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Magnetic field spectra generated during radiation domination have the following large scale behavior
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E) What happens instead
in the mixed case case?

The magnetic spectrum
grows as 118/3 while the
velocity spectrum as n*/3
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In the non-helical fully vortical case we have @ large scales

— <V2> ~ <32> ~ 77_10/7 - L ~ 772/7 P,, Py constant
In the non-helical mixed case we have

— (v?) ~ (B?) ~ 77_6/5 - L ~ 772/5 P, constant, Pg grows as n*/°
In the helical fully vortical case we have

— (vz) ~ (Bz) ~ 77—2/3 - L ~ 772/3 P,, Pz grow as n8/3

In the helical mixed case we have
— (v?) ~ (B?) ~ ;7—2/3 — [ ~ 172/3 P, grows as n*/3, P grows as n®/3

Forthe 4 cases make a plot of the time evolution of P and Py considering

PoCh) = ke LS (p2) pena (1 4 kLymweme with mp = 11/3
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