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Let us focus (for simplicity) on the subrelativistic limit (cZ < 1, u? <« 1)
The momentum equation, using a simple model for the viscosity, is
Vp

Oou; = —(u-V)u; +v Viu; — p



Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms
2 Vp
dou; = —(u-V)u; + vVvouy; ——
p



Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?
The evolution of the velocity is strongly dependent on the interplay between two terms
Vp

Oou; = —(u - V)u; + v Viu; — p

nonlinearities viscosity



Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?
The evolution of the velocity is strongly dependent on the interplay between two terms
Vp

Oou; = —(u-V)u; +v Viu; — p

nonlinearities viscosity

To gain insight on the interplay between them we can consider a fluid motion with a
characteristic lenght scale L and a characteristic velocity v,



Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

2 Vp
Jou; = —(u-V)u; +vVvou, ——
P
nonlinearities viscosity
X Vs /L XV Upps /L?

To gain insight on the interplay between them we can consider a fluid motion with a
characteristic lenght scale L and a characteristic velocity v,



Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

The evolution of the velocity is strongly dependent on the interplay between two terms

2 Vp
Jou; = —(u-Vu; +vVvoiu, ——
P
nonlinearities viscosity
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To gain insight on the interplay between them we can consider a fluid motion with a
characteristic lenght scale L and a characteristic velocity v,

We then define the Reynolds number as the ratio between nonlinearities and viscosity
nonlinearities v,.,,cL
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Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Vp nonlinearities v, .L
doU; = —(u . V)ul + v Vzui - Re — . . _ rms
P VISCOSIty Vv

nonlinearities viscosity

Experiments show that this ratio can be used to distinguish two different regimes

Small Reynolds number Large Reynolds number
A small change in the initial conditions causes A small change in the initial conditions can cause
a small change in the fluid profiles instabilities and big changes in the fluid profiles
(ordered flow) (chaotic flow)

Laminar regime Turbulent regime
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Elements of hydrodynamic turbulence

What is hydrodynamic turbulence?

Turbulence features chaotic flow — predicting the exact fluid motions requires extremely accurate
knowledge of the initial conditions

However there are universal statistical (average) properties of turbulence

Suppose that turbulence was generated after an injection of energy at a scale k., in the power spectrum

E” (k)

Experimentally we see that in turbulence energy tends to move from larger to
smaller scales (nonlinearities allow energy exchange between different scales)

This happens in the , which is between the injection scale k, and the
dissipation scale (at which viscosity balances nonlinearities) k; = v,.,,/V

The energy transfer rate is approximately scale independent

k.

Which implies the
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Statistical description of turbulence

— Turbulent velocity and magnetic fields can be described by studying their statistical properties

Since we are interested in studying them within a cosmological setting, let us focus on the study of
Statistically homogeneous and isotropic random fields

The average of a statistically homogeneous random field is a constant in space (invariant under translations)
(u(x))=U

Since the field is also statistically isotropic, this constant must be equal to zero (invariant under rotations)

(u(x)) =0

The first property of a statistically homogeneous and isotropic random field is that it has zero average
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Statistically homogeneous and isotropic random fields

What can we say about the two point function?

Bij(x,y) = (u;(x) u;(y) )

For a statistically homogeneous random field it can only depend on thevector ¥ =7y — X
(invariance under translations)

B;j(r) = (uw;(x) uj(x + 7))

In order to study the implications of statistical isotropy we can define two direction vectors a and b
and define the following quantity which has to be invariant under rotations

a; bj Bij(r)=a-b f;(r) +(a-r)(b-7) f(r) + 1 -(a X b) f3(7)

Which quantities built out of a, b, r are invariant under rotations? all terms must be linearin a and b

The scalar productsa b, a-r, b-r , the modulus of r
and the oriented volume of the parallepiped formed by the three vectors €;jkaibjre =7 (@ X b)
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a; bj Bij(r)=a-b fi(r)+(@a-r)(b-r) f,(r) +7r-(a X b) f3(r)

= a; bj 0y fl(r)_l_alb Ti 7 ZfZ(r)_I_alb Eij Tre T f3(7)

_alb [511 f1(7")+7” f 2f2<”’")+5uk Tk Tf3(7")]

" Bl](r) — 51] fl(r) + rl zfz(r) + €ijk 7ﬂk ng(?‘)
= 6;; My(r) + 7 7 [M,(r) — MN(T)] + €5 Tie My (1)
= Pij My(r) + 7, F; M () + €y Fix My (1)

P;j = 0y — 15

-

My (r) # 0 if there is parity violation [ - (@ X b) is notinvariant under parity]
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B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)
Let us go to Fourier space and define u(k) = [ d3x e t¥* y(x)

Compute the two-point correlator in Fourier space

<ul (k)u]* (k’)) = (27'[)353(,( — k,) J d3r eik'rBij(r)
X = 51] d31" eik'rMN(r)
Y = f B et kT 7 7 [My(r) — My (1)

7, = Eijk f d3r eik'r 'f'k MH(T')



Exercise no. 1 C) Compute Y

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)
Let us go to Fourier space and define u(k) = [ d3x e t¥* y(x)

Compute the two-point correlator in Fourier space

<ul (k)u]* (k’)) = (27'[)353(,( — k,) J d3r eik'rBij(r)
X = 51] d31" eik'rMN(r)
Y = f B et kT 7 7 [My(r) — My (1)

7, = Eijk f d3r eik'r 'f'k MH(T')



Exercise no. 1 C) Compute Y

Y = Jd?’r et KT 7y 7 [My(1r) — My ()]
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Y = Jd?’r et KT 7y 7 [My(1r) — My ()]

The result must be a rank-2 tensor built from k...
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If we take the contraction of both with §;;



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 f dr r2jo(kr) [My(r) — My(r)]



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 f dr r2jo(kr) [My(r) — My(r)]

If we take the contraction of both with l?ilch



Exercise no. 1 Y

Y = J d3r et 77 # [My (1) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 j dr r2jo(kr) [My(r) — My(r)]

If we take the contraction of both with l?ilch A(k) + B(k) — f d31" eik"’" (E . f)Z[ML (7") — MN (7")]



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 j dr r2jo(kr) [My(r) — My(r)]

If we take the contraction of both with Eilch A(k) + B(k) — f d31‘ eik'r (i& : 7/’\')2[ML (T) — MN(T)]



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 j dr r2jo(kr) [My(r) — My(r)]

If we take the contraction of both with Eilch A(k) + B(k) — f d31‘ eik'r (i& : f)Z[ML (T) — MN (7‘)]

1
= ZEJ dr r?[M;(r) — My ()] f dcos@ etkT cost o2 g
-1



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

= 4 [ dr r2joCkr) [My(r) = My(r)
If we take the contraction of both with l:cl-l?j A(k) + B(k) — f d31‘ eik'r (l; : f)Z[ML (T) — MN (7‘)]

2

(ik)? dr?

1 1
= an dr r?[M;(r) — My ()] f dcos@ kT €0s 0 co52 g = ZnJ dr r2[M;(r) — My(1)] f dcos@ etk cos o
-1 -1



Exercise no. 1 C) Compute Y

Y = J & e kT 7 [My(r) — My(1)
The result must be a rank-2 tensor built from k... We will then have the following general structure
If we take the contraction of both with §;; 3A(k) 4 B(k) — j d3r eik'r [ML(r) — MN(r)]
= 4 [ dr r2joCkr) [My(r) = My(r)
If we take the contraction of both with IEL-IEJ- A(k) + B(k) — f d31‘ eik'r (l; : f)Z[ML (T) — MN(T)]

2

(ik)? dr?

1 1
= an dr r?[M;(r) — My ()] f dcos@ kT €0s 0 co52 g = an dr r2[M;(r) — My(1)] f dcos@ etk cos o
-1 -1

— 4r j dr 72, () — My ()] —— - [Si“’”]

—k2dr?| kr



Exercise no. 1 C) Compute Y

Y = J d3r et ¥ # [My(r) — My ()]
The result must be a rank-2 tensor built from k... We will then have the following general structure
Y = A(k)6;; + B(k) k;k;
If we take the contraction of both with;;  3A(k) + B(k) = j d3r e [M;(r) — My(r)]

=47 j dr r2jo(kr) [My(r) — My(r)]

If we take the contraction of both with IEL-IEJ- A(k) + B(k) — f d31‘ eik'r (l; : f)Z[ML (T) — MN (T)]

2
(ik)? dr?
1 d? [sin kr sinkr 2coskr 2sin kr]

il ] =47derr2[ML(r)—MN(r)][ e 2~ ()3

1 1
= 271[ dr r?[M;(r) — My ()] f dcos@ kT €0s 0 co52 g = an dr r2[M;(r) — My(1)] f dcos@ etk cos o
-1 -1

- 471] dr r*[M,(r) — My(r)]




Exercise no. 1 C) Compute Y

— 3 Lkr p »
V= [ dretri g M)~ My()
The result must be a rank-2 tensor built from k... We will then have the following general structure

sin kr

kr
sinkr 2coskr 2sin kr
A(k B(k) =4 dr r?[M — M —
( )+ ( ) T[j rr [ L(r) N(T)] kr + (kr)z (kr)g

34(k) + B(k) = 41 f dr 12 22 () = My ()]




Exercise no. 1

— 3 Lkr p »
V= [ dretri g M)~ My()
The result must be a rank-2 tensor built from k... We will then have the following general structure

ST 0 () — My ()]

kr
ink 2 k ink
A(k) + B(k) = 471] dr r?[M; (r) — My(1)] [SIZT ! + E:;;:)zr — Z(Sklr);]

343k + B(k) = 4 nf dr 12

in k k
A(k) = 47Tj dr r4[M;(r) — My(7)] [S(ll:,); — C((;(ST)Z]



Exercise no. 1

Y = J d3r et 77 # [My (1) — My ()]

The result must be a rank-2 tensor built from k... We will then have the following general structure

sin kr
kr

343k + B(k) = 4 nf dr 12

AGO) + B(k) = 4 j dr r2[M, () — My (1)] [

ACk) = 47 j dr r2[M, (r) — My (r)]

B(K) = 47 f dr r2[M, (r) — My ()]

M, (r) — My(7)]

sinkr 2coskr 2sinkr
ke T e (k) ]
sinkr coskr
(kr)3 (kr)Z]
sinkr _sinkr _ coskr
ke O er)? O (k)2

|



Exercise no. 1

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)
Let us go to Fourier space and define u(k) = [ d3x e t¥* y(x)

Compute the two-point correlator in Fourier space

<ul (k)u]* (k’)) = (27'[)353(,( — k,) J d3r eik'rBij(r)
X = 51] d31" eik'rMN(r)
Y = f B et kT 7 7 [My(r) — My (1)

7, = Eijk f d3r eik'r 'f'k MH(T')



Exercise no. 1 D) Compute Z

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)
Let us go to Fourier space and define u(k) = [ d3x e t¥* y(x)

Compute the two-point correlator in Fourier space

<ul (k)u]* (k’)) = (27'[)353(,( — k,) J d3r eik'rBij(r)
X = 51] d31" eik'rMN(r)
Y = f B et kT 7 7 [My(r) — My (1)

7, = Eijk f d3r eik'r 'f'k MH(T')



Exercise no. 1 D) Compute Z

1 = Eijkfd?’r eik'rf"k MH(T')
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The result of the integral must be a rank-1 tensor built from k...



Exercise no. 1 D) Compute Z

1 = Eijk f d3r eik'r 7,’\']( MH(T')

The result of the integral must be a rank-1 tensor built from k... — | d31r et kT f‘k My, (r) — Ek C(k)



Exercise no. 1 D) Compute Z

— 3 Lkr o
Z—eijkfd re'*" s, My(r)
The result of the integral must be a rank-1 tensor built from k... — d31‘ ei k-r f'k MH (r) = Ek C(k)

If we take the contraction of both with Ek

(k) = j &Br ek (7 B) M, (1)



Exercise no. 1 D) Compute Z

— 3 Lkr o
Z—eijkjd re'*" s, My(r)
The result of the integral must be a rank-1 tensor built from k... — d3r ei k-r f'k MH (r) = Ek C(k)

If we take the contraction of both with Ek

1
C(k) = Jd?’r eT (7. k) My(r) = 27der rZMH(r)j dcosf e 059 cos g
1



Exercise no. 1 D) Compute Z

— 3 Lkr o
Z—eijkjd re'*" s, My(r)
The result of the integral must be a rank-1 tensor built from k... — f d31" ei k-r f'k MH (r) — Ek C(k)

If we take the contraction of both with l?k

1
C(k) = jd?’r e*T (7. k) My(r) = 27der rZMH(r)j dcosf e €050 cos 9
1

1 d ! .
— 2\ - O elkrcos6
2T j dr r>My (1) o f_ldcos e



Exercise no. 1 D) Compute Z

— 3 Lkr o
Z—eijkjd re'*" s, My(r)
The result of the integral must be a rank-1 tensor built from k... — d31" ei k-r f'k MH (r) — ]Ek C(k)

If we take the contraction of both with l?k

1
C(k) = jd?’r e*T (7. k) My(r) = 27der rZMH(r)j dcosf e €050 cos 9
1

ik dr

1 4 rt _ 1 d |sinkr
_ andTTZMH(T)__f_ldCOSQ elkrcose =47deTT2MH(r) ikd?‘[ Ier ]



Exercise no. 1 D) Compute Z

— 3 Lkr o
Z—eijkjd re'*" s, My(r)
The result of the integral must be a rank-1 tensor built from k... — d31" ei k-r f'k MH (r) — ]Ek C(k)

If we take the contraction of both with lAck

1
C(k) = Jd?’r eT (7. k) My(r) = 27der rZMH(r)j dcosf e 059 cos g
1

ikdr| kr

1 d |sinkr
ik dr

1 d (! .
= andr r’My(r) — —f dcos@ etkrcoso — 471[ dr r°My(r)
~1

sinkr coskr

= i4nf dr TZMH(T)[ — ]

(kr)? kr



Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)

(wi(l)u; (k")) = (2m)*6°(k — k') (k) X

sin kr]

Fii(k) = 6;;4m f dr r* MN(r)[
0 kr



Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)

(u; (k) (K = (2m)363 (k — k') 7 (k) X+

:ML(T) — MN(T)] [(kr)g (kr)?

'sin kr ; sin kr 43 cos kr
- kr (kr)3 (kr)?

sin kr] N sinkr coskr ]}

Fii(k) = 6;;4m foodrr {MN(r)
0

1R, R, 4m f dr r2[M, (r) — My()]



Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +7; 75 [M(r) — My(r)] + €5 T My (7)

(u; (k) (K = (2m)363 (k — k') 7 (k) X+Y +7

:ML(T) — MN(T)] [(kr)g (kr)?

'sin kr ; sin kr 43 cos kr
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Fii(k) = 6;;4m foodrr {MN(r)
0

1R, R, 4m f dr r2[M, (r) — My()]

sinkr coskr
(kr)? kr

+ i€ ki 4njdrr2MH(r)[ —



Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +1;

i [ML(r) — My(r)] + €3y Fic My ()

(wi(l)u; (k")) = (2m)*6°(k — k') (k)

Fii(k) = 6;;4m joodrr {MN(r)
0

1R, R, 4m f dr r2[M, (r) — My()]

sin kr ]
] + [M ()
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— My (7)] [
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_ ~ sinkr coskr
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Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +1;

i [ML(r) — My(r)] + €3y Fic My ()

(wi(l)u; (k")) = (2m)*6°(k — k') (k)

Fij(k) = 6;;4m foodrr {MN(T)
0

1R, R, 4m f dr r2[M, (r) — My()]
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Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +1;

i [ML(r) — My(r)] + €3y Fic My ()

(wi(l)u; (k")) = (2m)*6°(k — k') (k)

Fij(k) = 6;;4m foodrr {MN(T)
0
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Two-point correlator in Fourier space

B;j(r) = 6;; My(r) +1;

(wi(l)u; (k")) = (2m)*6°(k — k') (k)

Fij(k) = 6;;4m foodrr {MN(r)
0

sin kr]
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Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V-u =0 - k;u;(k) =0



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V-u =0 - k;u;(k) =0

0= (k;u;(k) uj (k')



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V-u =0 - k;u;(k) =0

0= ( ki ul(k) u;-‘(k') > — ki (ul(k) u]*(k’) )



Two-point correlators of statistically homogeneous and isotropic random fields
(W (Ou;(y)) = 6;j My(r) + 7, 7 [My(r) — My(r)] + € T My (1)
(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|
CASE 1: purely vorticalfield V-u =0 - k;u;(k) =0

0 = (h u (k) wi (k)Y =k (uy(k) wi (k"))

= k;(2m)383(k — K')|6;; Fy(k) + k; k; [F (k) — Fxy(K)] + i €,k Fry (k)|



Two-point correlators of statistically homogeneous and isotropic random fields
(W (Ou;(y)) = 6;j My(r) + 7, 7 [My(r) — My(r)] + € T My (1)
(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|
CASE 1: purely vorticalfield V-u =0 - k;u;(k) =0
0 = (h u (k) wi (k)Y =k (uy(k) wi (k"))
= k;(2m)*8% (ke — K[ 6,5 Fy (k) + k; kj [FL(k) — Fy (O] + @ €0k, Fy (0

= k;(2m)38% (k — k') F, (k)



Two-point correlators of statistically homogeneous and isotropic random fields
(W (Ou;(y)) = 6;j My(r) + 7, 7 [My(r) — My(r)] + € T My (1)
(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|
CASE 1: purelyvorticalfield V- -u =0 - ku;(k)=0 — F, (k) =0
0 = (ke w(R) Wi (k")) =k (w; () w (k") )
= k;(2m)*8% (ke — K[ 6,5 Fy (k) + k; kj [FL(k) — Fy (O] + @ €0k, Fy (0

= k;(2m)38% (k — k') F, (k)



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0

0= (Eijl k] ul(k) u;jn(k,) >



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0

0= (Eijl k] ul(k) u;in(k’) ) — Eijl k] (ul(k) u;;’t(k’) )



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0
0 = (&0 kj wi (k) up, (k') ) = €550 kj {wy(ke) up (k) )

=€ k;j(2m)%6° (k — k') |81m Fyn (k) + ky ke [FL(K) — Ey ()] + @ €mnkn Fr (k)|



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0
0 = (&0 kj wi (k) up, (k') ) = €550 kj {wy(ke) up (k) )
= €11 kj(2m)* 83 (ke — k)| 81 Fy (k) + ky ke [FL(R) — Fy(R)] + § €pmnkn Fuy (K]

= (21)383 (k — K [€ijm ki Fy (k) + i(8imbjn — Sinjm) kj kn ke Fyy (I)]



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 — €;;kju;(k) =0

0 = (€1 kjuy (k) up (k') ) = €51 kj (uy (k) up, (k') )
= €1 k;(2m)3683 (k — K')| 8y Fy (k) + ky ke, [F (k) — Fy(K)] + i €mnken, Fy ()]
= (2m)38%(k — K')[€ijm kj Fx(k) + i(8imSin — 6inSjm) kj kn k Fy(K)]

= (2m)363(k — K [€1jm kj Fn(k) + i(8im — ki k) k Fy (k)]



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju; (k) =0 — Fy(k) =0
0 = (&0 kj wi (k) up, (k') ) = €550 kj {wy(ke) up (k) )
= €;j1 k;(2m)383(k — k') |81 Fy (k) + ky ke [F(K) — Fy ()] + i €pmnkn Fy ()]
= (2m)38%(k — K')[€ijm kj Fx(k) + i(8imSin — 6inSjm) kj kn k Fy(K)]

= (2m)363(k — K [€1jm kj Fn(k) + i(8im — ki k) k Fy (k)]



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|

CASE 1: purely vorticalfield V- -u =0 - ku;(k) =0 — F, (k) =0

CASE 2: purely compressionalfield V X u =0 - ¢;;;kju;(k) =0 = Fy(k) =0
- Fy(k) =0

0 = (€1 kjuy (k) up (k') ) = €51 kj (uy (k) up, (k') )
=€ k;j(2m)%6° (k — k') |81m Fyn (k) + ky ke [FL(K) — Ey ()] + @ €mnkn Fr (k)|
= (27'[)353(’( — k,)[eijm kj FN(k) + i(5im6jn _ SinSjm) Ej 'I;n k FH (k)]

= (2m)363(k — K [€1jm kj Fn(k) + i(8im — ki k) k Fy (k)]



Two-point correlators of statistically homogeneous and isotropic random fields

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)

(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; k; [FL(k) — Fy (k)] + i €5k Fy (k)|



Two-point correlators of statistically homogeneous and isotropic random fields
(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(w; (R)uj (k) = (2m)*83 (ke — kD)8 Fy (k) + ke kj [F, () — Fy (RO + @ €guky Fyy (K

We have shown that

Fy(k) = 4m f Cdrr? {M,Vm Smkr] +[ML(r) = My ()] [s(i;rl)c:_c((;{srl)dz”]}
0
- , sin kr sinkr coskr
0 = 4 | dr {ML(’”)[ kr ]‘Z[ML(”)_M’V(’”)]LMB ) <kr)2]}
0

00)

sin kr coskr
Fy(k) = 47TJO dr r*My (1) G ? ke ]



Exercise no. 2

(wi()u;(y)) =6;; My(r) +7; 7 [M,(r) — My(r)] + €ji Tie My (1)
(u;(R)u; (k")) = (2m)3683(k — k) |8;; Fy (k) + k; kj [F, (k) — Fy (k)] + i €55k Fry (K]

We have shown that

00)

sin kr

Fy(k) = 4m J ] + [M(r) — My(1)]

sinkr coskr ]}
0

dr r* {MN(T) (kr)3  (kr)?

sin kr

F (k) = 4n foodrr { (r)[ sin kr COSkT]}
0

] = 2[M,(r) = My(r)] [(kr)3 - (k)3

00)

sin kr coskr
Fy(k) = 4-7'[j0 dr r*My(r) (kr)z_ = ]



Exercise no. 2

(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(u;(R)u; (k")) = (2m)363(k — k') |8;; Fy (k) + k; kj [F, (k) — Fy ()] + i €55k Fyy (K]

We have shown that

00)

Fy(k) = 4m f dr r? {MN(T) o kr] + [M,(r) — My ()] [S(l;,l){; - C((;:r];]}
0

F, (k) = 47 f “dr 2 { M, (r) Smkr] — 2[M,(r) — My ()] [?,j;’;i—i",fr’;]}
0
0 sinkr coskr

Fy(k) = 47Tj0 dr r*My (1) (kr)2  kr ]

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)



Exercise no. 2

(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(u;(R)u; (k) = 2m)383(k — k') |8;; Fy (k) + k; kj [F, (k) = Fy (O] + i €55k Fiy ()]

We have shown that

Fu(k) = 4 | Cdr {MN(r) Smk’"] ML) = My(P)] [?,fr')f—c(‘:r’;]}
0

F (k) =4 food 2 1M, (r) sin kr 2IM. (1) — My ()] sinkr coskr

e 0 . LI T | T A T N )3 T (k)
- sinkr coskr

Fy(k) = 47TJO dr r*My (r) "k ]

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(u;(R)u; (k")) = (2m)363(k — k') |8;; Fy (k) + k; kj [F, (k) — Fy ()] + i €55k Fyy (K]

We have shown that

Fy(k) = 4m foodrr {MN(T) smkr] + [M,(r) — My ()] S(i]:lrl;_c((;:r];]}
0

F, (k) = 47 f “dr 2 { M, (r) Smkr] — 2[M,(r) — My ()] [?,j;’;i—cf,fr’;]}
0
0 sinkr coskr

Fy(k) = 47TJO dr r*My(r) (kr)2 ~ kr ]

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

00)

sin kr

Fy(k) = 4m j ()? ~ (kr)?

0

dr r? { My (1)

] + ML () — My(P)] [sin kr cos kr ]}

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
Fy(k) = 4m jo drr? { My(r) ] + [M(r) — My(7)] [(kr)g T k)2 ]}
Sinx = (Z(n_ Jlr):)! o

n=0
Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
Fy(k) = 4m jo dr r? { My () ] + [M(r) — My ()] [(kr)g — (kr)? ]}
sinx = 4 (Z(n_-ll—):)! xontl COS X = 2 ((;7]37 x2n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

> sin kr sinkr coskr
Full) = 4m [ arr’ { My () [ML<r>—MN<r)][(kr)3 - (W]}
= 4 [ arr® my ) 2 D" om0 a1 [ 2y = §TED yon
0 N (2n + 1)! L N £ (2n +1)! L (2n)!

: (=" 2n+1 N (D" 2n
sinx = (2n+1)!x COS X = ., (Zn) X

n=0 n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

> sin kr sinkr coskr
Full) = 4m [ arr’ { My () [ML<r>—MN<r)][(kr)3 - (W]}
= 4 [ arr® my ) 2 D" om0 a1 [ 2y = §TED yon
0 N (2n + 1)! L N £ (2n +1)! L (2n)!

\ }
|

Forn = 0 these two terms cancel

: (=" 2n+1 N (D" 2n
sinx = (2n+1)!x COS X = ., (Zn) X

n=0 n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
FN(k) — 47-[ L dr r { N(r) [ML(r) _ MN(T)] [(kr)g T (kr)z ]}
= 47Tf dr r2{My(r) z —) (kr)?™| + [M,(r) — My ()] (=1)" (kr)?n=2 — ok (kr)*n—2
), N (2n + 1)! L N L (2n +1)! L (2n)!

\ }
|

Forn = 0 these two terms cancel

: (=" 2n+1 N (D" 2n
sinx = (2n+1)!x COS X = ., (Zn) X

n=0 n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



+ [M(r) — My(7)] [(kr)g (kr)?

_1)" ad —_1)"
(Z(n +)1)! (er)=% = ((Zn))! (k’")zn_zn

\ }
|

Forn = 0 these two terms cancel
Wedefinen=m+1

Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

> sin kr
dr r? { v () [
0

= 47tf dr r? [MN(r) [z an _+)1)' (kr)2"
0 !

sinkr coskr ]}

+ [M,(r) — My (7)]

: (=" 2n+1 N (D" 2n
sinx = (2n+1)!x COS X = ., (Zn) X

n=0 n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
FN(k) 47-[ L dr r { N(r) ] [ML(r) _ MN(T)] [(kr)g T (kr)z ]}
i (=1)" i o (—D™ o (=™ _
= 47TJ0 dr r? {MN(T) 2, @n+ D) (kr)2™ | + M, (r) — My(r)] [— ZO(Zm ey (kr)?™ + 2. @m+2) (kr)? n
: (=" 2n+1 — N (D" 2n
sinx = (2n+1)!x COS X = 2! X
n=0 n=0

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
FN(k) - 47-[ L dr r { N(r) ] [ML(r) _ MN(T)] [(kr)g T (kr)z ]}
& o (D" i o (—D™ o (=™ _
= 47TJ0 dr r? {Mw(r) 2, @n+ D) (kr)2™ | + M, (r) — My(r)] [— Zo(zm — 3)!(kr)z +m=0 Gm+ 2] (kr)? n

(0]

1 o N
= en 1) [(Zn T 3)] 4t jo dr 22 (M () + 2(n + 1) My()]

n=0

: (=" 2n+1 N (D" 2n
sinx = (2n+1)!x COS X = ., (Zn) X

n=0 n

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
FN(k) - 47-[ L drr { N(r) ] + [ML(r) _ MN(T)] [(kr)g T (kr)z ]}
i (=1)" i o (—D™ o (=™ _
= 47TJ0 dr r? {Mw(r) 2, @n+ D) (kr)2™ | + M, (r) — My(r)] [— Zo(zm — 3)!(kr)z +m=0 Gm+ 2] (kr)? n

_ Z k2 (1) [(Zn T 3)] 4t jo dr 22 (M () + 2(n + 1) My()]

The expansion is valid iff all the integrals converge,
Fork - 0 which happens only if M; (), My(r) - 0forr - o
faster than any power law (causality condition)

0.0)
-1 (="
sinx = (1) x4+l cos x = 2n

(2n + 1)! (2n)!

n=0 n=0

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 A)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

= sin kr sinkr coskr
FN(k) 47-[ jo dr r { N(T) ] [ML(T) _ MN(T)] [(kT)B T (kr)z ]}
& o (D" i o (—D™ o (=™ _
= 47Tj0 dr r? {Mw(r) 2, @n+ D) (kr)2™ | + M, (r) — My(r)] [— Zo(zm — 3)!(kr)z +m=0 Gm+ 2] (kr)? B

_ Z k2 (1) [(Zn T 3)] 4t jo dr 22 (M () + 2(n + 1) My()]

Fork =0 =2 [ dr r2[M(r) + 2 My(r)] — k2= [ dr r*[M, () + 4 My(™)] + 0(k*)

| CEL N,
SInNX = (Zn n 1)'36' COS X = (Zn)'

n=0 n=
Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)




Exercise no.2 B) Find the first two nonzero terms in the Taylor expansion of F; (k) fork — 0

(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(u;(R)u; (k")) = (2m)363(k — k') |8;; Fy (k) + k; kj [F, (k) — Fy ()] + i €55k Fyy (K]

We have shown that

Fy(k) = 4m foodrr {MN(T) smkr] + [M,(r) — My ()] S(i]:lrl;_c((;:r];]}
0

F, (k) = 47 f “dr 2 { M, (r) Smkr] — 2[M,(r) — My ()] [?,j;’;i—cf,fr’;]}
0
0 sinkr coskr

Fy(k) = 47TJO dr r*My(r) (kr)2 ~ kr ]

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 B) Find the first two nonzero terms in the Taylor expansion of F; (k) fork — 0

sin kr
kr

F, (k) = 47Tf

0

oodr r? {ML(r) [

] (M, () — My()] [sin kr cos kr ]}

(kr)3  (kr)?

(_1)n n+ — C (_1)71 n
_0(2n+1)!x2 boocosx= ) oot

Sinx =
n
Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 B) Find the first two nonzero terms in the Taylor expansion of F; (k) fork — 0

B > , sin kr B B sin kr _ cos kr
FL(k) - 47-[ j;) dr r {ML(r) [ k?" ] Z[ML(T) MN(r)] [(kr)g (kr)z
o (-D" i o (=D o (=™ _
= 4nf0 dr r? {ML(r) L an+ 1)!(kr)2 ]— 2[M,(r) — My(r)] [— mz=0(2m+ 3)!(kr)2 +m=0(2m+ 2)!(kr)2 n
: (=" 2n+1 — N (D" 2n
sinx = 4 (2n+1)!x COS X = )t X
n=0 n=0

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 B) Find the first two nonzero terms in the Taylor expansion of F; (k) fork — 0

B *° , sin kr B B sin kr _ cos kr
FL(k) - 47-[ j;) dr r {ML(r) [ k?" ] Z[ML(T) MN(r)] [(kr)g (kr)z

& (—1)" i o (=D o (=™ _
= 4nf0 dr r? {ML(r) L an+ 1)!(kr)2 ]— 2[M,(r) — My(r)] [— nZo(ZWH_ 3)!(kr)2 +m=0(2m+ 2)!(kr)2 n

(00)

1 "o N
= Z k2" (—1) [(Zn T n T 3)] 41 jo dr r*"*2[(2n + 1) M, (1) + 2 My (7)]

n=0

D" _ D"
_0(2n+1)!x2 boocosx= ) oot

Sinx =
n
Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no.2 B) Find the first two nonzero terms in the Taylor expansion of F; (k) fork — 0

B *° , sin kr B B sin kr _ cos kr
FL(k) - 47-[ j;) dr r {ML(r) [ k?" ] Z[ML(T) MN(r)] [(kr)g (kr)z

o (-D" i o (=D o (=™ _
= 4nf0 dr r? {ML(r) L an+ 1)!(kr)2 ]— 2[M,(r) — My(r)] [— mz=0(2m+ 3)!(kr)2 +m=0 Gmt 2)!(kr)2 B

oo 1 TO N
= ; k2" (—1) [(Zn T n T 3)] 41 J;) dr r*"*2[(2n + 1) M, (1) + 2 My (7)]

Fork - 0 = %nforo dr r“[My(r) + 2 My(r)] — kzi—;TfOTO dr r*[3 My (r) + 2 My(r)] + O(k*)

(=" 2n+1 — 1" 2n
X CoSXx = X
— (2n+1)! — (2n)!

Sinx =
n n
Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r =1, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)



Exercise no. 2

Fork —» 0

Fy (k) = —fro dr r?[M; (r) + 2 My(r)] — k? 27; f(:o dr r*[M,(r) + 4 My(r)] + O(k*)

Fu (k) = 25 [ dr r2[M, (r) + 2 My(r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)



Exercise no. 2

Fork —» 0

Fy(k) =~ = f’”O dr v2[M; (r) + 2 My (r)] — k2 j—’; [0 dr r* M, (r) + 4 My(D)] + 0(k*)
Fu (k) = 25 [ dr r2[M, (r) + 2 My(r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum



Exercise no. 2

Fork —» 0

Fy(k) =~ = f”’ dr v2[M; (r) + 2 My (r)] — k2 j—’; [0 dr r* M, (r) + 4 My(D)] + 0(k*)

Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both



Exercise no. 2

Fork —» 0

Fy (k) = == [0 dr r2[ M, (r) + 2 My ()] — k222 [° dr v*[M, () + 4 My(1)] + 0 (k*)
Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both

C) Let us now consider the fully vortical case F; (k) = 0, Fy (k) # 0



Exercise no. 2

Fork —» 0

Fy (k) = == [0 dr r2[ M, (r) + 2 My ()] — k222 [° dr v*[M, () + 4 My(1)] + 0 (k*)

Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both
C) Let us now consider the fully vortical case F; (k) = 0, Fy (k) # 0

How does the leading term in Fy for k = 0 scale with k in this case?



Exercise no. 2

Fork —» 0

Fy(k) = = [0 dr v2[M,(r) + 2 My (r)] — k? j—’; [0 dr r* ML (r) + 4 My(P)] + 0(k*)

Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both
C) Let us now consider the fully vortical case F; (k) = 0, Fy (k) # 0

How does the leading term in Fy for k = 0 scale with k in this case?

Since F; is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have



Exercise no. 2

Fork —» 0

Fy(k) = = [0 dr v2[M,(r) + 2 My (r)] — k? j—’; [0 dr r* ML (r) + 4 My(P)] + 0(k*)

Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both
C) Let us now consider the fully vortical case F; (k) = 0, Fy (k) # 0

How does the leading term in Fy for k = 0 scale with k in this case?

Since F; is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have

F, =0 [0 drr?[M,(r) + 2 My(r)] =
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Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both
C) Let us now consider the fully vortical case F; (k) = 0, Fy (k) # 0

How does the leading term in Fy for k = 0 scale with k in this case?

Since F; is identically zero, all the terms in its infinite series in powers of k have to vanish, hence we also have
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3 Y0
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Notice that the leading term is the same for both
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Fu (k) = =5 [0 dr r2[M (r) + 2 My (r)] — k222 [° dr v*[3 My (r) + 2 My ()] + O (k*)

Forthe generalcase Fy # 0, F; # 0we find for k — 0 aflat spectrum

Notice that the leading term is the same for both
D) Consider now the fully compressional case Fy(k) = 0,F, (k) # 0
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Exercise no.2 E)Find the first two nonzero terms in the Taylor expansion of Fy (k) fork — 0

(ui(xX)u;(y)) = 6;; My(r) + 7, 7 [My(r) — My(r)] + €y T My (1)
(u;(R)u; (k")) = (2m)363(k — k') |8;; Fy (k) + k; kj [F, (k) — Fy ()] + i €55k Fyy (K]

We have shown that

Fy(k) = 4m foodrr {MN(T) smkr] + [M,(r) — My ()] S(i]:lrl;_c((;:r];]}
0

F, (k) = 47 f “dr 2 { M, (r) Smkr] — 2[M,(r) — My ()] [?,j;’;i—cf,fr’;]}
0
0 sinkr coskr

Fy(k) = 47TJO dr r*My(r) (kr)2 ~ kr ]

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)
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co

Fy(k) = 4-7Tj

sinkr cos kr]
0

dr r°My(r) [(kr)z 0

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)
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X 1\n
(1" xentl COS X = (1) x"
2n + 1)! (2n)!
n=0 n=0

Sinx =

Assume that all correlation functions My (1), M, (r), My (1) go to zero above a finite scale r > r, (CAUSALITY)

We want to study the large scales (k — 0) properties of the different spectra (as consequences of causality)
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(kr)?2 kr

dr r°My(r) [ —
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00 , sinkr coskr
FH(k) — 4-7'[j dr r MH(r) [(k?")z - kr ]
0
- D | [STED” o
_ 4nf0 dr 2 My (1) {LZ;) ant D) (kr)? 1] _ Lzo 2! (kr)? 1]}
| }
!

Forn = 0 these two terms cancel

oo

00 Ca\n _1)"
sinx = =1) xentl Cosx=z( )" o

L, 2n + D! L (2n)! "
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!
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TR e T ke
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— k2n+1 —1 n 4 j d H
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(1" xentl COS X = (1) x"
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R
0
— 00 o (_1)m . (_1)m -
= 47‘[j0 dr r? My (r) {_ [mz:o (2n + 3)!(k1”)2 1l 4 2, (2n + 2)!(k7‘)2 1]}
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— k2n+1 —1 n 4 J d H
z (=1)% 4m T i+ DI +3)

n=0

4t (o 2m [0
Fork >0 Fy(k) =k ?f dr r3My(r) — k31—5f dr r°My(r) + 0(k>)
0 0
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