Checking Unit Magnitude

April 13, 2024

Abstract

Direct demonstration that the eigenvalues of the unitary evolution associated with a periodic version of Griffiths' original model are of unit magnitude.

We want to show that under the assumption $|\beta| \leq 1$ the roots of the equation

$$
\begin{equation*}
\omega^{1-N}=\frac{\omega+\beta}{1+\beta^{*} \omega} \tag{1}
\end{equation*}
$$

have absolute value unity.
Taking the squared magnitude of both sides of Eqn. (1) we have

$$
\begin{equation*}
|\omega|^{2-2 N}=\frac{\left|1+\frac{\beta}{\omega}\right|^{2}}{\left|\frac{1}{\omega}+\beta^{*}\right|^{2}}=\frac{1+\frac{\beta}{\omega}+\frac{\beta^{*}}{\omega^{*}}+\frac{|\beta|^{2}}{|\omega|^{2}}}{\frac{1}{|\omega|^{2}}+\frac{\beta}{\omega}+\frac{\beta^{*}}{\omega^{*}}+|\beta|^{2}} \tag{2}
\end{equation*}
$$

If $|\omega|>1$ then Eqn. (2) implies that the right-hand side has magnitude <1, or

$$
\begin{equation*}
\frac{1}{|\omega|^{2}}+|\beta|^{2}>1+\frac{|\beta|^{2}}{|\omega|^{2}} \tag{3}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\left(1-|\beta|^{2}\right)\left(\frac{1}{|\omega|^{2}}-1\right)>0 \tag{4}
\end{equation*}
$$

which is a contradiction.
A parallel argument excludes $|\omega|<1$, leaving $|\omega|=1$ as the only possibility.

