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Let us focus (for simplicity) on the subrelativistic limit (𝑐𝑠
2 ≪ 1, 𝑢2 ≪ 1)

The momentum equation, using a simple model for the viscosity, is
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𝑅𝑒 =
nonlinearities
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=

𝑣𝑟𝑚𝑠𝐿

𝜈

Experiments show that this ratio can be used to distinguish two different regimes 

Small Reynolds number 

A small change in the initial conditions causes
a small change in the fluid profiles 

(ordered flow)

Laminar regime

Large Reynolds number 

A small change in the initial conditions can cause
instabilities and big changes in the fluid profiles 

(chaotic flow)

Turbulent regime
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Since we are interested in studying them within a cosmological setting, let us focus on the study of 
statistically homogeneous and isotropic random fields

 𝒖 𝒙  = 𝑼

The average of a statistically homogeneous random field is a constant in space (invariant under translations)

Since the field is also statistically isotropic, this constant must be equal to zero (invariant under rotations)

 𝒖 𝒙  = 0

The first property of a statistically homogeneous and isotropic random field is that it has zero average
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𝑎𝑖  𝑏𝑗  𝐵𝑖𝑗 𝒓 = 𝒂 ⋅ 𝒃 𝑓1 𝑟 + 𝒂 ⋅ 𝒓 𝒃 ⋅ 𝒓  𝑓2 𝑟 + 𝒓 ⋅ 𝒂 ×  𝒃  𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗  𝛿𝑖𝑗  𝑓1 𝑟 + 𝑎𝑖  𝑏𝑗  Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝑎𝑖  𝑏𝑗  𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟



Statistically homogeneous and isotropic random fields

𝑎𝑖  𝑏𝑗  𝐵𝑖𝑗 𝒓 = 𝒂 ⋅ 𝒃 𝑓1 𝑟 + 𝒂 ⋅ 𝒓 𝒃 ⋅ 𝒓  𝑓2 𝑟 + 𝒓 ⋅ 𝒂 ×  𝒃  𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗  𝛿𝑖𝑗  𝑓1 𝑟 + 𝑎𝑖  𝑏𝑗  Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝑎𝑖  𝑏𝑗  𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟



Statistically homogeneous and isotropic random fields

𝑎𝑖  𝑏𝑗  𝐵𝑖𝑗 𝒓 = 𝒂 ⋅ 𝒃 𝑓1 𝑟 + 𝒂 ⋅ 𝒓 𝒃 ⋅ 𝒓  𝑓2 𝑟 + 𝒓 ⋅ 𝒂 ×  𝒃  𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗  𝛿𝑖𝑗  𝑓1 𝑟 + 𝑎𝑖  𝑏𝑗  Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝑎𝑖  𝑏𝑗  𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

≡ 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Statistically homogeneous and isotropic random fields

𝑎𝑖  𝑏𝑗  𝐵𝑖𝑗 𝒓 = 𝒂 ⋅ 𝒃 𝑓1 𝑟 + 𝒂 ⋅ 𝒓 𝒃 ⋅ 𝒓  𝑓2 𝑟 + 𝒓 ⋅ 𝒂 ×  𝒃  𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗  𝛿𝑖𝑗  𝑓1 𝑟 + 𝑎𝑖  𝑏𝑗  Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝑎𝑖  𝑏𝑗  𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

≡ 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

= 𝑃𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑀𝐿 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)
𝑃𝑖𝑗 = 𝛿𝑖𝑗 − Ƹ𝑟𝑖  Ƹ𝑟𝑗



Statistically homogeneous and isotropic random fields

𝑎𝑖  𝑏𝑗  𝐵𝑖𝑗 𝒓 = 𝒂 ⋅ 𝒃 𝑓1 𝑟 + 𝒂 ⋅ 𝒓 𝒃 ⋅ 𝒓  𝑓2 𝑟 + 𝒓 ⋅ 𝒂 ×  𝒃  𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗  𝛿𝑖𝑗  𝑓1 𝑟 + 𝑎𝑖  𝑏𝑗  Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝑎𝑖  𝑏𝑗  𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3(𝑟)

= 𝑎𝑖  𝑏𝑗 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑓1 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑟2𝑓2 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑟 𝑓3 𝑟

≡ 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

𝑀𝐻 𝑟 ≠ 0 if there is parity violation  [𝒓 ⋅ 𝒂 ×  𝒃  is not invariant under parity]

= 𝑃𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  𝑀𝐿 𝑟 + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)
𝑃𝑖𝑗 = 𝛿𝑖𝑗 − Ƹ𝑟𝑖  Ƹ𝑟𝑗



Statistically homogeneous and isotropic random fields

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Statistically homogeneous and isotropic random fields

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)



Exercise no. 1

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ⟨ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

A) Reduce it to a single integral

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

= ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 𝐵𝑖𝑗(𝒓) 𝒓 = 𝒚 − 𝒙

A) Reduce it to a single integral

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

= ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 𝐵𝑖𝑗(𝒓) 𝒓 = 𝒚 − 𝒙

= ඵ 𝑑3𝒙 𝑑3𝒓 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅(𝒓+𝒙) 𝐵𝑖𝑗(𝒓)

A) Reduce it to a single integral

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

= ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 𝐵𝑖𝑗(𝒓) 𝒓 = 𝒚 − 𝒙

= ඵ 𝑑3𝒙 𝑑3𝒓 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅(𝒓+𝒙) 𝐵𝑖𝑗(𝒓)

= ඵ 𝑑3𝒙 𝑑3𝒓 𝑒−𝑖 𝒌−𝒌′ ⋅𝒙 𝑒𝑖 𝒌′⋅ 𝒓 𝐵𝑖𝑗(𝒓)

A) Reduce it to a single integral

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 ⟨ 𝑢𝑖 𝒙 𝑢𝑗 𝒚  ⟩

= ඵ 𝑑3𝒙 𝑑3𝒚 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅𝒚 𝐵𝑖𝑗(𝒓) 𝒓 = 𝒚 − 𝒙

= ඵ 𝑑3𝒙 𝑑3𝒓 𝑒−𝑖 𝒌⋅𝒙 𝑒𝑖 𝒌′⋅(𝒓+𝒙) 𝐵𝑖𝑗(𝒓)

= ඵ 𝑑3𝒙 𝑑3𝒓 𝑒−𝑖 𝒌−𝒌′ ⋅𝒙 𝑒𝑖 𝒌′⋅ 𝒓 𝐵𝑖𝑗(𝒓) = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

A) Reduce it to a single integral

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓) We need to compute three integrals

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

We need to compute three integrals

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)



Exercise no. 1

Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

We need to compute three integrals

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

We need to compute three integrals

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

B) Compute 𝕏

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏

= 𝛿𝑖𝑗  2𝜋 න
−1

1

𝑑𝑐𝑜𝑠𝜃 න
0

∞

𝑑𝑟 𝑟2 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃 𝑀𝑁(𝑟)
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏

= 𝛿𝑖𝑗  2𝜋 න
−1

1

𝑑𝑐𝑜𝑠𝜃 න
0

∞

𝑑𝑟 𝑟2 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃 𝑀𝑁(𝑟)

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏

= 𝛿𝑖𝑗  2𝜋 න
−1

1

𝑑𝑐𝑜𝑠𝜃 න
0

∞

𝑑𝑟 𝑟2 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃 𝑀𝑁(𝑟)

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
𝑒𝑖 𝑘 𝑟 − 𝑒−𝑖𝑘𝑟

𝑖 𝑘 𝑟
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏

= 𝛿𝑖𝑗  2𝜋 න
−1

1

𝑑𝑐𝑜𝑠𝜃 න
0

∞

𝑑𝑟 𝑟2 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃 𝑀𝑁(𝑟)

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
𝑒𝑖 𝑘 𝑟 − 𝑒−𝑖𝑘𝑟

𝑖 𝑘 𝑟

= 𝛿𝑖𝑗  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘 𝑟
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𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)

B) Compute 𝕏

= 𝛿𝑖𝑗  2𝜋 න
−1

1

𝑑𝑐𝑜𝑠𝜃 න
0

∞

𝑑𝑟 𝑟2 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃 𝑀𝑁(𝑟)

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖 𝑘 𝑟 𝑐𝑜𝑠𝜃

= 𝛿𝑖𝑗  2𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
𝑒𝑖 𝑘 𝑟 − 𝑒−𝑖𝑘𝑟

𝑖 𝑘 𝑟

= 𝛿𝑖𝑗  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘 𝑟

= 𝛿𝑖𝑗  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟  𝑗0(𝑘𝑟)
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

C) Compute 𝕐

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌…
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

= 4 𝜋 න 𝑑𝑟 𝑟2𝑗0(𝑘𝑟) 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

= 4 𝜋 න 𝑑𝑟 𝑟2𝑗0(𝑘𝑟) 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

If we take the contraction of both with ෠𝑘𝑖
෠𝑘𝑗
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐
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𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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If we take the contraction of both with ෠𝑘𝑖
෠𝑘𝑗 𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 ෠𝑘 ⋅ Ƹ𝑟

2
𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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If we take the contraction of both with ෠𝑘𝑖
෠𝑘𝑗 𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 ෠𝑘 ⋅ Ƹ𝑟

2
𝑀𝐿 𝑟 − 𝑀𝑁 𝑟



Exercise no. 1

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure
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෠𝑘𝑗 𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 ෠𝑘 ⋅ Ƹ𝑟

2
𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

= 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟  න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃 cos2 𝜃
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C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

= 4 𝜋 න 𝑑𝑟 𝑟2𝑗0(𝑘𝑟) 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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= 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟  න
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1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃 cos2 𝜃 = 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
1

𝑖𝑘 2

𝑑2

𝑑𝑟2
න

−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃
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The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
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If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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= 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟  න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃 cos2 𝜃 = 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
1

𝑖𝑘 2

𝑑2

𝑑𝑟2
න

−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃

= 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
1

−𝑘2

𝑑2

𝑑𝑟2

sin 𝑘𝑟

𝑘𝑟
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C) Compute 𝕐
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If we take the contraction of both with 𝛿𝑖𝑗 3𝐴 𝑘 + 𝐵 𝑘 = න 𝑑3𝒓 𝑒𝑖𝒌⋅𝒓 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
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= 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟  න
−1

1

𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃 cos2 𝜃 = 2𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
1
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−1
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𝑑𝑐𝑜𝑠𝜃 𝑒𝑖𝑘𝑟 cos 𝜃

= 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
1

−𝑘2

𝑑2

𝑑𝑟2

sin 𝑘𝑟

𝑘𝑟
= 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟
+

2 cos 𝑘𝑟

𝑘𝑟 2
−

2 sin 𝑘𝑟

𝑘𝑟 3
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

3𝐴 𝑘 + 𝐵 𝑘 = 4 𝜋 න 𝑑𝑟 𝑟2
sin 𝑘𝑟

𝑘𝑟
𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

𝐴 𝑘 + 𝐵 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+

2 cos 𝑘𝑟

𝑘𝑟 2
−

2 sin 𝑘𝑟

𝑘𝑟 3
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C) Compute 𝕐
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𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

𝐴 𝑘 + 𝐵 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+

2 cos 𝑘𝑟

𝑘𝑟 2
−

2 sin 𝑘𝑟

𝑘𝑟 3

𝐴 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟 3 −
cos 𝑘𝑟

𝑘𝑟 2
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𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

C) Compute 𝕐

The result must be a rank-2 tensor built from 𝒌… We will then have the following general structure

𝕐 = 𝐴 𝑘 𝛿𝑖𝑗 + 𝐵 𝑘  ෠𝑘𝑖
෠𝑘𝑗

3𝐴 𝑘 + 𝐵 𝑘 = 4 𝜋 න 𝑑𝑟 𝑟2
sin 𝑘𝑟

𝑘𝑟
𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

𝐴 𝑘 + 𝐵 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+

2 cos 𝑘𝑟

𝑘𝑟 2
−

2 sin 𝑘𝑟

𝑘𝑟 3

𝐴 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟 3 −
cos 𝑘𝑟

𝑘𝑟 2

𝐵 𝑘 = 4𝜋 න 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
− 3

sin 𝑘𝑟

𝑘𝑟 3 + 3
cos 𝑘𝑟

𝑘𝑟 2
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)
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Compute the two-point correlator in Fourier space

Let us go to Fourier space and define 𝑢 𝒌 = ∫ 𝑑3𝒙 𝑒−𝑖 𝒌⋅𝒙 𝑢(𝒙)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3(𝒌 − 𝒌′) න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝐵𝑖𝑗(𝒓)

𝕐 = න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ]

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

𝐵𝑖𝑗 𝒓 = 𝛿𝑖𝑗  𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

D) Compute ℤ

𝕏 = 𝛿𝑖𝑗 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓𝑀𝑁(𝑟)



Exercise no. 1

ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

D) Compute ℤ
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ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

D) Compute ℤ

The result of the integral must be a rank-1 tensor built from 𝒌…
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ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

D) Compute ℤ

The result of the integral must be a rank-1 tensor built from 𝒌… → න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟 =  ෠𝑘𝑘  𝐶(𝑘)
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ℤ = 𝜖𝑖𝑗𝑘 න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟

D) Compute ℤ

The result of the integral must be a rank-1 tensor built from 𝒌… → න 𝑑3𝒓 𝑒𝑖 𝒌⋅𝒓 Ƹ𝑟𝑘  𝑀𝐻 𝑟 =  ෠𝑘𝑘  𝐶(𝑘)
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∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨ 𝑘𝑖  𝑢𝑖 𝒌  𝑢𝑗
∗ 𝒌′  ⟩
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨ 𝑘𝑖  𝑢𝑖 𝒌  𝑢𝑗
∗ 𝒌′  ⟩ = 𝑘𝑖  ⟨ 𝑢𝑖 𝒌  𝑢𝑗

∗ 𝒌′  ⟩



Two-point correlators of statistically homogeneous and isotropic random fields

⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨ 𝑘𝑖  𝑢𝑖 𝒌  𝑢𝑗
∗ 𝒌′  ⟩ = 𝑘𝑖  ⟨ 𝑢𝑖 𝒌  𝑢𝑗

∗ 𝒌′  ⟩

= 𝑘𝑖 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙
෠𝑘𝑙  𝐹𝐻 𝑘
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨ 𝑘𝑖  𝑢𝑖 𝒌  𝑢𝑗
∗ 𝒌′  ⟩ = 𝑘𝑖  ⟨ 𝑢𝑖 𝒌  𝑢𝑗

∗ 𝒌′  ⟩

= 𝑘𝑖 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙
෠𝑘𝑙  𝐹𝐻 𝑘

= 𝑘𝑗 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝐹𝐿 𝑘



Two-point correlators of statistically homogeneous and isotropic random fields

⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨ 𝑘𝑖  𝑢𝑖 𝒌  𝑢𝑗
∗ 𝒌′  ⟩ = 𝑘𝑖  ⟨ 𝑢𝑖 𝒌  𝑢𝑗

∗ 𝒌′  ⟩

= 𝑘𝑖 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙
෠𝑘𝑙  𝐹𝐻 𝑘

= 𝑘𝑗 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝐹𝐿 𝑘

→ 𝐹𝐿 𝑘 = 0 
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⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0 → 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0
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⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨𝜖𝑖𝑗𝑙  𝑘𝑗  𝑢𝑙 𝒌  𝑢𝑚
∗ 𝒌′  ⟩

→ 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨𝜖𝑖𝑗𝑙  𝑘𝑗  𝑢𝑙 𝒌  𝑢𝑚
∗ 𝒌′  ⟩ = 𝜖𝑖𝑗𝑙  𝑘𝑗  ⟨ 𝑢𝑙 𝒌  𝑢𝑚

∗ 𝒌′  ⟩

→ 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨𝜖𝑖𝑗𝑙  𝑘𝑗  𝑢𝑙 𝒌  𝑢𝑚
∗ 𝒌′  ⟩ = 𝜖𝑖𝑗𝑙  𝑘𝑗  ⟨ 𝑢𝑙 𝒌  𝑢𝑚

∗ 𝒌′  ⟩

= 𝜖𝑖𝑗𝑙  𝑘𝑗 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑙𝑚 𝐹𝑁 𝑘 + ෠𝑘𝑙  ෠𝑘𝑚 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑙𝑚𝑛
෠𝑘𝑛 𝐹𝐻 𝑘

→ 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨𝜖𝑖𝑗𝑙  𝑘𝑗  𝑢𝑙 𝒌  𝑢𝑚
∗ 𝒌′  ⟩ = 𝜖𝑖𝑗𝑙  𝑘𝑗  ⟨ 𝑢𝑙 𝒌  𝑢𝑚

∗ 𝒌′  ⟩

= 𝜖𝑖𝑗𝑙  𝑘𝑗 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑙𝑚 𝐹𝑁 𝑘 + ෠𝑘𝑙  ෠𝑘𝑚 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑙𝑚𝑛
෠𝑘𝑛 𝐹𝐻 𝑘

= 2𝜋 3𝛿3 𝒌 − 𝒌′ [𝜖𝑖𝑗𝑚 𝑘𝑗  𝐹𝑁 𝑘 + 𝑖 𝛿𝑖𝑚𝛿𝑗𝑛 − 𝛿𝑖𝑛𝛿𝑗𝑚  ෠𝑘𝑗  ෠𝑘𝑛 𝑘 𝐹𝐻(𝑘)]

→ 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

CASE 1: purely vortical field 𝛁 ⋅ 𝒖 = 0 → 𝑘𝑖𝑢𝑖 𝒌 = 0

0 = ⟨𝜖𝑖𝑗𝑙  𝑘𝑗  𝑢𝑙 𝒌  𝑢𝑚
∗ 𝒌′  ⟩ = 𝜖𝑖𝑗𝑙  𝑘𝑗  ⟨ 𝑢𝑙 𝒌  𝑢𝑚

∗ 𝒌′  ⟩

= 𝜖𝑖𝑗𝑙  𝑘𝑗 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑙𝑚 𝐹𝑁 𝑘 + ෠𝑘𝑙  ෠𝑘𝑚 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑙𝑚𝑛
෠𝑘𝑛 𝐹𝐻 𝑘

= 2𝜋 3𝛿3 𝒌 − 𝒌′ [𝜖𝑖𝑗𝑚 𝑘𝑗  𝐹𝑁 𝑘 + 𝑖 𝛿𝑖𝑚𝛿𝑗𝑛 − 𝛿𝑖𝑛𝛿𝑗𝑚  ෠𝑘𝑗  ෠𝑘𝑛 𝑘 𝐹𝐻(𝑘)]

→ 𝐹𝐿 𝑘 = 0 

CASE 2: purely compressional field 𝛁 ×  𝒖 = 0 → 𝜖𝑖𝑗𝑙𝑘𝑗𝑢𝑙 𝒌 = 0

= 2𝜋 3𝛿3 𝒌 − 𝒌′ [𝜖𝑖𝑗𝑚 𝑘𝑗  𝐹𝑁 𝑘 + 𝑖 𝛿𝑖𝑚 −  ෠𝑘𝑖  ෠𝑘𝑚  𝑘 𝐹𝐻(𝑘)]
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𝐹𝐿 𝑘 = 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

We have shown that

𝐹𝐻 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2𝑀𝐻 𝑟
sin 𝑘𝑟

𝑘𝑟 2
−

cos 𝑘𝑟

𝑘𝑟
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𝑘𝑟
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𝑑𝑟 𝑟2𝑀𝐻 𝑟
sin 𝑘𝑟

𝑘𝑟 2
−
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𝑘𝑟

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)
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−
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𝑘𝑟

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)
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We have shown that
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Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0
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𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟
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Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1
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𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛



Exercise no. 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛−2 − ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
(𝑘𝑟)2𝑛−2
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𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛−2 − ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
(𝑘𝑟)2𝑛−2

For 𝑛 = 0 these two terms cancel



Exercise no. 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ෍

𝑛=1

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛−2 − ෍

𝑛=1

∞
−1 𝑛

(2𝑛)!
(𝑘𝑟)2𝑛−2

For 𝑛 = 0 these two terms cancel



Exercise no. 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ෍

𝑛=1

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛−2 − ෍

𝑛=1

∞
−1 𝑛

(2𝑛)!
(𝑘𝑟)2𝑛−2

For 𝑛 = 0 these two terms cancel
We define 𝑛 = 𝑚 + 1



Exercise no. 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚
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𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚

= ෍

𝑛=0

∞

𝑘2𝑛 −1 𝑛
1

2𝑛 + 1 ! 2𝑛 + 3
4𝜋 න

0

𝑟0

𝑑𝑟 𝑟2𝑛+2 𝑀𝐿 𝑟 + 2 𝑛 + 1  𝑀𝑁 𝑟



Exercise no. 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚

= ෍

𝑛=0

∞

𝑘2𝑛 −1 𝑛
1

2𝑛 + 1 ! 2𝑛 + 3
4𝜋 න

0

𝑟0

𝑑𝑟 𝑟2𝑛+2 𝑀𝐿 𝑟 + 2 𝑛 + 1  𝑀𝑁 𝑟

The expansion is valid iff all the integrals converge, 
which happens only if 𝑀𝐿 𝑟 , 𝑀𝑁 𝑟 → 0 for 𝑟 → ∞
faster than any power law (causality condition)

For 𝑘 → 0
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𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

A) Find the first two nonzero terms in the Taylor expansion of 𝐹𝑁(𝑘) for 𝑘 → 0

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 + 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚

= ෍

𝑛=0

∞

𝑘2𝑛 −1 𝑛
1

2𝑛 + 1 ! 2𝑛 + 3
4𝜋 න

0

𝑟0

𝑑𝑟 𝑟2𝑛+2 𝑀𝐿 𝑟 + 2 𝑛 + 1  𝑀𝑁 𝑟

For 𝑘 → 0 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)



Exercise no. 2

⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

We have shown that

𝐹𝐿 𝑘 = 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

𝐹𝐻 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2𝑀𝐻 𝑟
sin 𝑘𝑟

𝑘𝑟 2
−

cos 𝑘𝑟

𝑘𝑟

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

B) Find the first two nonzero terms in the Taylor expansion of 𝐹𝐿(𝑘) for 𝑘 → 0
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𝐹𝐿 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

B) Find the first two nonzero terms in the Taylor expansion of 𝐹𝐿(𝑘) for 𝑘 → 0
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𝐹𝐿 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

B) Find the first two nonzero terms in the Taylor expansion of 𝐹𝐿(𝑘) for 𝑘 → 0

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 − 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚
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𝐹𝐿 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

B) Find the first two nonzero terms in the Taylor expansion of 𝐹𝐿(𝑘) for 𝑘 → 0

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 − 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚

= ෍

𝑛=0

∞

𝑘2𝑛 −1 𝑛
1

2𝑛 + 1 ! 2𝑛 + 3
4𝜋 න

0

𝑟0

𝑑𝑟 𝑟2𝑛+2 2𝑛 + 1  𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟
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𝐹𝐿 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)

sin 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
𝑥2𝑛+1 cos 𝑥 =  ෍

𝑛=0

∞
−1 𝑛

(2𝑛)!
𝑥2𝑛

B) Find the first two nonzero terms in the Taylor expansion of 𝐹𝐿(𝑘) for 𝑘 → 0

= 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟 ෍

𝑛=0

∞
−1 𝑛

(2𝑛 + 1)!
(𝑘𝑟)2𝑛 − 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 − ෍

𝑚=0

∞
−1 𝑚

2𝑚 + 3 !
𝑘𝑟 2𝑚 + ෍

𝑚=0

∞
−1 𝑚

(2𝑚 + 2)!
(𝑘𝑟)2𝑚

= ෍

𝑛=0

∞

𝑘2𝑛 −1 𝑛
1

2𝑛 + 1 ! 2𝑛 + 3
4𝜋 න

0

𝑟0

𝑑𝑟 𝑟2𝑛+2 2𝑛 + 1  𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟

For 𝑘 → 0 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋
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0
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𝐹𝑁(𝑘) ≃
4𝜋
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0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫
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𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋
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𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫
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𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case 𝐹𝐿 𝑘 = 0, 𝐹𝑁 𝑘 ≠ 0
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋
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∫
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𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
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𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋
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∫
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𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case 𝐹𝐿 𝑘 = 0, 𝐹𝑁 𝑘 ≠ 0

How does the leading term in 𝐹𝑁 for 𝑘 → 0 scale with 𝑘 in this case?  
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫
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𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case 𝐹𝐿 𝑘 = 0, 𝐹𝑁 𝑘 ≠ 0

How does the leading term in 𝐹𝑁 for 𝑘 → 0 scale with 𝑘 in this case?  

Since 𝐹𝐿 is identically zero, all the terms in its infinite series in powers of 𝑘 have to vanish, hence we also have
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫
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𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫
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𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋
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∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case 𝐹𝐿 𝑘 = 0, 𝐹𝑁 𝑘 ≠ 0

How does the leading term in 𝐹𝑁 for 𝑘 → 0 scale with 𝑘 in this case?  

Since 𝐹𝐿 is identically zero, all the terms in its infinite series in powers of 𝑘 have to vanish, hence we also have

𝐹𝐿 = 0 →
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 = 0 
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫
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𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case 𝐹𝐿 𝑘 = 0, 𝐹𝑁 𝑘 ≠ 0

How does the leading term in 𝐹𝑁 for 𝑘 → 0 scale with 𝑘 in this case?  

Since 𝐹𝐿 is identically zero, all the terms in its infinite series in powers of 𝑘 have to vanish, hence we also have

𝐹𝐿 = 0 →
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 = 0 → 𝐹𝑁 𝑘 ∼ 𝑘2 for 𝑘 → 0
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫
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𝐹𝑁(𝑘) ≃
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𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

D) Consider now the fully compressional case 𝐹𝑁 𝑘 = 0, 𝐹𝐿 𝑘 ≠ 0

How does the leading term in 𝐹𝐿 for 𝑘 → 0 scale with 𝑘 in this case?  
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For 𝑘 → 0

𝐹𝐿 𝑘 ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫
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𝑟0 𝑑𝑟 𝑟4 3 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 + 𝒪(𝑘4)

𝐹𝑁(𝑘) ≃
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 − 𝑘2 2𝜋

15
∫

0

𝑟0 𝑑𝑟 𝑟4 𝑀𝐿 𝑟 + 4 𝑀𝑁 𝑟 + 𝒪(𝑘4)

For the general case 𝐹𝑁 ≠ 0, 𝐹𝐿 ≠ 0 we find for 𝑘 → 0 a flat spectrum

Notice that the leading term is the same for both

D) Consider now the fully compressional case 𝐹𝑁 𝑘 = 0, 𝐹𝐿 𝑘 ≠ 0

How does the leading term in 𝐹𝐿 for 𝑘 → 0 scale with 𝑘 in this case?  

For the same reason as in the previous question

𝐹𝑁 = 0 →
4𝜋

3
 ∫

0

𝑟0 𝑑𝑟 𝑟2 𝑀𝐿 𝑟 + 2 𝑀𝑁 𝑟 = 0 → 𝐹𝐿 𝑘 ∼ 𝑘2 for 𝑘 → 0
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⟨𝑢𝑖 𝒙 𝑢𝑗 𝒚 ⟩  = 𝛿𝑖𝑗 𝑀𝑁 𝑟 + Ƹ𝑟𝑖  Ƹ𝑟𝑗  [𝑀𝐿 𝑟 − 𝑀𝑁 𝑟 ] + 𝜖𝑖𝑗𝑘  Ƹ𝑟𝑘  𝑀𝐻(𝑟)

⟨𝑢𝑖 𝒌 𝑢𝑗
∗ 𝒌′ ⟩ = 2𝜋 3𝛿3 𝒌 − 𝒌′ 𝛿𝑖𝑗 𝐹𝑁 𝑘 + ෠𝑘𝑖  ෠𝑘𝑗 𝐹𝐿 𝑘 − 𝐹𝑁 𝑘 + 𝑖 𝜖𝑖𝑗𝑙

෠𝑘𝑙  𝐹𝐻 𝑘

We have shown that

𝐹𝐿 𝑘 = 4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝐿 𝑟
sin 𝑘𝑟

𝑘𝑟
− 2 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

𝐹𝑁 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2 𝑀𝑁 𝑟
sin 𝑘𝑟

𝑘𝑟
+ 𝑀𝐿 𝑟 − 𝑀𝑁 𝑟

sin 𝑘𝑟

𝑘𝑟 3
−

cos 𝑘𝑟

𝑘𝑟 2

𝐹𝐻 𝑘 =  4𝜋 න
0

∞

𝑑𝑟 𝑟2𝑀𝐻 𝑟
sin 𝑘𝑟

𝑘𝑟 2
−

cos 𝑘𝑟

𝑘𝑟

Assume that all correlation functions 𝑀𝑁 𝑟 , 𝑀𝐿 𝑟 , 𝑀𝐻(𝑟) go to zero above a finite scale 𝑟 ≥ 𝑟0 (CAUSALITY)

We want to study the large scales (𝑘 → 0) properties of the different spectra (as consequences of causality)
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For 𝑘 → 0 𝐹𝐻 𝑘 ≃ 𝑘
4𝜋

3
න

0

𝑟0

𝑑𝑟 𝑟3𝑀𝐻 𝑟 − 𝑘3
2𝜋

15
න

0

𝑟0

𝑑𝑟 𝑟5𝑀𝐻 𝑟 + 𝒪(𝑘5)
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