

Nordita Winter School 2026

Cosmological Magnetic Fields:
Generation, Observation, and Modeling

Cosmological Magnetic Fields Theory **Exercise Session 3:** **Statistical description of turbulent** **velocity and magnetic fields**

Based on Monin & Yaglom «Statistical Fluid Mechanics: Mechanics of Turbulence»

**UNIVERSITÉ
DE GENÈVE**

**Swiss National
Science Foundation**

Antonino Salvino Midiri

antonino.midiri@unige.ch

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Let us go back to the fluid equations in the non-conservation form

$$\partial_0 \ln \rho = -\frac{1 + c_s^2}{1 - c_s^2 u^2} \left[\nabla \cdot \mathbf{u} + \frac{1 - c_s^2}{1 + c_s^2} (\mathbf{u} \cdot \nabla) \ln \rho \right]$$

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i - \frac{c_s^2}{1 + c_s^2} \frac{\nabla_i \ln \rho}{\gamma^2} + u_i \frac{c_s^2}{(1 - c_s^2 u^2) \gamma^2} \left[\nabla \cdot \mathbf{u} + \frac{1 - c_s^2}{1 + c_s^2} (\mathbf{u} \cdot \nabla) \ln \rho \right]$$

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Let us go back to the fluid equations in the non-conservation form

$$\partial_0 \ln \rho = -\frac{1 + c_s^2}{1 - c_s^2 u^2} \left[\nabla \cdot \mathbf{u} + \frac{1 - c_s^2}{1 + c_s^2} (\mathbf{u} \cdot \nabla) \ln \rho \right]$$

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i - \frac{c_s^2}{1 + c_s^2} \frac{\nabla_i \ln \rho}{\gamma^2} + u_i \frac{c_s^2}{(1 - c_s^2 u^2) \gamma^2} \left[\nabla \cdot \mathbf{u} + \frac{1 - c_s^2}{1 + c_s^2} (\mathbf{u} \cdot \nabla) \ln \rho \right]$$

Let us focus (for simplicity) on the subrelativistic limit ($c_s^2 \ll 1$, $u^2 \ll 1$)

The momentum equation, using a [simple model for the viscosity](#), is

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i + \nu \nabla^2 u_i - \frac{\nabla p}{\rho}$$

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i + \nu \nabla^2 u_i - \frac{\nabla p}{\rho}$$

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

To gain insight on the interplay between them we can consider a fluid motion with a characteristic lenght scale L and a characteristic velocity v_{rms}

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i + \nu \nabla^2 u_i - \frac{\nabla p}{\rho}$$

nonlinearities viscosity

$$\propto v_{rms}^2/L \qquad \propto \nu v_{rms}/L^2$$

To gain insight on the interplay between them we can consider a fluid motion with a characteristic lenght scale L and a characteristic velocity v_{rms}

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

$$\partial_0 u_i = -(\mathbf{u} \cdot \nabla) u_i + \nu \nabla^2 u_i - \frac{\nabla p}{\rho}$$

nonlinearities viscosity

$$\propto v_{rms}^2/L \qquad \propto \nu v_{rms}/L^2$$

To gain insight on the interplay between them we can consider a fluid motion with a characteristic lenght scale L and a characteristic velocity v_{rms}

We then define the **Reynolds number** as the ratio between nonlinearities and viscosity

$$Re = \frac{\text{nonlinearities}}{\text{viscosity}} = \frac{v_{rms} L}{\nu}$$

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

$$\partial_0 u_i = -\underbrace{(\mathbf{u} \cdot \nabla) u_i}_{\text{nonlinearities}} + \underbrace{\nu \nabla^2 u_i}_{\text{viscosity}} - \frac{\nabla p}{\rho}$$
$$Re = \frac{\text{nonlinearities}}{\text{viscosity}} = \frac{v_{rms} L}{\nu}$$

Experiments show that this ratio can be used to distinguish two different regimes

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

$$\partial_0 u_i = \underset{\text{nonlinearities}}{-(\mathbf{u} \cdot \nabla) u_i} + \underset{\text{viscosity}}{\nu \nabla^2 u_i} - \frac{\nabla p}{\rho} \quad Re = \frac{\text{nonlinearities}}{\text{viscosity}} = \frac{\nu_{rms} L}{\nu}$$

Experiments show that this ratio can be used to distinguish two different regimes

Small Reynolds number

A small change in the initial conditions causes
a small change in the fluid profiles
(ordered flow)

Laminar regime

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

$$\partial_0 u_i = \underset{\text{nonlinearities}}{-(\mathbf{u} \cdot \nabla) u_i} + \underset{\text{viscosity}}{\nu \nabla^2 u_i} - \frac{\nabla p}{\rho}$$

$$Re = \frac{\text{nonlinearities}}{\text{viscosity}} = \frac{v_{rms} L}{\nu}$$

Experiments show that this ratio can be used to distinguish two different regimes

Small Reynolds number

A small change in the initial conditions causes
a small change in the fluid profiles
(ordered flow)

Laminar regime

Large Reynolds number

A small change in the initial conditions can cause instabilities and big changes in the fluid profiles (chaotic flow)

Turbulent regime

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

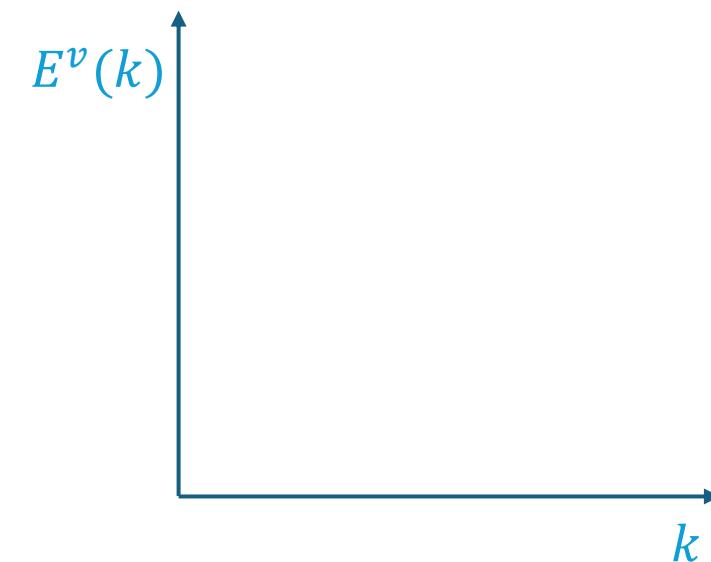
Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence



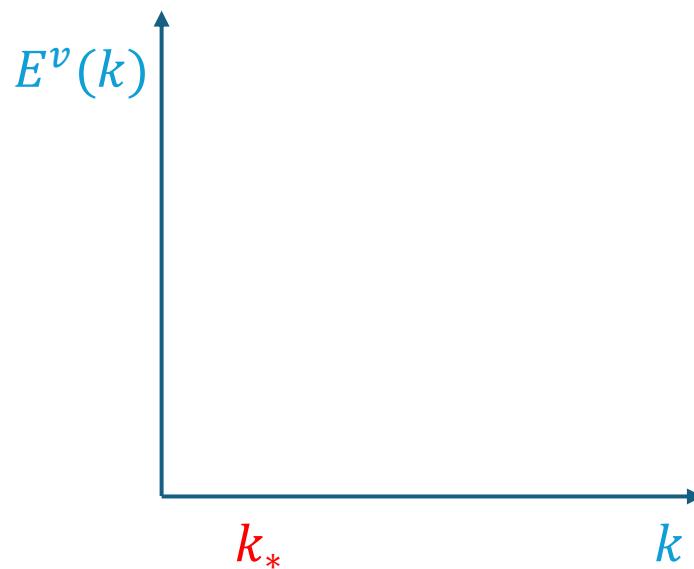
Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k_* in the power spectrum



Elements of hydrodynamic turbulence

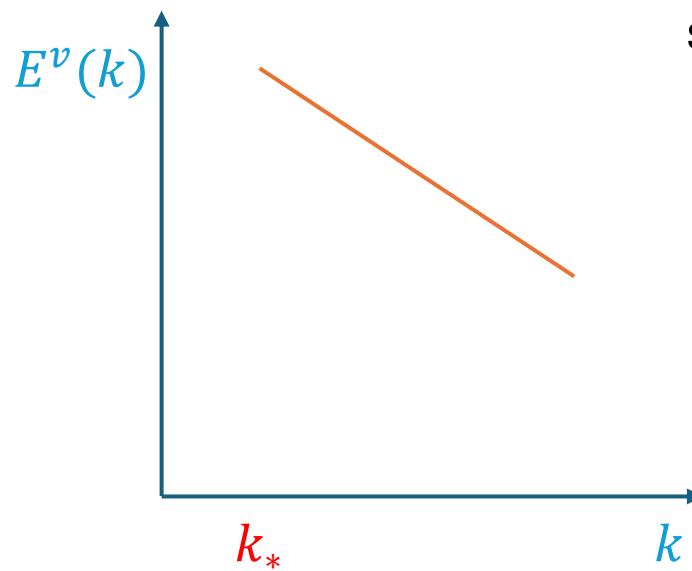
What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k_* in the power spectrum

Experimentally we see that in turbulence energy tends to move from larger to smaller scales (nonlinearities allow energy exchange between different scales)



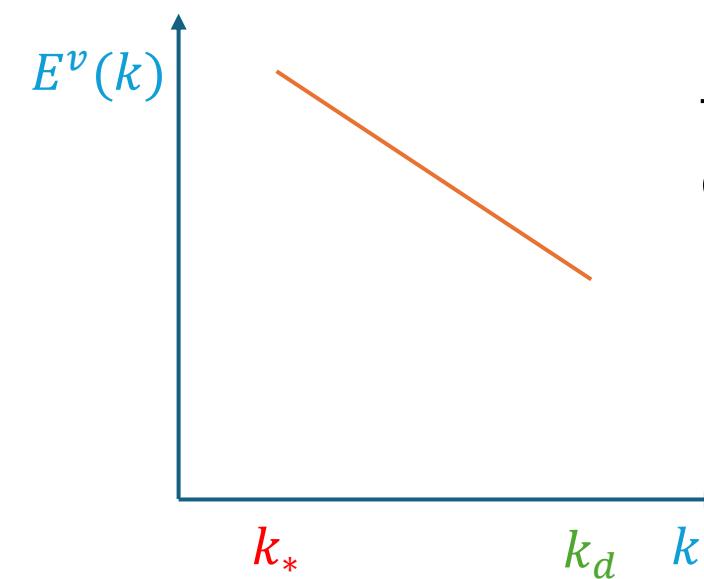
Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k_* in the power spectrum



Experimentally we see that in turbulence energy tends to move from larger to smaller scales (nonlinearities allow energy exchange between different scales)

This happens in the **inertial range**, which is between the injection scale k_* and the dissipation scale (at which viscosity balances nonlinearities) $k_d \approx v_{rms}/\nu$

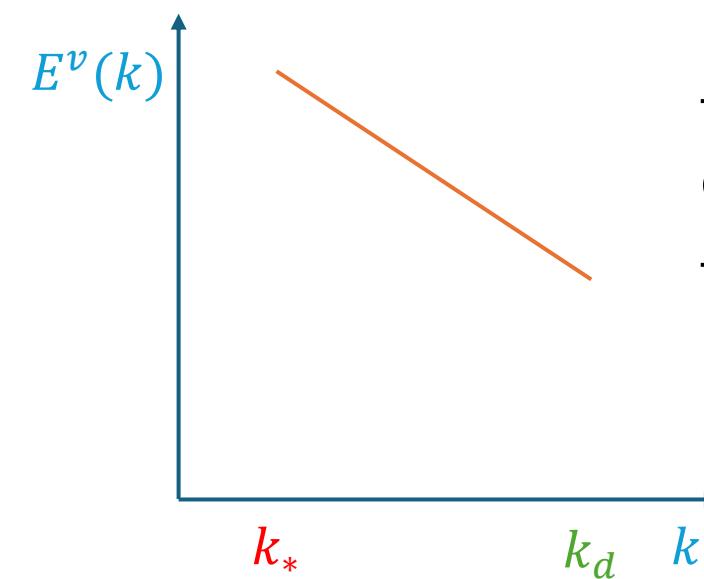
Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k_* in the power spectrum



Experimentally we see that in turbulence energy tends to move from larger to smaller scales (nonlinearities allow energy exchange between different scales)

This happens in the **inertial range**, which is between the injection scale k_* and the dissipation scale (at which viscosity balances nonlinearities) $k_d \approx v_{rms}/\nu$

The energy transfer rate is approximately scale independent

$$const = \epsilon = \frac{E}{\delta\tau_{eddy}} \propto \frac{v_{rms}^2}{\frac{1}{v_{rms} k}} \rightarrow v_{rms} \propto \epsilon^{\frac{1}{3}} k^{-\frac{1}{3}}$$

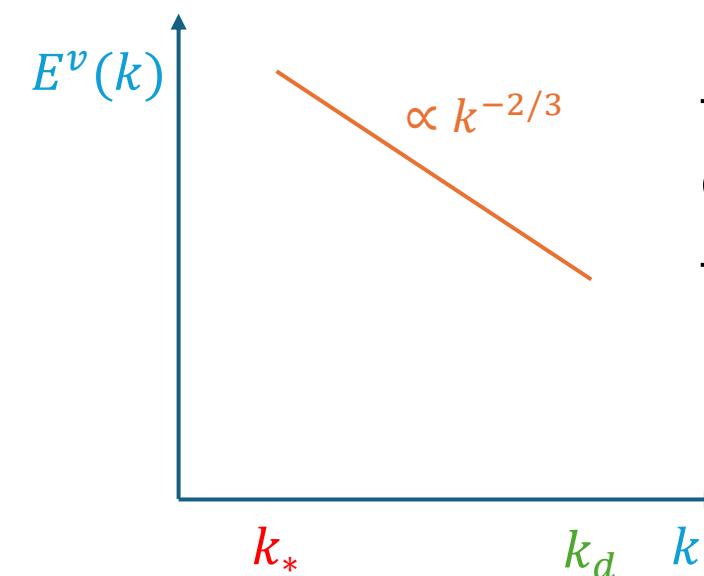
Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow → predicting the exact fluid motions requires extremely accurate knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k_* in the power spectrum



Experimentally we see that in turbulence energy tends to move from larger to smaller scales (nonlinearities allow energy exchange between different scales)

This happens in the **inertial range**, which is between the injection scale k_* and the dissipation scale (at which viscosity balances nonlinearities) $k_d \approx v_{rms}/\nu$

The energy transfer rate is approximately scale independent

$$const = \epsilon = \frac{E}{\delta\tau_{eddy}} \propto \frac{v_{rms}^2}{\frac{1}{v_{rms} k}} \rightarrow v_{rms} \propto \epsilon^{\frac{1}{3}} k^{-\frac{1}{3}}$$

Which implies the **Kolmogorov spectrum** for $k_* < k < k_d$ $E^v(k) d \ln k \propto v_{rms}^2 \rightarrow E^v(k) \propto v_{rms}^2 \propto \epsilon^{\frac{2}{3}} k^{-\frac{2}{3}}$

Statistical description of turbulence

→ Turbulent velocity and magnetic fields can be described by studying their statistical properties

Statistical description of turbulence

→ Turbulent velocity and magnetic fields can be described by studying their statistical properties

Since we are interested in studying them within a cosmological setting, let us focus on the study of
statistically homogeneous and isotropic random fields

Statistical description of turbulence

→ Turbulent velocity and magnetic fields can be described by studying their statistical properties

Since we are interested in studying them within a cosmological setting, let us focus on the study of
statistically homogeneous and isotropic random fields

The average of a statistically homogeneous random field is a constant in space (invariant under translations)

$$\langle \mathbf{u}(x) \rangle = \mathbf{U}$$

Statistical description of turbulence

→ Turbulent velocity and magnetic fields can be described by studying their statistical properties

Since we are interested in studying them within a cosmological setting, let us focus on the study of *statistically homogeneous and isotropic random fields*

The average of a statistically homogeneous random field is a constant in space (invariant under translations)

$$\langle \mathbf{u}(x) \rangle = \mathbf{U}$$

Since the field is also statistically isotropic, this constant must be equal to zero (invariant under rotations)

$$\langle \mathbf{u}(x) \rangle = 0$$

Statistical description of turbulence

→ Turbulent velocity and magnetic fields can be described by studying their statistical properties

Since we are interested in studying them within a cosmological setting, let us focus on the study of *statistically homogeneous and isotropic random fields*

The average of a statistically homogeneous random field is a constant in space (invariant under translations)

$$\langle \mathbf{u}(x) \rangle = \mathbf{U}$$

Since the field is also statistically isotropic, this constant must be equal to zero (invariant under rotations)

$$\langle \mathbf{u}(x) \rangle = 0$$

The first property of a statistically homogeneous and isotropic random field is that it has zero average

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(x) u_j(x + \mathbf{r}) \rangle$$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(x) u_j(x + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b}

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(\mathbf{x}, \mathbf{y}) = \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x}) u_j(\mathbf{x} + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b}
and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r})$$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(\mathbf{x}, \mathbf{y}) = \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x}) u_j(\mathbf{x} + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b}
and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r})$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(\mathbf{x}, \mathbf{y}) = \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x}) u_j(\mathbf{x} + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b} and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r})$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

The scalar products $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \cdot \mathbf{r}$, $\mathbf{b} \cdot \mathbf{r}$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(x) u_j(x + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b}
and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r})$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

The scalar products $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \cdot \mathbf{r}$, $\mathbf{b} \cdot \mathbf{r}$, the modulus of \mathbf{r}

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(\mathbf{x}, \mathbf{y}) = \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(\mathbf{x}) u_j(\mathbf{x} + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b}
and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r})$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

The scalar products $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \cdot \mathbf{r}$, $\mathbf{b} \cdot \mathbf{r}$, the modulus of \mathbf{r}

and the oriented volume of the parallelepiped formed by the three vectors $\epsilon_{ijk} a_i b_j r_k = \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b})$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(x) u_j(x + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b} and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r}) = \mathbf{a} \cdot \mathbf{b} f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r)$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

The scalar products $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \cdot \mathbf{r}$, $\mathbf{b} \cdot \mathbf{r}$, the modulus of \mathbf{r}

and the oriented volume of the parallelepiped formed by the three vectors $\epsilon_{ijk} a_i b_j r_k = \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b})$

Statistically homogeneous and isotropic random fields

What can we say about the two point function?

$$B_{ij}(x, y) = \langle u_i(x) u_j(y) \rangle$$

For a statistically homogeneous random field it can only depend on the vector $\mathbf{r} = \mathbf{y} - \mathbf{x}$
(invariance under translations)

$$B_{ij}(\mathbf{r}) = \langle u_i(x) u_j(x + \mathbf{r}) \rangle$$

In order to study the implications of statistical isotropy we can define two direction vectors \mathbf{a} and \mathbf{b} and define the following quantity which has to be invariant under rotations

$$a_i b_j B_{ij}(\mathbf{r}) = \mathbf{a} \cdot \mathbf{b} f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r)$$

Which quantities built out of $\mathbf{a}, \mathbf{b}, \mathbf{r}$ are invariant under rotations?

all terms must be linear in \mathbf{a} and \mathbf{b}

The scalar products $\mathbf{a} \cdot \mathbf{b}$, $\mathbf{a} \cdot \mathbf{r}$, $\mathbf{b} \cdot \mathbf{r}$, the modulus of \mathbf{r}

and the oriented volume of the parallelepiped formed by the three vectors $\epsilon_{ijk} a_i b_j r_k = \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b})$

Statistically homogeneous and isotropic random fields

$$a_i b_j B_{ij}(\mathbf{r}) = \mathbf{a} \cdot \mathbf{b} \ f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r)$$

Statistically homogeneous and isotropic random fields

$$a_i b_j B_{ij}(\mathbf{r}) = \mathbf{a} \cdot \mathbf{b} \ f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r)$$

$$= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r)$$

Statistically homogeneous and isotropic random fields

$$\begin{aligned} a_i b_j B_{ij}(\mathbf{r}) &= \mathbf{a} \cdot \mathbf{b} \ f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r) \\ &= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &= a_i b_j [\delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)] \end{aligned}$$

Statistically homogeneous and isotropic random fields

$$a_i b_j B_{ij}(\mathbf{r}) = \mathbf{a} \cdot \mathbf{b} f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r)$$

$$= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r)$$

$$= a_i b_j [\delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)]$$

—————> $B_{ij}(\mathbf{r}) = \delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)$

Statistically homogeneous and isotropic random fields

$$\begin{aligned} a_i b_j B_{ij}(\mathbf{r}) &= \mathbf{a} \cdot \mathbf{b} \ f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r) \\ &= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &= a_i b_j [\delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)] \\ \\ \longrightarrow \quad B_{ij}(\mathbf{r}) &= \delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &\equiv \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r) \end{aligned}$$

Statistically homogeneous and isotropic random fields

$$\begin{aligned} a_i b_j B_{ij}(\mathbf{r}) &= \mathbf{a} \cdot \mathbf{b} \ f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r) \\ &= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &= a_i b_j [\delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)] \end{aligned}$$

$$\begin{aligned} \longrightarrow B_{ij}(\mathbf{r}) &= \delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &\equiv \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r) \\ P_{ij} &= \delta_{ij} - \hat{r}_i \hat{r}_j \end{aligned}$$

Statistically homogeneous and isotropic random fields

$$\begin{aligned} a_i b_j B_{ij}(\mathbf{r}) &= \mathbf{a} \cdot \mathbf{b} f_1(r) + (\mathbf{a} \cdot \mathbf{r})(\mathbf{b} \cdot \mathbf{r}) f_2(r) + \mathbf{r} \cdot (\mathbf{a} \times \mathbf{b}) f_3(r) \\ &= a_i b_j \delta_{ij} f_1(r) + a_i b_j \hat{r}_i \hat{r}_j r^2 f_2(r) + a_i b_j \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &= a_i b_j [\delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r)] \end{aligned}$$

$$\begin{aligned} \longrightarrow B_{ij}(\mathbf{r}) &= \delta_{ij} f_1(r) + \hat{r}_i \hat{r}_j r^2 f_2(r) + \epsilon_{ijk} \hat{r}_k r f_3(r) \\ &\equiv \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r) \\ P_{ij} &= \delta_{ij} - \hat{r}_i \hat{r}_j \quad = P_{ij} M_N(r) + \hat{r}_i \hat{r}_j M_L(r) + \epsilon_{ijk} \hat{r}_k M_H(r) \end{aligned}$$

$M_H(r) \neq 0$ if there is parity violation [$\mathbf{r} \cdot (\mathbf{a} \times \mathbf{b})$ is not invariant under parity]

Statistically homogeneous and isotropic random fields

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Statistically homogeneous and isotropic random fields

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = \langle \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

A) Reduce it to a single integral

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

A) Reduce it to a single integral

$$\begin{aligned} \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle \\ &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} B_{ij}(\mathbf{r}) \quad \xleftarrow{\mathbf{r} = \mathbf{y} - \mathbf{x}} \end{aligned}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

A) Reduce it to a single integral

$$\begin{aligned} \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle \\ &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} B_{ij}(\mathbf{r}) \quad \xleftarrow{\mathbf{r} = \mathbf{y} - \mathbf{x}} \\ &= \iint d^3x d^3r e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot (\mathbf{r} + \mathbf{x})} B_{ij}(\mathbf{r}) \end{aligned}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

A) Reduce it to a single integral

$$\begin{aligned} \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle \\ &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} B_{ij}(\mathbf{r}) \quad \xleftarrow{\mathbf{r} = \mathbf{y} - \mathbf{x}} \\ &= \iint d^3x d^3r e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot (\mathbf{r} + \mathbf{x})} B_{ij}(\mathbf{r}) \\ &= \iint d^3x d^3r e^{-i (\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{r}} B_{ij}(\mathbf{r}) \end{aligned}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i \mathbf{k} \cdot \mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

A) Reduce it to a single integral

$$\begin{aligned} \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} \langle u_i(\mathbf{x}) u_j(\mathbf{y}) \rangle \\ &= \iint d^3x d^3y e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{y}} B_{ij}(\mathbf{r}) \quad \xleftarrow{\mathbf{r} = \mathbf{y} - \mathbf{x}} \\ &= \iint d^3x d^3r e^{-i \mathbf{k} \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot (\mathbf{r} + \mathbf{x})} B_{ij}(\mathbf{r}) \\ &= \iint d^3x d^3r e^{-i (\mathbf{k} - \mathbf{k}') \cdot \mathbf{x}} e^{i \mathbf{k}' \cdot \mathbf{r}} B_{ij}(\mathbf{r}) = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i \mathbf{k} \cdot \mathbf{r}} B_{ij}(\mathbf{r}) \end{aligned}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r}) \quad \text{We need to compute three integrals}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r}) \quad \text{We need to compute three integrals}$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r}) \quad \text{We need to compute three integrals}$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r}) \quad \text{We need to compute three integrals}$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

B) Compute \mathbb{X}

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

B) Compute \mathbb{X}

$$\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

Exercise no. 1

B) Compute \mathbb{X}

$$\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r) = \delta_{ij} 2\pi \int_{-1}^1 d\cos\theta \int_0^\infty dr r^2 e^{i\mathbf{k}\cdot\mathbf{r}\cos\theta} M_N(r)$$

Exercise no. 1

B) Compute \mathbb{X}

$$\begin{aligned}\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r) &= \delta_{ij} 2\pi \int_{-1}^1 d\cos\theta \int_0^\infty dr r^2 e^{i\mathbf{k}\cdot\mathbf{r}\cos\theta} M_N(r) \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \int_{-1}^1 d\cos\theta e^{i\mathbf{k}\cdot\mathbf{r}\cos\theta}\end{aligned}$$

Exercise no. 1

B) Compute \mathbb{X}

$$\begin{aligned}\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r) &= \delta_{ij} 2\pi \int_{-1}^1 d\cos\theta \int_0^\infty dr r^2 e^{i\mathbf{k}\cdot\mathbf{r} \cos\theta} M_N(r) \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \int_{-1}^1 d\cos\theta e^{i\mathbf{k}\cdot\mathbf{r} \cos\theta} \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \frac{e^{i\mathbf{k}\cdot\mathbf{r}} - e^{-i\mathbf{k}\cdot\mathbf{r}}}{i\mathbf{k}\cdot\mathbf{r}}\end{aligned}$$

Exercise no. 1

B) Compute \mathbb{X}

$$\begin{aligned}\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r) &= \delta_{ij} 2\pi \int_{-1}^1 d\cos\theta \int_0^\infty dr r^2 e^{i k r \cos\theta} M_N(r) \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \int_{-1}^1 d\cos\theta e^{i k r \cos\theta} \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \frac{e^{i k r} - e^{-ikr}}{i k r} \\ &= \delta_{ij} 4\pi \int_0^\infty dr r^2 M_N(r) \frac{\sin kr}{k r}\end{aligned}$$

Exercise no. 1

B) Compute \mathbb{X}

$$\begin{aligned}\mathbb{X} = \delta_{ij} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r) &= \delta_{ij} 2\pi \int_{-1}^1 d\cos\theta \int_0^\infty dr r^2 e^{i k r \cos\theta} M_N(r) \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \int_{-1}^1 d\cos\theta e^{i k r \cos\theta} \\ &= \delta_{ij} 2\pi \int_0^\infty dr r^2 M_N(r) \frac{e^{i k r} - e^{-ikr}}{i k r} \\ &= \delta_{ij} 4\pi \int_0^\infty dr r^2 M_N(r) \frac{\sin kr}{k r} \\ &= \delta_{ij} 4\pi \int_0^\infty dr r^2 M_N(r) j_0(kr)\end{aligned}$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

C) Compute \mathbb{Y}

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ...

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij} $3A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)]$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

$$= 2\pi \int dr r^2 [M_L(r) - M_N(r)] \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos^2\theta$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

$$= 2\pi \int dr r^2 [M_L(r) - M_N(r)] \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos^2\theta = 2\pi \int dr r^2 [M_L(r) - M_N(r)] \frac{1}{(ik)^2} \frac{d^2}{dr^2} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta}$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

$$\begin{aligned} &= 2\pi \int dr r^2 [M_L(r) - M_N(r)] \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos^2\theta = 2\pi \int dr r^2 [M_L(r) - M_N(r)] \frac{1}{(ik)^2} \frac{d^2}{dr^2} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \\ &= 4\pi \int dr r^2 [M_L(r) - M_N(r)] \frac{1}{-k^2} \frac{d^2}{dr^2} \left[\frac{\sin kr}{kr} \right] \end{aligned}$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

If we take the contraction of both with δ_{ij}

$$\begin{aligned} 3A(k) + B(k) &= \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [M_L(r) - M_N(r)] \\ &= 4\pi \int dr r^2 j_0(kr) [M_L(r) - M_N(r)] \end{aligned}$$

If we take the contraction of both with $\hat{k}_i \hat{k}_j$

$$A(k) + B(k) = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} (\hat{k} \cdot \hat{r})^2 [M_L(r) - M_N(r)]$$

$$\begin{aligned} &= 2\pi \int dr r^2 [M_L(r) - M_N(r)] \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos^2\theta = 2\pi \int dr r^2 [M_L(r) - M_N(r)] \frac{1}{(ik)^2} \frac{d^2}{dr^2} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \\ &= 4\pi \int dr r^2 [M_L(r) - M_N(r)] \frac{1}{-k^2} \frac{d^2}{dr^2} \left[\frac{\sin kr}{kr} \right] = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} + \frac{2\cos kr}{(kr)^2} - \frac{2\sin kr}{(kr)^3} \right] \end{aligned}$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

$$3A(k) + B(k) = 4\pi \int dr r^2 \frac{\sin kr}{kr} [M_L(r) - M_N(r)]$$

$$A(k) + B(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} + \frac{2 \cos kr}{(kr)^2} - \frac{2 \sin kr}{(kr)^3} \right]$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

$$3A(k) + B(k) = 4\pi \int dr r^2 \frac{\sin kr}{kr} [M_L(r) - M_N(r)]$$

$$A(k) + B(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} + \frac{2 \cos kr}{(kr)^2} - \frac{2 \sin kr}{(kr)^3} \right]$$

$$A(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right]$$

Exercise no. 1

C) Compute \mathbb{Y}

$$\mathbb{Y} = \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

The result must be a rank-2 tensor built from \mathbf{k} ... We will then have the following general structure

$$\mathbb{Y} = A(k)\delta_{ij} + B(k) \hat{k}_i \hat{k}_j$$

$$3A(k) + B(k) = 4\pi \int dr r^2 \frac{\sin kr}{kr} [M_L(r) - M_N(r)]$$

$$A(k) + B(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} + \frac{2 \cos kr}{(kr)^2} - \frac{2 \sin kr}{(kr)^3} \right]$$

$$A(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right]$$

$$B(k) = 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right]$$

Exercise no. 1

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

D) Compute \mathbb{Z}

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

Let us go to Fourier space and define $u(\mathbf{k}) = \int d^3x e^{-i\mathbf{k}\cdot\mathbf{x}} u(\mathbf{x})$

Compute the two-point correlator in Fourier space

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} B_{ij}(\mathbf{r})$$

$$\mathbb{X} = \delta_{ij} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} M_N(r)$$

$$\mathbb{Y} = \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)]$$

$$\mathbb{Z} = \epsilon_{ijk} \int d^3r e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ...

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ...

$$\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ...

$$\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$$

If we take the contraction of both with \hat{k}_k

$$C(k) = \int d^3\mathbf{r} e^{ik\cdot\mathbf{r}} (\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) M_H(r)$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ... $\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$

If we take the contraction of both with \hat{k}_k

$$C(k) = \int d^3\mathbf{r} e^{ik\cdot\mathbf{r}} (\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) M_H(r) = 2\pi \int dr r^2 M_H(r) \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos\theta$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ... $\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$

If we take the contraction of both with \hat{k}_k

$$C(k) = \int d^3\mathbf{r} e^{ik\cdot\mathbf{r}} (\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) M_H(r) = 2\pi \int dr r^2 M_H(r) \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos\theta$$

$$= 2\pi \int dr r^2 M_H(r) \frac{1}{ik} \frac{d}{dr} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta}$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ... $\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$

If we take the contraction of both with \hat{k}_k

$$\begin{aligned} C(k) &= \int d^3\mathbf{r} e^{ik\cdot\mathbf{r}} (\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) M_H(r) = 2\pi \int dr r^2 M_H(r) \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos\theta \\ &= 2\pi \int dr r^2 M_H(r) \frac{1}{ik} \frac{d}{dr} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} = 4\pi \int dr r^2 M_H(r) \frac{1}{ik} \frac{d}{dr} \left[\frac{\sin kr}{kr} \right] \end{aligned}$$

Exercise no. 1

D) Compute \mathbb{Z}

$$\mathbb{Z} = \epsilon_{ijk} \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r)$$

The result of the integral must be a rank-1 tensor built from \mathbf{k} ... $\rightarrow \int d^3\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \hat{r}_k M_H(r) = \hat{k}_k C(k)$

If we take the contraction of both with \hat{k}_k

$$\begin{aligned} C(k) &= \int d^3\mathbf{r} e^{ik\cdot\mathbf{r}} (\hat{\mathbf{r}} \cdot \hat{\mathbf{k}}) M_H(r) = 2\pi \int dr r^2 M_H(r) \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} \cos\theta \\ &= 2\pi \int dr r^2 M_H(r) \frac{1}{ik} \frac{d}{dr} \int_{-1}^1 d\cos\theta e^{ikr \cos\theta} = 4\pi \int dr r^2 M_H(r) \frac{1}{ik} \frac{d}{dr} \left[\frac{\sin kr}{kr} \right] \\ &= i 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k}) \quad \text{XXX}$$

$$\mathcal{F}_{ij}(\mathbf{k}) = \delta_{ij} 4\pi \int_0^\infty dr r^2 M_N(r) \left[\frac{\sin kr}{kr} \right]$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k}) \quad \mathbb{X} + \mathbb{Y}$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k}) \quad \text{XX} + \text{YY} + \text{ZZ}$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \\ & + i \epsilon_{ijl} \hat{k}_l 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k})$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \\ & + i \epsilon_{ijl} \hat{k}_l 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ \equiv & \delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k) \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k})$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \\ & + i \epsilon_{ijl} \hat{k}_l 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ \equiv & \delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k) \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k})$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \\ & + i \epsilon_{ijl} \hat{k}_l 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ \equiv & \delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k) \end{aligned}$$

Two-point correlator in Fourier space

$$B_{ij}(\mathbf{r}) = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') \mathcal{F}_{ij}(\mathbf{k})$$

$$\begin{aligned} \mathcal{F}_{ij}(\mathbf{k}) = & \delta_{ij} 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ & + \hat{k}_i \hat{k}_j 4\pi \int dr r^2 [M_L(r) - M_N(r)] \left[\frac{\sin kr}{kr} - 3 \frac{\sin kr}{(kr)^3} + 3 \frac{\cos kr}{(kr)^2} \right] \\ & + i \epsilon_{ijl} \hat{k}_l 4\pi \int dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ \equiv & \delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k) \end{aligned}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0$

$$0 = \langle k_i u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0$

$$0 = \langle k_i u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = k_i \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0$

$$0 = \langle k_i u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = k_i \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

$$= k_i (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0$

$$0 = \langle k_i u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = k_i \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

$$= k_i (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

$$= k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') F_L(k)$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

$$0 = \langle k_i u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle = k_i \langle u_i(\mathbf{k}) u_j^*(\mathbf{k}') \rangle$$

$$= k_i (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

$$= k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') F_L(k)$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

$$= \epsilon_{ijl} k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{lm} F_N(k) + \hat{k}_l \hat{k}_m [F_L(k) - F_N(k)] + i \epsilon_{lmn} \hat{k}_n F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

$$= \epsilon_{ijl} k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{lm} F_N(k) + \hat{k}_l \hat{k}_m [F_L(k) - F_N(k)] + i \epsilon_{lmn} \hat{k}_n F_H(k)]$$

$$= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}) \hat{k}_j \hat{k}_n k F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

$$= \epsilon_{ijl} k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{lm} F_N(k) + \hat{k}_l \hat{k}_m [F_L(k) - F_N(k)] + i \epsilon_{lmn} \hat{k}_n F_H(k)]$$

$$= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}) \hat{k}_j \hat{k}_n k F_H(k)]$$

$$= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} - \hat{k}_i \hat{k}_m) k F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0 \rightarrow F_N(k) = 0$

$$0 = \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle$$

$$= \epsilon_{ijl} k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{lm} F_N(k) + \hat{k}_l \hat{k}_m [F_L(k) - F_N(k)] + i \epsilon_{lmn} \hat{k}_n F_H(k)]$$

$$= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}) \hat{k}_j \hat{k}_n k F_H(k)]$$

$$= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} - \hat{k}_i \hat{k}_m) k F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

CASE 1: purely vortical field $\nabla \cdot \mathbf{u} = 0 \rightarrow k_i u_i(\mathbf{k}) = 0 \rightarrow F_L(k) = 0$

CASE 2: purely compressional field $\nabla \times \mathbf{u} = 0 \rightarrow \epsilon_{ijl} k_j u_l(\mathbf{k}) = 0 \rightarrow F_N(k) = 0$
 $\rightarrow F_H(k) = 0$

$$\begin{aligned} 0 &= \langle \epsilon_{ijl} k_j u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle = \epsilon_{ijl} k_j \langle u_l(\mathbf{k}) u_m^*(\mathbf{k}') \rangle \\ &= \epsilon_{ijl} k_j (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{lm} F_N(k) + \hat{k}_l \hat{k}_m [F_L(k) - F_N(k)] + i \epsilon_{lmn} \hat{k}_n F_H(k)] \\ &= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} \delta_{jn} - \delta_{in} \delta_{jm}) \hat{k}_j \hat{k}_n k F_H(k)] \\ &= (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\epsilon_{ijm} k_j F_N(k) + i(\delta_{im} - \hat{k}_i \hat{k}_m) k F_H(k)] \end{aligned}$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

Two-point correlators of statistically homogeneous and isotropic random fields

$$\langle u_i(x)u_j(y) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(k)u_j^*(k') \rangle = (2\pi)^3 \delta^3(k - k') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Exercise no. 2

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Exercise no. 2

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

Exercise no. 2

$$\langle u_i(\mathbf{x})u_j(\mathbf{y}) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(\mathbf{k})u_j^*(\mathbf{k}') \rangle = (2\pi)^3 \delta^3(\mathbf{k} - \mathbf{k}') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\langle u_i(x)u_j(y) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(k)u_j^*(k') \rangle = (2\pi)^3 \delta^3(k - k') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned} F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n-2} - \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} (kr)^{2n-2} \right] \right\} \end{aligned}$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned} F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n-2} - \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} (kr)^{2n-2} \right] \right\} \end{aligned}$$

For $n = 0$ these two terms cancel

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n-2} - \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-2} \right] \right\}
 \end{aligned}$$

For $n = 0$ these two terms cancel

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n-2} - \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-2} \right] \right\}
 \end{aligned}$$

For $n = 0$ these two terms cancel
We define $n = m + 1$

$$\begin{aligned}
 \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} & \cos x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
 \end{aligned}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[- \sum_{m=0}^\infty \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^\infty \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\}
 \end{aligned}$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[- \sum_{m=0}^\infty \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^\infty \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \\
 &= \sum_{n=0}^\infty k^{2n} (-1)^n \left[\frac{1}{(2n+1)! (2n+3)} \right] 4\pi \int_0^{r_0} dr r^{2n+2} [M_L(r) + 2(n+1) M_N(r)]
 \end{aligned}$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[- \sum_{m=0}^\infty \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^\infty \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \\
 &= \sum_{n=0}^\infty k^{2n} (-1)^n \left[\frac{1}{(2n+1)! (2n+3)} \right] 4\pi \int_0^{r_0} dr r^{2n+2} [M_L(r) + 2(n+1) M_N(r)]
 \end{aligned}$$

For $k \rightarrow 0$

The expansion is valid iff all the integrals converge, which happens only if $M_L(r), M_N(r) \rightarrow 0$ for $r \rightarrow \infty$ faster than any power law (causality condition)

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 A) Find the first two nonzero terms in the Taylor expansion of $F_N(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_N(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] + [M_L(r) - M_N(r)] \left[- \sum_{m=0}^\infty \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^\infty \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \\
 &= \sum_{n=0}^\infty k^{2n} (-1)^n \left[\frac{1}{(2n+1)! (2n+3)} \right] 4\pi \int_0^{r_0} dr r^{2n+2} [M_L(r) + 2(n+1) M_N(r)]
 \end{aligned}$$

$$\text{For } k \rightarrow 0 \quad \simeq \frac{4\pi}{3} \int_0^{r_0} dr r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 B) Find the first two nonzero terms in the Taylor expansion of $F_L(k)$ for $k \rightarrow 0$

$$\langle u_i(x)u_j(y) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(k)u_j^*(k') \rangle = (2\pi)^3 \delta^3(k - k') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 B) Find the first two nonzero terms in the Taylor expansion of $F_L(k)$ for $k \rightarrow 0$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 B) Find the first two nonzero terms in the Taylor expansion of $F_L(k)$ for $k \rightarrow 0$

$$\begin{aligned} F_L(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\ &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] - 2[M_L(r) - M_N(r)] \left[- \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \end{aligned}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 B) Find the first two nonzero terms in the Taylor expansion of $F_L(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_L(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] - 2[M_L(r) - M_N(r)] \left[- \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \\
 &= \sum_{n=0}^{\infty} k^{2n} (-1)^n \left[\frac{1}{(2n+1)! (2n+3)} \right] 4\pi \int_0^{r_0} dr r^{2n+2} [(2n+1) M_L(r) + 2 M_N(r)]
 \end{aligned}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 B) Find the first two nonzero terms in the Taylor expansion of $F_L(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_L(k) &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\} \\
 &= 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} (kr)^{2n} \right] - 2[M_L(r) - M_N(r)] \left[- \sum_{m=0}^\infty \frac{(-1)^m}{(2m+3)!} (kr)^{2m} + \sum_{m=0}^\infty \frac{(-1)^m}{(2m+2)!} (kr)^{2m} \right] \right\} \\
 &= \sum_{n=0}^\infty k^{2n} (-1)^n \left[\frac{1}{(2n+1)! (2n+3)} \right] 4\pi \int_0^{r_0} dr r^{2n+2} [(2n+1) M_L(r) + 2 M_N(r)]
 \end{aligned}$$

$$\text{For } k \rightarrow 0 \quad \simeq \frac{4\pi}{3} \int_0^{r_0} dr r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

C) Let us now consider the fully vortical case $F_L(k) = 0, F_N(k) \neq 0$

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

C) Let us now consider the fully vortical case $F_L(k) = 0, F_N(k) \neq 0$

How does the leading term in F_N for $k \rightarrow 0$ scale with k in this case?

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

C) Let us now consider the fully vortical case $F_L(k) = 0, F_N(k) \neq 0$

How does the leading term in F_N for $k \rightarrow 0$ scale with k in this case?

Since F_L is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \, r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \, r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

C) Let us now consider the fully vertical case $F_L(k) = 0, F_N(k) \neq 0$

How does the leading term in F_N for $k \rightarrow 0$ scale with k in this case?

Since F_L is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have

$$F_L = 0 \rightarrow \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] = 0$$

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \, r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \, r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

C) Let us now consider the fully vertical case $F_L(k) = 0, F_N(k) \neq 0$

How does the leading term in F_N for $k \rightarrow 0$ scale with k in this case?

Since F_L is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have

$$F_L = 0 \rightarrow \frac{4\pi}{3} \int_0^{r_0} dr \, r^2 [M_L(r) + 2 M_N(r)] = 0 \quad \rightarrow F_N(k) \sim k^2 \text{ for } k \rightarrow 0$$

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

D) Consider now the fully compressional case $F_N(k) = 0, F_L(k) \neq 0$

How does the leading term in F_L for $k \rightarrow 0$ scale with k in this case?

Exercise no. 2

For $k \rightarrow 0$

$$F_N(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [M_L(r) + 4 M_N(r)] + \mathcal{O}(k^4)$$

$$F_L(k) \simeq \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] - k^2 \frac{2\pi}{15} \int_0^{r_0} dr \ r^4 [3 M_L(r) + 2 M_N(r)] + \mathcal{O}(k^4)$$

For the general case $F_N \neq 0, F_L \neq 0$ we find for $k \rightarrow 0$ a flat spectrum

Notice that the **leading term** is the same for both

D) Consider now the fully compressional case $F_N(k) = 0, F_L(k) \neq 0$

How does the leading term in F_L for $k \rightarrow 0$ scale with k in this case?

For the same reason as in the previous question

$$F_N = 0 \rightarrow \frac{4\pi}{3} \int_0^{r_0} dr \ r^2 [M_L(r) + 2 M_N(r)] = 0 \quad \rightarrow F_L(k) \sim k^2 \text{ for } k \rightarrow 0$$

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\langle u_i(x)u_j(y) \rangle = \delta_{ij} M_N(r) + \hat{r}_i \hat{r}_j [M_L(r) - M_N(r)] + \epsilon_{ijk} \hat{r}_k M_H(r)$$

$$\langle u_i(k)u_j^*(k') \rangle = (2\pi)^3 \delta^3(k - k') [\delta_{ij} F_N(k) + \hat{k}_i \hat{k}_j [F_L(k) - F_N(k)] + i \epsilon_{ijl} \hat{k}_l F_H(k)]$$

We have shown that

$$F_N(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_N(r) \left[\frac{\sin kr}{kr} \right] + [M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_L(k) = 4\pi \int_0^\infty dr r^2 \left\{ M_L(r) \left[\frac{\sin kr}{kr} \right] - 2[M_L(r) - M_N(r)] \left[\frac{\sin kr}{(kr)^3} - \frac{\cos kr}{(kr)^2} \right] \right\}$$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$F_H(k) = 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right]$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned} F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n+1} \right] - \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-1} \right] \right\} \end{aligned}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned} F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\ &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n+1} \right] - \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-1} \right] \right\} \\ &\quad \underbrace{\qquad\qquad\qquad}_{\text{For } n=0 \text{ these two terms cancel}} \end{aligned}$$

$$\begin{aligned} \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \\ \cos x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} \end{aligned}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\
 &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n-1} \right] - \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-1} \right] \right\}
 \end{aligned}$$

For $n = 0$ these two terms cancel

$$\begin{aligned}
 \sin x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} & \cos x &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}
 \end{aligned}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\
 &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} (kr)^{2n-1} \right] - \left[\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} (kr)^{2n-1} \right] \right\}
 \end{aligned}$$

For $n = 0$ these two terms cancel
 We define $n = m + 1$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\
 &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ - \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+3)!} (kr)^{2m+1} \right] + \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+2)!} (kr)^{2m+1} \right] \right\}
 \end{aligned}$$

For $n = 0$ these two terms cancel
 We define $n = m + 1$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\
 &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ - \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+3)!} (kr)^{2m+1} \right] + \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+2)!} (kr)^{2m+1} \right] \right\} \\
 &= \sum_{n=0}^{\infty} k^{2n+1} (-1)^n 4\pi \int_0^{r_0} dr \frac{r^{2n+3} M_H(r)}{(2n+1)! (2n+3)}
 \end{aligned}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

Assume that all correlation functions $M_N(r), M_L(r), M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)

Exercise no. 2 E) Find the first two nonzero terms in the Taylor expansion of $F_H(k)$ for $k \rightarrow 0$

$$\begin{aligned}
 F_H(k) &= 4\pi \int_0^\infty dr r^2 M_H(r) \left[\frac{\sin kr}{(kr)^2} - \frac{\cos kr}{kr} \right] \\
 &= 4\pi \int_0^\infty dr r^2 M_H(r) \left\{ - \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+3)!} (kr)^{2m+1} \right] + \left[\sum_{m=0}^{\infty} \frac{(-1)^m}{(2m+2)!} (kr)^{2m+1} \right] \right\} \\
 &= \sum_{n=0}^{\infty} k^{2n+1} (-1)^n 4\pi \int_0^{r_0} dr \frac{r^{2n+3} M_H(r)}{(2n+1)! (2n+3)}
 \end{aligned}$$

$$\text{For } k \rightarrow 0 \quad F_H(k) \simeq k \frac{4\pi}{3} \int_0^{r_0} dr r^3 M_H(r) - k^3 \frac{2\pi}{15} \int_0^{r_0} dr r^5 M_H(r) + \mathcal{O}(k^5)$$

Assume that all correlation functions $M_N(r)$, $M_L(r)$, $M_H(r)$ go to zero above a finite scale $r \geq r_0$ (CAUSALITY)

We want to study the large scales ($k \rightarrow 0$) properties of the different spectra (as consequences of causality)