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Tpuf = (p +p) u*u’V + p g"v Metric tensor gty
Fluid 4-velocity uk
Fluid density P

Fluid pressure p



General Relativistic MHD

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

Tpy = (p+p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)



General Relativistic MHD

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

Tpy = (p+p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

W UV
T, . = Tpf + hV



General Relativistic MHD

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

Tpy = (p+p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = T,r + T + T,



General Relativistic MHD

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

Tpy = (p+p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = Tpp + T’ + T,

Conservation of total energy-momentum tensor gives

Hv __
vIthot =0



Relativistic MHD in FLRW

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

Tpy = (p+p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = Tpp + T’ + T,

Conservation of total energy-momentum tensor gives

% aw o
VuTtor =0 ———=> 0uTyr = foisc + flor + fif



Relativistic MHD in FLRW

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

V
T)r = (p +p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = Tpp + T’ + T,

Conservation of total energy-momentum tensor gives

% aw o
VuTtor =0 ———=> 0uTyp = foisc + flor + fif

= — uv
= aun



Relativistic MHD in FLRW

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

V
T)r = (p +p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = Tpp + T’ + T,

Conservation of total energy-momentum tensor gives

% aw o
VuTtor =0 ———=> 0uTyp = foisc + [lor + fif

[ [JfV - ‘LLV
= aun = aMTEM



Relativistic MHD in FLRW

The energy-momentum tensor for a relativistic perfect fluid (in a generic metric) is

V
T)r = (p +p)utu’ +p gt

We can describe non-perfect fluids adding the deviatoric stresses (accounting for viscosity)

We can have electromagnetic fields interacting with the fluid (MHD)

W _ Uy Uv
Tior = T,r + T + T,

Conservation of total energy-momentum tensor gives

% aw o
VuTtor =0 ———=> 0uTpr = foisc + flor + fif

[ [JfV - ‘LLV
= aun = aMTEM



Relativistic MHD in FLRW
Ty = (p+p)ubu’ +p g

aquM;/ — fvvisc + vaor + flgl/

= — uv = Hv
= —0,m = —0,Tgy



Relativistic MHD in FLRW
Ty = (p+p)ubu’ +p g

aquM]:/ — fvvisc + vaor + flgl/

= — uv = Hv
= —0,m = —0,Tgy

Consider a constant equation of state p = c2p



Relativistic MHD in FLRW

T;‘; =1 +cH)putu’ +czp gt

aquM;/ — fvvisc + vaor + flgl/

= — uv = Hv
= —0,m = —0,Tgy

Consider a constant equation of state » = ¢Zp



Relativistic MHD in FLRW

T;}/ =1 +cH)putu’ +czp gt

aquM]:/ — fvvisc + vaor + flgl/

= — uv = Hv
= —0,m = —0,Tgy

Consider a constant equation of state » = ¢Zp

Choose time coordinate as conformal time



Relativistic MHD in FLRW

Tp”;' =1 +c)putu’ +cipa*n*

aquM]:/ — fvvisc + vaor + flgl/

= uv = Hv
= —0,m = —0,Tgy

Consider a constant equation of state » = ¢Zp

Choose time coordinate as conformal time



Relativistic MHD in FLRW

Tp”;' =(1+c)putu¥ +cipa n*

wv __ rv Vv Vv
aquf — fvisc + fLor + fH
= —6M7t’“’ = —OMT;AZ
Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones



Relativistic MHD in FLRW

Tp”;/ =(1+c)putu¥ +cipa n*
0,TE =fY . + 1. +fY
Lipf _fmsc fLor fH

= — uv = Hv
= —0,m = —0,Tgy

Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones

p=a*p i* =aut =y(1,u) Tp“;

Cl6

Uuv
Tpf



Relativistic MHD in FLRW

Tys = +c))puara” +cl pnt
0,T)7 = fise + [lor + fH
UL pf _fvisc fLor fH

= — = Uy = (lakd
= —0,T = —0,Tgy

Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones

p=a*p i* =aut =y(1,u) Tp“;

Cl6

Uuv
Tpf



Relativistic MHD in FLRW

Tys = +c))puara” +cl pnt f=6""(1—-3c)pH
o, T* =fV +Ff" +fV
Uipf _fvisc fLor fH

= -0, =-0,T%,

Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones

~ __ 4 ~ U — TV __ 6 UV
p=a*p u* =au” =y(1,u) Ty =a’T,;



Relativistic MHD in FLRW

~ Ly o ~ 3 )

Tys =@ +cl)paka” +ci pnt fi =6"Y°(1-3cH)pH

aqu“;’ =y + .+ Consider radiation domination ci=1/3
= g, = -0,T}", - fg=0

Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones

~ __ 4 ~ U — TV __ 6 UV
p=a*p u* =au” =y(1,u) Ty =a’T,;



Relativistic MHD in FLRW

~ 4 1 ~ N

Th = S PUFEY 45 fy =61 —-3ci)pH

aﬁ;‘]}’ = fv"isc + fLVW Consider radiation domination ¢ = 1/3
= _g v = —a, T - fy=0

Consider a constant equation of state » = ¢Zp
Choose time coordinate as conformal time

Rescale physical quantities to comoving ones

~ __ 4 ~ U — TV __ 6 UV
p=a*p u* =au” =y(1,u) Ty =a’T,;
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4 1 e =20(14¢2)p[S98; — 1V - u)?

T~ ULV ~ ~ ] ~ ~ visc s) P ? U) ]:

T‘LLf —_ p uuuv + g p nl'[v - ~ 2\ ~ 2 ’ 1 ’ o ~

p 3 3 fvisc: (l—I—CS),O(V u + EV(V'U)+2(J'V)IHP),
~ o o R | .

u* =y(1,uw) S = (0" + o) U =S5V =2 (V-u) §Y
fo.=B-J, fi.=FB+JxB

0 TIJV — £V v 0/~ =5

ulyr fvisc +fLOT J" = v(pe + 0u - E), J' =9(peu+ G[FE + u x B))
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0 _ o~ 2y x[Qijo.. 1 2
T;; ~ % putu’ +% pnt ff:cjjzil:c;);(f?usi %é((;u)) 1r,2(1:‘i-V)1mﬁ)
ut =y(1,u) §9 = How + pu) =513
. =E-J, fiw=JE+J x B
(’)MTP“; — f;/lsc + vaor J° =~y(pe +6u- E), J'='7(PeU+a[E+uxB])
=FV(p,u,E,B)

,E=VxB-J, 8B=-VxE, V-E=J°, V-B=0, Maxwell

4 variables (0 & u) and 4 equations for the fluid — closed system!

How can we solve them numerically?
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of =3 P 3 P
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00 _ jo 0
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Relativistic MHD in FLRW: conservation form

Hv 4 [TV 1 uv u
Tp =g puu’+zpm ut =y(1,u)

Vv
aquMf =F"(p,u, E,B)
We need to choose the 4 variables to solve for

T2 TO! seems to be a natural choice

e

0
aOng);:) — —a]T]f +TO .
— p However, we first need to express p,u and T"

0f _ _ A 7Jt i in terms of the 4 variables T, T%
_ OoTpp == 0T + F

*all quantities are comoving
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Hv * MoV 1 Hv
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4 1
T =2 pubu 2ot uk=y(Luw)

e

0oT%° = —0,T7° + F°
0,T* = F¥(p,u,E,B) — -
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Fluid dynamics in the conservation form*

7,.2 — TOiTOi/(TOO)Z

, 1 2r%cé \/1 B 4r2c?

= 1 —
VT a =y T1x e (1 + c2)2
. TYTO 1 2 c2
T/t = 1-— ~— |+ 875 790 - = TJi[TO#
o [ y? 1+C§] Faray-a

*general c2



Fluid dynamics in the conservation form*

7,.2 — TOiTOi/(TOO)Z

5 1

. TYTO

Tt = T00
w

0,T

= 1
T

2 .2
21°C¢

142

i

'[1_ 1 c?

4rc

2
S

] + 871 700

(1 + c2)2

2

0
— 0;T’

— 0; T[T H]

C’ )
= TJL[TOu
sy

CONSERVATION FORM

*general c2
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Fluid dynamics in the conservation form

o

00 _ __ A 7j0
_ JoT o;T How do we solve them in the lattice?

| 0oT% = — §; T/ [T]

After discretizing the derivatives we get equations of the form

60X” = KH [XV] ¥ The RHS is a function of the fields themselves

Natural algorithm for timestepping — explicit Runge-Kutta
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Fluid dynamics in the conservation form

o

aOTOO
00T

—BjTjO - JCO[TOW
— 0; T/ [T O] - JCHTO

space discretization

0 0 0 For a lattice of size L with N points per direction and
K [T I’L] — V]T] lattice spacing 0x = L /N we have several possibilities

NEUTRAL DERIVATIVE

KTO] = v;T! flx+6x 1) — flx — 6x i)
(0) pran _
Vi f(x) = 20x

- 8;f(x) | +0(6x?)



Fluid dynamics in the conservation form

e

aOTOO
00T

.‘]CO[TOM] = V]T]O

KI[TO4] = VT

— 0,T’° -
— 0;TTH[TOH] -

NEUTRAL DERIVATIVE
f(x+6xi) — f(x—98x1i)

:7(0

vl

Tou-

TOK

space discretization

For a lattice of size L with N points per direction and
lattice spacing 0x = L /N we have several possibilities

V" f(x) =

Simpler at higher orders if

fields «live» at lattice sites

20X

- 8;f(x) | +035x?)
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o

f(x+ Ox1) — f(x —6x1)

4>

aoTOO —_— - a]TJO
00T " = — 0; T[T O]
NEUTRAL DERIVATIVE
(2)
kel

»:]{:O

:K‘i

- 0;f(x) )

T
ToH.

= Vj(O)TjO
= V].(O)Tji

+ 0(5x2)

Fluid dynamics often requires higher order spatial derivatives

(shocks, nonlinearities...
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vf ()| -

(0) @  —f(x+26xD)+8f(x+6x1) —8f(x—06xi)+ f(x—26x 1)
[V fx )] 126x

- 0;f(x)| +0(6x*)
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PaOTOO = — a]TJO - :K‘O:TO.“': —= V](O)T]O
0i o ()

] 00T = — 9; T [T O] . KUTOH] = v i
NEUTRAL DERIVATIVE

() (2) f (x+6xi)—f(x—0d6x1)
vf ()| -

(0) @  —f(x+26xD)+8f(x+6x1) —8f(x—06xi)+ f(x—26x 1)
[V f(:ﬂ 126x

lV(O)f( )](6) fx+36xi) —9f(x+26xi) +45f(x+6xi) —45f(x — 6x 1) + 9f(x — 26x 1) — f(x — 36x 1)
606x

> 0,f (0| +0(5x°)
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Runge-Kutta order (At)V
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»:]{:O

:K‘i
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1

Neutral derivative order (At)M
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— 0,T’°
— 9; T[T H]

Runge-Kutta order (At)V

4>

»:]{:O

:K‘i

T
ToH.

A special property of the CONSERVATION FORM

= Vj(O)TjO

= V].(O)Tji
|

Neutral derivative order (At)M
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2 V,T/#*(n) = 0

all lattice points n



Fluid dynamics in the conservation form

o

. } _ 0 .
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Fluid dynamics in the conservation form

o

~ aoTOO — — a]TJO —>
B GOTOi — — a]T]l[TOM] ->
1

Runge-Kutta order (At)V

KO[TO]

FCHTOH

A special property of the CONSERVATION FORM

= Vj(O)TjO

= V].(O)Tji
|

Neutral derivative order (At)M

When using periodic boundary conditions we have that (Gauss theorem)

2 VT (n) =0 ——

all lattice points n

).

Lall lattice points n

TO“(n)- =0




Fluid dynamics in the conservation form

o

. } _ 0 .
0,T°° = — 9;T/° ~ KO[TOH] = v
0oT° = — 9, T/ [T¥] > KT = v
Runge-Kutta order (At)V Neutral derivative order (At)M

A special property of the CONSERVATION FORM

When using periodic boundary conditions we have that (Gauss theorem)

' _ 0 —
2 VT (n) =0 — 0o(TH) = 0
all lattice points n
Average T°# conserved at machine precision!



Fluid dynamics in the conservation form

o

aOTOO
0T

0
— 9T
— ;T

An alternative form is obtained by substituting TV with its
expression in terms of the fluid primitive variables p and u

TH = (1 + c¢2)p utu” + c2p n*v

T =p(1+cdy?>—cip
T = p(1 + c2)y?u

T/t =p(1+ cHy*wu' +cZp &

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM

e

aOTOO
aOTOi

0
- aj T/ An alternative form is obtained by substituting T#" with its
. a-Tji expression in terms of the fluid primitive variables p and u
J

T = (1+c)putu? + cspnh”

T% =p(1+ciy?—cip
T% = p(1 + cHy*u!

T/t =p(1+ cHy*wu' +cZp &

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM
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An alternative form is obtained by substituting TV with its
expression in terms of the fluid primitive variables p and u

TH = (1 + c¢2)p utu” + c2p n*v

T = p(1+c5)y* —cs p Write the fluid equations (8, T*¥ = 0) in the form
T% = p(1+ cy*u' i — O .

dop = F with FY, F! functions of p, u
T/t = p(1 + c2)y?uut + c2p §7 i and their gradients

aou — F

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM
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dolp(1 + c2)y? —c2pl = —(1 + c2)d;(p y* v))
TH = (1 + c¢2)p utu” + c2p n*v

T =p(1+cdy*—cip
T = p(1 + c2)y?ut

TI' = p(1 + c2)y2uul + c2p 6/

ut =y(1,u)
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0olp(1 + cDy? —c2pl = —(1 + c2)d;(p y* W)
TH = (1 + c5)p utu¥ + cgp n | »

do[p(1 + cAy?u'] = —(1 + cDo;(py? u'w) — c2d;p
T =p(1+cdy*—cip

T = p(1 + c2)y?ut

T/t =p(1+cHy*wu' +cZp &

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM
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dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°
TH = (1 + c5)p utu¥ + cgp n | »
do[p(1 + cy*ul]l = —(1 + c2)0;(p y? u'n)) — c2o;p

T = p(1+c2)y*—cZp =K'
T = p(1 + c2)y?ut

T/t =p(1+cHy*wu' +cZp &

ut =y(1,u)
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o i A) Express 9,72 in terms of dyp
Y

dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°
TH = (1 + c5)p utu¥ + cgp n | »
do[p(1 + cy*ul]l = —(1 + c2)0;(p y? u'n)) — c2o;p

T = p(1+c2)y*—cZp =K'
T = p(1 + c?)y?u

T/t =p(1+cHy*wu' +cZp &

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM

e

aOTOO
aOTOi

0
— 0;T’

o i A) Express dyy 2 in terms of dyp
Y

dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°
TH = (1 + c5)p utu¥ + cgp n | »
do[p(1 + cy*ul]l = —(1 + c2)0;(p y? u'n)) — c2o;p

T = p(1+cdy? —cZp = X"
_ , . 27?2 .
T = p(1 + cA)y*u’ 0oy’ = y*2 u;0pu’ = ! > (WK = u?(cfdop + KO)]
p(1+cf)

T/t =p(1+cHy*wu' +cZp &

ut =y(1,u)
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Ny B) Use the expression for dyy2in the energy equation
— 0. T/t
J

dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°
TH = (1 + c¢2)p utu” + c2p n*v | .
] ] olp(1 + cHy?ul = —(1 + c2)0;(p y? u'ul) — cZo;p

T = p(1+cdy? —cZp = X"
_ , . 27?2 .
T = p(1 + cA)y*u’ 0oy’ = y*2 u;0pu’ = ! > (WK = u?(cfdop + KO)]
p(1+cf)

T/t =p(1+cHy*wu' +cZp &

ut =y(1,u)



Exercise no. 2: NON-CONSERVATION FORM
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Ny B) Use the expression for dyy2in the energy equation
— 0. T/t
J

dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°

TH = (1 + c¢2)p utu” + c2p n*v | .
] ] olp(1 + cHy?ul = —(1 + c2)0;(p y? u'ul) — cZo;p

T = p(1+cdy? —cZp = X"
_ , . 27?2 .
T = p(1 + cA)y*u’ 0oy’ = y*2 u;0pu’ = ! > (WK = u?(cfdop + KO)]
p(1+cf)

T/t =p(1+cHy*wu' +cZp &

S [+ U)K — 20 K1)

Jop = |
ut =y(1,u)
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C) Use dyy 2 and 9, p in the momentum equation

dolp(1 + cDy? —c2p] = —(1 + c2)o;(py? w) = K°
TH = (1 + c5)p utu¥ + cgp n | »
do[p(1 + cy*ul]l = —(1 + c2)0;(p y? u'n)) — c2o;p

T = p(1+cdy? —cZp = X"
_ , . 27?2 .
T = p(1 + cA)y*u’ 0oy’ = y*2 u;0pu’ = ! > (WK = u?(cfdop + KO)]
p(1+cf)

T/t =p(1+cHy*wu' +cZp &

S [+ U)K — 20 K1)

Jop = |
ut =y(1,u)



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9,1 L+e g +1_C52( V1
np =— U u- n
0 TP 1 — ciu? 1+ c? P

2 2 2

c: Vilnp Cs — C4
oou; = —(u-V) u; — + u; V-u-+ u-V)ln
0™ ( ) l 1-|—C52 )/2 l(l—Cszuz))/z[ 1 CSZ( ) P



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9, | 1te |g +1_C52( V)1
np =— U u-V)In
0 TP 1 — c2u? 1+ c? P

2 2 2

c: Vilnp oF: — C§
dou; = —(u-V) u; — + u; V-u+ u-V)In
ot == (V) = l(l_cguz)yz[ o Ving

After discretizing the RHS we are left with a system of equations of the form
doInp = G°[In p, u]
dou; = G'[Inp, u]



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9, | 1te |g +1_C52( V)1
np =— U u-V)In
0 TP 1 — c2u? 1+ c? P

2 2 2

c: Vilnp oF: — C§
dou; = —(u-V) u; — + u; V-u+ u-V)In
ot == (V) = l(l_cguz)yz[ o Ving

After discretizing the RHS we are left with a system of equations of the form

doInp = G°[Inp,u] —— The RHS depends on the fluid variables themselves

aoui — gi []n P, u] Natural algorithm for timestepping — explicit Runge-Kutta



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9, | 1te |g +1_C52( V)1
np =— U u-V)In
0 TP 1 — c2u? 1+ c? P

2 2 2

c: Vilnp oF: — C§
dou; = —(u-V) u; — + u; V-u+ u-V)In
ot == (V) = l(l_cguz)yz[ o Ving

We can easily discretize the RHS at order (6x)" considering In p and u living at lattice sites



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9, | Lte |g +1_C52( V)1
np =— U u-V)ln
0 TP 1 — c2u? 1+ c? P

2 2 2

c: Vilnp oF: — C§
dou; = —(u-V) u; — + Uu; V-u+ u-V)In
ot == (W) = 2o l(l_cguz)yz[ o Ving

We can easily discretize the RHS at order (6x)" considering In p and u living at lattice sites

V.u — [vj(O)uj](N)



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

9, | Lt |g +1_CSZ( V)1
np =— U u-V)In
0 TP 1 — c2u? 1+ c? P

2 2 2

c: Vilnp oF: — C§
dou; = —(u-V) u; — + Uu; V-u+ u-V)ln
== T w | v g min |

We can easily discretize the RHS at order (§x)" considering In p and u living at lattice sites

V-u- [Vj(o)uj](m (u-V)Inp - u; [V].(O) In p] "



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

1+ c?
1 — c2u?

v +1_CSZ( V)1
YTy e

S

dolnp = —

2
CS
[V-u+1+c2(u-V)lnp]

S

c2 V;lnp o
2 2 T U 2
14+cs vy (1 —céu?)y?

dou; = — (11 V) 11, —

We can easily discretize the RHS at order (§x)" considering In p and u living at lattice sites

V-u- [Vj(o)uj](m (u-V)Inp - u; [V].(O) In p] "

(N)
(u : V) u; — u]- [V]-(O)ul-]



Fluid dynamics in the non-conservation form

After a few manipulations we arrive at the NON-CONSERVATION FORM of fluid dynamics

0, | Lte |y +1_CSZ( V1
np =— ‘U u-V)in
0 TP 1 — c2u? 1+ c? P
2 2 2
c: Vilnp oF: — C§
Oou; = — (u-V) u; — + u; V-u+ u-V)Iln
o S 1+c2 y? l(l—cszuz)yz[ 1-|-C52( ) 'D]
We can easily discretize the RHS at order (§x)" considering In p and u living at lattice sites
(N) (N)
V-u- [Vj(o)uj] (u-V)Inp - u; [V].(O) In p]

(N) (N)
(u-V) u; -y [Vj(o)ui] Vilnp — [V?’) In p]



CONSERVATION vs NON-CONSERVATION FORM

| 5.700 — _ 3.7j0 rore 1 2rics Aries
aOT a]T TZZ(TOO)Z Y - 2(1—12) 1_1+CSZ+\/1_(1+C52)2
0,TO = — ajTji[TOM] — TO0J T O L c2 i 700 cé
_ [T = =50 [ _y21+c§]+ y?(1+c) —cs
- 14 ¢ 1—c
onlnp = — V.-u-+ u-V)In
0 p 1 _ C?uz 1 + CS? ( ) ,0
cz V;Inp cs — C3
oou; = — (u-V) u; — > l + u > V-u+ S(u-V)lnp]
o " o14c2 y? “(1 = c2u?)y? + ¢?




CONSERVATION vs NON-CONSERVATION FORM

o

00 — _ §.TJo oo L1 |2 Aries
aOT a]T TZZ(TOO)Z Y - 2(1—12) 1_1+C52+\/1_(1+C52)2
aOTOi — _ajTji[TOM] i o _ TOITO 1 2 i 700 cé

_ THT™] = =55 [ _y21+c§]+ y? (1 +cf) —cg
— 1+ c? 1—cs
onlnp = — V-u-+ u-V)Iln
0 TP 1 — c2u? 1+C52( i
cc Vi;lnp cs — C3
Oou; = — (u-V) uyy— ——— + u ; V-u+ u-V)ln
o =~ (- V) 1+c2 y? ‘(1 = cZu?)y? 1+c 2( e

Both forms can be solved with a Runge-Kutta timestepping scheme and neutral derivatives



CONSERVATION vs NON-CONSERVATION FORM

B 00 _ _ A.7j0 T OOl , 1 2r2c? 4r2c? |
aOT a]T TZZ(TOO)Z Y - 2(1—12) 1_1+C52+\/1_(1+C52)2
0,TO = — ajTji[TOM] rmony  TUTO L c2 i 700 cé

- AT = =70 [ ‘y21+c§]+ PP+ D) -2

- 14 ¢ 1—c

onlnp = — V-u-+ u-V)In
0 p 1 _ Cguz 1 + CS? ( ) ,0
c¢ Vilnp cs —Cs
au:—(u°V)u— > l + u > V-u+ S(u’V)lnp
o Y o1+ct y? "(1 - c2u?)y? + ¢Z

Which one is better?



CONSERVATION vs NON-CONSERVATION FORM

B 00 _ _ A.7j0 T OOl , 1 2r2c? 4r2c? |
aOT a]T TZZ(TOO)Z Y - 2(1—12) 1_1+C52+\/1_(1+C52)2
0,TO = — ajTji[TOM] — TO0J T O L c2 i 700 cé

- AT = =70 [ ‘y21+c§]+ PP+ D) -2

- 14 ¢ 1—c

onlnp = — V-u-+ u-V)In
0 p 1 _ Cguz 1 + CS? ( ) ,0
c¢ Vilnp cs —Cs
au:—(u°V)u— > l + U; > V-u+ S(u’V)lnp
o Y o1+ct y? "(1 - c2u?)y? + ¢Z

Which one is better? It depends on the physical problem!



Sub-relativistic limit «? « 1

NON-CONSERVATION FORM

9, 1 4G g ue 12% 0w
np=— ‘U u-
0P 1 —ciu? 14 ¢ np
c2 Vlnp c? 1—c?
Oou; = — (U-V) uy— — + u; ” V-u+ ~(u-V)1
o (V) u 1+c2 y? “(1 = c2u?)y? 1+c52( )Inp




Sub-relativistic limit «? « 1

NON-CONSERVATION FORM

X Sl MR Sl Y
np =— ‘U u-
0 TP 1 — c2u? 1+ c? np

c2 Vlnp c? 1—c?
Oou; = — (U-V) uy— — : + u; ” V-u+ ~(u-V)1
0 (V) w 1+c2 y? “(1 = cZu?)y? 1+csz( JInp

2

CSZ (u-V) lnp]

S

1 —
61 =—(1+ V-u+
ollp ( C)[ u 1+

cZ 1—c?
oou; = — (u-V) ui—1+SC2Vilnp+ui CSZ[V-u+1+CSZ(u.V)lnp]
- S S




Sub-relativistic limit «? « 1

NON-CONSERVATION FORM

o

1+ c?

dolnp = —

—

—

Jou; = — (u-V) w;—

Jou; = — (u-V) u;—

1 2
[V-u+1+ 2(u V)lnp]
c:2 V:In c2
S 2 l p+ul S
1+ cg

1 —
61 =—(1+ V-u+
olp ( C)[ u 1+

2

Cs

2

CSZ (u-V) lnp]

S

1 —

2

ZVilnp+ul- Cf[Vu+1+

Cs

CSZ(u-V)lnp]



Sub-relativistic limit «? « 1

NON-CONSERVATION FORM

9,1 A+ D) |Vt =% w1
np = — C u u - n

cZ , 1—c?
aoui=—(u-V)ui—1+ ZVl-lnp+ul-CS Vu+1+cz(uV)lnp

- CS S



Sub-relativistic limit «? « 1

NON-CONSERVATION FORM relativistic_eos=1

|

Missing factors in Pencil Code (in the default implementation they are 1)
from erroneously taking oy = 0

B 1—c?
dolnp=—-1+c2)|V-u+ ~(u-V)Inp
1+ ¢S
cZ , 1—c?
aouiz—(u-V)ui—l_l_ >Vilnp + u; ¢ V-u+1+c2(u-V)lnp

— CS S




Sub-relativistic limit «? « 1

NON-CONSERVATION FORM relativistic_eos=1

|

Missing factors in Pencil Code (in the default implementation they are 1)
from erroneously taking oy = 0

Now corrected — select lrelativistic_eos=T and lrelativistic_eos_corr=T in density run parameters

EN A+D)|Vout S vl

np =— C - u u-V)ln

0 P S 1+ng P

) cZ , 1—c?
aouiz—(u-V)ui—l_l_ >Vilnp + u; ¢ V-u+1+c2(u-V)lnp

S S

Se—
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