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Klein’s paradox is shown to be resolved by a careful consideration of Feynman’s picture of
antiparticles as negative energy solutions traveling backward in time. Implications associated with
the spin-statistics theorem are pointed out. © 1998 American Association of Physics Teachers.

I. INTRODUCTION

The topic of Klein’s paradox1 is commonly treated as a
component of an introductory discussion of relativistic quan-
tum mechanics.2 However, a careful resolution, although
given in the research literature, has yet to be presented in a
pedagogical forum. Indeed, early discussions by Sauter,3
Sommerfeld,4 and Hund5 are in German. More recent work
by Nikishov has been translated from Russian but is not
widely known.6 The best modern discussion—that of Hansen
and Ravndal—is published in the journal Physica Scripta.7
An interesting historical perspective by Telegdi is
unpublished.8 It thus makes sense to rectify this situation by
presenting here an elementary treatment of relativistic barrier
scattering which demonstrates specifically how the strictures
of unitarity can be manifested by accounting properly for the
phenomenon of pair creation. This involves a discussion of
Feynman’s picture of antiparticles as negative energy solu-
tions ~of relativistic wave equations! which travel backward
in time, and as a bonus such a picture reveals the intimate
connection between spin and statistics. The subject of strong
field pair creation which is thereby encountered also has im-
portant implications for the subject of black hole decay,
which is of critical importance to modern cosmology.
We begin by examining the conventional analysis of the

problem. However, before considering the relativistic barrier
scattering case, we first review the corresponding nonrelativ-
istic problem. Thus consider a particle of mass m and charge
e moving under the influence of a scalar potential

f~z !5 H
f0
0

z>0
z,0, ~1!

as shown in Fig. 1. For a particle incident from the left with
momentum p and energy E5p2/2m , the solution of the
time-independent Schrödinger equation

S 2
1
2m

d2

dz2 1ef Dc~z !5Ec~z ! ~2!

is

c~z !55
1
Ap

eipz1r~r!
1
Ap

e2ipz z<0

t~r!
1
Aq

eiqz z.0

, ~3!

where q5A2m(E2ef0) is the momentum to the right of
the barrier, r5q/p is the ratio of the left, right momenta, and

r~r!5
12r

11r
, t~r!5

2Ar

11r
~4!

are the reflection and transmission amplitudes, respectively.
Note that we have written our solution in terms of ‘‘WKB’’-
like solutions, which have the proper normalizations to ac-
count for local probability conservation. This means that the
corresponding current densities are normalized to unity so
that ut(r)u2, ur(r)u2 measure the ratio of outgoing to incom-
ing fluxes directly, and the reflection and transmission coef-
ficients are thus given by

R5ur~r!u25U
12r

11rU
2

, T5ut~r!u25
4r

u11ru
2 . ~5!

Then if E.ef0 , q is real and both reflection and transmis-
sion occur with unitarity satisfied via R1T51. On the other
hand, if E,ef0 , then q is imaginary so that R51 and there
is complete reflection.
In the corresponding relativistic situation, we employ the

time-independent Klein–Gordon equation

S ~E2ef~z !!22
d2

dz2 1m2Dc~z !50, ~6!

whose solution has the same form as Eq. ~3! but with

p5AE22m2, q5A~E2ef0!
22m2. ~7!

Then if E.ef0 , we have both reflection and transmission as
before, with unitarity satisfied via R1T51. Also, if E
,ef0 but ef02E,m , then one has total reflection as in the
nonrelativistic case. However, in the situation that E,ef0
but ef02E.m we have Klein’s paradox—q is again real so
that despite the presence of a large barrier, reflection and
transmission again occur. The resolution of this problem is
generally suggested to be associated with pair production—
ef0.E1m.2m means that the potential is strong enough
to generate particle–antiparticle pairs from the vacuum. The
problem here is, of course, that one is trying to interpret a
multiparticle phenomenon using a simple single-particle
wave function.9 However, while arguing that a proper treat-
ment can be found using quantum field theory, none of the
existing discussions ~including my own!!2 undertake a truly
quantitative verification of this assertion, and it is this omis-
sion which this note will address.
In the next section we examine the problem of spinless

relativistic barrier scattering using the Feynman picture and
demonstrate the incorrectness of the above ‘‘explanation.’’
Instead, we show that the resolution of the unitarity problem
is associated with the possibility of creating multiple particle
pairs. The discussion is aided by a simple field theoretic
construction. In the following section, we examine the analo-
gous case of spin 1/2 particles and show that a similar analy-
sis can be made consistent with unitarity provided one in-
cludes the stricture of Fermi statistics. Finally, we
summarize our results in Sec. V.
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II. KLEIN’S PARADOX: S50

We begin our discussion of Klein’s paradox by noting that
Feynman’s picture of antiparticles as particle states moving
backward in time implies that the associated momentum is
given by

p̃5
dx

d~2t ! 52
dx
dt 52p, ~8!

which implies that ~for q.0! our interpretation of the wave
function Eq. ~3! is incorrect—the component eiqz for z.0 is
actually associated with an antiparticle moving to the left!10
This is consistent with the well-known feature that for the
Klein–Gordon equation, the quantity jm5f*i]mf
2i]mf*f is to be associated with the electromagnetic- ~not
probability-! current density. Thus T must be positive since
the negative sign associated with moving to the left is com-
pensated by the negative sign connected with the antiparticle
content. The process depicted therein then represents total
reflection of the incoming particle from the high barrier ac-
companied by particle–antiparticle annihilation with prob-
ability T . By time reversal this is also the probability for
single pair creation! However, if the probability for the cre-
ation of one pair is T , then there exists the probability T2 for
the creation of two pairs, T3 for three pairs, etc. Thus the
total relative probability for pair creation is

Ppair
rel 5T1T21T31•••5

T
12T 5

4r

~12r!2
. ~9!

Of course, there is also some probability K0 that the vacuum
state remains unchanged in the presence of the strong electric
field—i.e., that no pairs are created. The absolute probability
for particle creation is then

Ppair
abs5K0Ppair

rel ~10!

and by unitarity we require that

K01Ppair
abs5K0~11Ppair

rel !51,

i.e,

K0512T5S
12r

11r D
2

. ~11!

Note that K0,1, as required.
It is interesting to note in this regard that Hund has pointed

out that the average number of pairs produced can be found
from the relation

n̄5ut~2q !u25
4r

~12r!2
. ~12!

This follows from the feature that when q!2q the solution
Eq. ~3! is recognized as being associated with an outgoing
antiparticle state, so that t(r) becomes the amplitude for pair
production. Hund’s relation Eq. ~12! is found to be identical
to the result directly calculated from Eq. ~9!:

n̄5K0~T12T213T31••• !5K0
T

~12T !2
5

4r

~12r!2
.

~13!
Diagramatically what is going on is that accompanying any
amplitude such as that for pair production, as shown in Fig.
2~a!, is the amplitude for the vacuum to remain a vacuum—
i.e., for any number of associated bubble diagrams represent-
ing creation and subsequent annihilation of particle–
antiparticle pairs from the vacuum—Fig. 2~b!.
One can, of course, pursue a parallel discussion of scatter-

ing from the barrier. However, in order to do so it is useful to
first define a formalism involving creation and annihilation
operators and to develop a simple S-matrix theory. We begin
by defining a set of properly normalized purely incoming or
outgoing single-particle states:

fp
in~z !5

1
Ap

eipz, fp
out~z !5

1
Ap

e2ipz,
~14!

f̃q
in~z !5

1
Auqu

eiqz, f̃q
out~z !5

1
Auqu

e2iqz.

Note here that f in,out(z), f̃ in,out(z) represent incoming, out-
going states for particles, antiparticles, respectively. In terms
of such states then we can construct solutions of the Klein–
Gordon equation which contain only an asymptotically in-
coming or outgoing particle for z.0 as

c1~z !5H
11r

2Ar
fp
in~z !1

12r

2Ar
fp
out~z ! z,0

f̃q
in~z ! z.0

,

~15!

c2~z !5H
12r

2Ar
fp
in~z !1

11r

2Ar
fp
out~z ! z,0

f̃q
out~z ! z.0

.

Alternatively, one can also construct solutions containing
only an asymptotically incoming or outgoing particle state
for z,0:

Fig. 1. The barrier potential associated with Klein’s paradox.

Fig. 2. ~a! Pair creation from the vacuum; ~b! pair creation from the vacuum
can be accompanied by one or more particle–antiparticle creation and anni-
hilation ‘‘bubbles.’’
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c3~z !5H
fp
in~z ! z,0

11r

2Ar
f̃q
in~z !2

12r

2Ar
f̃q
out~z ! z.0

,

~16!

c4~z !5H
fp
out~z ! z,0

2
12r

2Ar
f̃q
in~z !1

11r

2Ar
f̃q
out~z ! z.0

.

In this way we have defined two complete sets of states—one
representing those which contain asymptotically only an out-
going particle or antiparticle and those which asymptotically
contain only an incoming particle or antiparticle. However,
these two sets of states are not independent and are related
by a unitary transformation—the so-called S or scattering
matrix:

uc~ in!&5Suc~out!&. ~17!

In particular, there exist two vacuum states which are related
by

u0~ in!&5Su0~out!&. ~18!

Now since both sets are complete we can express field op-
erators in terms of either11

c~z !5(
k
b̂k
infk

in~z !1 d̂k
in†f̃k

in~z ! ~19!

or

c~z !5(
k
b̂k
outfk

out~z !1 d̂k
out†f̃k

out~z !, ~20!

where b̂k
in† , d̂k

in† is a single-particle operator which creates an
incoming particle, antiparticle with momentum k:

b̂k
in†

u0~ in!&5uk~ in!& , d̂k
in†

u0~ in!&5u k̃~ in!&, ~21!

while b̂k
out† , d̂k

out† are the corresponding operators for outgo-
ing states:

b̂k
out†

u0~out!&5uk~out!&, d̂k
out†

u0~out!&5u k̃~out!&.
~22!

The in and out operators can be expressed in terms of each
other by means of a Bogoliubov transformation. The form of
this transformation can be found by determining the relation
between in and out states—from Eqs. ~15! and ~16!:

c1~z !5
11r

2Ar
c3~z !1

12r

2Ar
c4~z !

~23!

c2~z !5
12r

2Ar
c3~z !1

11r

2Ar
c4~z !

or, equivalently,

c3~z !5
11r

2Ar
c1~z !2

12r

2Ar
c2~z !,

~24!

c4~z !52
12r

2Ar
c1~z !1

11r

2Ar
c2~z !.

Then we can write

c4~z !5
2Ar

12r
c1~z !2

11r

12r
c3~z !,

c3~z !5
2Ar

12r
c2~z !2

11r

12r
c4~z !,

~25!

c2~z !52
2Ar

12r
c3~z !1

11r

12r
c1~z !,

c1~z !52
2Ar

12r
c4~z !1

11r

12r
c2~z !,

and the corresponding Bogoliubov relations can be read off
as

b̂k
out†52 b̂k

in† 11r

12r
1 d̂k

in 2Ar

12r
,

d̂k
out†52 b̂k

in 2Ar

12r
1 d̂k

in† 11r

12r
,

~26!

b̂k
in†52 b̂k

out† 11r

12r
1 d̂k

out 2Ar

12r
,

d̂k
in†52 b̂k

out 2Ar

12r
1 d̂k

out† 11r

12r
.

Thus if we define

^0~out!u0~ in!&[eiW ~27!
as the amplitude that an empty in state evolves into an empty
out state, the amplitude for creation of a single pair is

A1 pair5^0~out!ud̂outb̂outu0~ in!&. ~28!
This can be evaluated by noting that since

05 b̂ inu0~ in!&5S 2 b̂out
11r

12r
1 d̂out†

2Ar

12r D u0~ in!&,

~29!
we require

b̂outu0~ in!&5
2Ar

11r
d̂out†u0~ in!&. ~30!

Then,

A1 pair5
2Ar

11r
^0~out!ud̂outd̂out†u0~ in!&

5^0~out!u@ d̂out, d̂out†#1 d̂out†d̂outu0~ in!&

5
2Ar

11r
eiW. ~31!

Likewise, we can calculate the n-pair amplitude as12

An pair5
1
n! ^0~out!u~ d̂out!n~ b̂out!nu0~ in!&5S 2

Ar

11r D
n

eiW.

~32!
By unitarity we require

15exp~22 Im W ! (
n50

`

S 2
Ar

11r D
2n

5
exp~22 Im W !

12
4r

~11r!2

~33!
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or

exp~22 Im W !5K05S
12r

11r D
2

, ~34!

as found in Eq. ~11! by less formal means.
Using this formalism we can now also treat the problem of

barrier scattering. Thus consider a boson incident on this
very high barrier potential. Upon reaching the barrier it will
be totally reflected but may also stimulate pair production.
The amplitude for the particle to be reflected with no pairs
being generated is

A0 pair
reflec 5^0~out!ub̂outb̂ in†u0~ in!&

52S
11r

12r D ^0~out!ub̂outb̂out†u0~ in!&

1
2Ar

12r
^0~out!ub̂outd̂outu0~ in!&

5eiWF2S
11r

12r D1
4r

12r2G52S
11r

12r D eiW, ~35!

while the amplitude to be reflected along with the generation
of n pairs is

An pair
reflec 5

1
An!~n11 !!

^0~out!u~ d̂out!n~ b̂out!n11b̂ in†u0~ in!&

52S
11r

12r D
n11

An!~n11 !!
^0~out!u~ d̂out!n~ b̂out!nu0~ in!&

1
2Ar

12r
^0~out!u~ d̂out!n11~ b̂out!n11

u0~ in!&

52S
12r

11r DAn11S 2
Ar

11r D
n

eiW. ~36!

We verify then that the total probability for scattering ac-
companied by the production of no, one, two, etc., pairs is

Probtot5 (
n50

`

uAn pair
reflec

u
2

5exp~22 Im W !S
12r

11r D
2

(
n50

`

~n11 !S 2
Ar

11r D
2n

5S
12r

11r D
4

S
1

12
4r

~11r!2
D
2

51, ~37!

which is unitary, as expected.
We have demonstrated, then, how for spin-zero boson

scattering from a high barrier potential, Klein’s paradox is
completely resolved in terms of a correct interpretation of
pair production. Indeed, the incident particle is completely
reflected, as expected, but is accompanied in the outgoing
state by one, two, etc., particle–antiparticle pairs generated
by interaction with the potential. A corresponding calcula-
tion can be made for the case of a Dirac particle, with in-
triguing differences associated with statistics, as we now
show.

III. KLEIN’S PARADOX: S51/2

A Klein’s paradox also arises for the case of Dirac par-
ticles scattering from a high barrier, and the resolution can be
developed as above, with a few interesting modifications.
Thus consider the time-independent Dirac equation in the
presence of the potential Eq. ~1!:

~E2ef~z !!c~z !5g0S igz
d
dz 1m Dc~z ! ~38!

and write the solution as

c~z !55
AE1m

p eipzS
x1

p
E1m x1

D 1r~r!AE1m
p e2ipzS

x1

2
p

E1m x1
D z,0

t~r!
E2ef01m

Auqu

eiqzS
x1

q
E2ef01m x1

D z.0

, ~39!

where x1 is a spinor quantized along the z direction—i.e.,
szx15x1 . Continuity of the wave function at z50 yields

t~r!5

2Aq
p A E1m

E2ef01m

11
q
p

E1m
E2ef01m

,

r~r!5

12
q
p

E1m
E2ef01m

11
q
p

E1m
E2ef01m

. ~40!

The corresponding probability current densities are found via

j z~z !5c̄~z !gzc~z ! ~41!

and yield for the transmission and reflection coefficients
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T̄5ut~ r̄ !u25
4 r̄

~11 r̄ !2
, R̄5ur~ r̄ !u25S

12 r̄

11 r̄ D
2

, ~42!

where we have defined

r̄5
q
p

E1m
E2ef01m ~43!

and we verify as before that R̄1T̄51. We observe then that
the expressions for the transmission and reflection coeffi-
cients for Dirac particles are identical in form to those for
their Klein–Gordon analogues, except for the replacement
r! r̄ . One important difference, however, is that in the
Dirac case we have r̄,0 for the case of the high barrier—
ef0.E1m . Thus the transmission coefficient is actually
negative! However, this is to be expected since we are deal-
ing in the Dirac case with a probability density not a current
density as in the Klein–Gordon case. The negative value for
the transmission coefficient is then associated with the fact
that the antiparticle content of the solution given in Eq. ~39!
is moving to the left—i.e., this represents particle–
antiparticle annihilation, as stressed in Sec. II.
Because of the formal similarity of the Dirac and Klein–

Gordon solutions we can construct asymptotic ingoing, out-
going particle, antiparticle states and an associated Bogoliu-
bov transformation between the relevant operators as given
in Eq. ~26!, except that in the Dirac case we replace r! r̄ .
One other critical difference is that the Dirac operators must
satisfy anticommutation relations rather than the commuta-
tion relations which we used in Sec. II. This means, for ex-
ample, that if we consider pair creation from the vacuum,
only a single pair can be created, since more than one would
violate the Pauli exclusion principle. If K̄0 represents the
vacuum to vacuum probability for the fermion case, then
since 2T̄ is the relative pair creation probability ~remember
that T̄ is negative! the unitarity condition requires

K̄0~12T̄ !51,

i.e.,

K̄05
1

12T̄
5S 11 r̄

12 r̄
D
2

. ~44!

This result may be also expressed in operator language, since
defining

^0~out!u0~ in!&5eiW̄ ~45!

the pair creation amplitude is found to be

Ān pair5dn1^0~out!ud̂outb̂outu0~ in!&

5dn1
2Aur̄u

11 p̄ ^0~out!ud̂outd̂out†u0~ in!&

5dn1
2Aur̄u

11 r̄
eiW̄. ~46!

The unitarity condition is then

15exp~22 Im W̄ ! (
n50

1

S 2
Aur̄u

11 r̄ D
2n

5exp~22 Im W̄ !S 12
4 r̄

~11 r̄ !2D ~47!

or

exp~22 Im W̄ !5K̄05S
11 r̄

12 r̄ D
2

, ~48!

as found before. We can also verify Hund’s result, which in
this case reads

n̄5ut~2 r̄ !u25
24 r̄

~12 r̄ !2
. ~49!

Since for fermions only a single pair is possible we have

n̄5K̄0uĀ1 pairu
252

T̄

12T̄
52

4 r̄

~12 r̄ !2
, ~50!

in agreement with Hund’s relation.
Finally, it is interesting to study scattering from the high

barrier. In the Dirac case, since an outgoing particle is al-
ready present there is no possibility for pair creation, and the
scattering amplitude is given by

Ān pair
reflec 5dn0^0~out!ub̂outb̂ in†u0~ in!&52dn0S

12 r̄

11 r̄ D eiW̄.
~51!

The full scattering probability is then

Probtot5uĀ0 pair
reflec

u
25S

12 r̄

11 r̄ D
2

exp~22 Im W̄ !51, ~52!

as required by unitarity.
We see then how the spin and statistics are closely inter-

twined in order to satisfy the important stricture of unitarity.
Had we chosen to use commutators for the Dirac case or
anticommutators for the Klein–Gordon particles we would
have found the obviously unphysical result that K̄0 ,K0.1.
That is, that the probability that the vacuum state remains a
vacuum would be greater than unity. This consistency con-
dition and its connection with the spin-statistics theorem was
noted by Feynman.13

IV. CONCLUSION

The subject of Klein’s paradox, as associated with scatter-
ing of a particle from a high potential barrier in relativistic
quantum mechanics, has been discussed from the perspective
of Feynman’s view of antiparticles as particles traveling
backward in time. In this picture a careful discussion of the
related creation process, which includes the possibility of
multiple pair creation, has been shown to be internally con-
sistent provided that one assumes Bose statistics for particles
satisfying the Klein–Gordon equation and Fermi statistics
for corresponding Dirac particles. The critical feature in the
phenomenon of pair creation is that the presence of the bar-
rier changes the vacuum in that region so that what is a pure
incoming particle solution in the potential free regime con-
nects onto a multiparticle configuration in the corresponding
outgoing state. In this way the apparent paradox can be com-
pletely and successfully resolved.
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