑐𝑠
2) 𝛁 ⋅ 𝒖 +

1 − 𝑐𝑠
2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

𝜕0𝑢𝑖 = − 𝒖 ⋅ 𝛁 𝑢𝑖−
cs
2

1 + cs
2 ∇𝑖 ln 𝜌 + 𝑢𝑖 𝑐𝑠

2 𝛁 ⋅ 𝒖 +
1 − 𝑐𝑠

2

1 + 𝑐𝑠
2 𝒖 ⋅ 𝛁 ln 𝜌

Now corrected → select lrelativistic_eos=T and lrelativistic_eos_corr=T in density run parameters

Missing factors in Pencil Code (in the default implementation they are 1) 
from erroneously taking 𝜕0𝛾2 = 0

lrelativistic_eos=T 
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