


Causal Wave Packet
Spreading

Sharp Questions and Answers
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The non-relativistic Schrodinger equation
gives wave packets that spread infinitely

fast, In the sense that even it they start out
INn a confined region, they extend over al

space immediately afterward.

Related to this, there are iIssues aro
under the barrier”™ in tunneling prob
have been debated, inconclusively,
years.

Jnd “time

ems that
for many



Given advances in precision trapping and
releasing of particles, and Iin

sudder

resolvir

clear, quar

spreadi
respect

g short time intervals - broadly,
"attosecond physics” - the problem getting a

ng

titative account

hat does a bett

of wave packet
er job of

INg special relativity seems timely.



(1) Refining
Uncertainty

Limits of Localization



To pose questions around superluminal spreading -
that Is, presumably, its absence, and the existence
or not of near-luminal spreading - sharply, one

should start with wave functions that are strictly
localized in space.

On the other hand it is desirable to suppress, or
at least keep watch over, the large-k and high-
energy components, since these are going to
bring in high velocities (and, in tunneling, over-
the-barrier propagation) “trivially”.
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These requirements are in tension, for
reasons related to the uncertainty principle.
But here the uncertainty principle as such Is
too crude for our purposes.




't Is relatively simple to show that one
cannot have strict limits in both position
and momentum space.

(Proof: The Fourier transtorm of a function that
IS bounded In space can be continued Into an
analytic function in a strip around the real axis.
But the only analytic function that vanishes in

an interval is just plain zero.)

There I1s a remarkable theorem that tells a
precise, detalled story:




3. THE BEURLING-MALLIAVIN THEOREM

I will conclude the note by stating a difficult result in harmonic analysis which fully answers
the question you asked. It gives the conditions for a function w(§) under which one can

construct a compactly supported function f satistying

(3.1) 1£(9)] < w(€)

Note that this is very strong because you can actually ask w to be non-monotone, so you
could for example ask f to be very small on specific intervals but have otherwise relatively

slow decay.

There are two conditions:

e Log-integrability: We must have 0 < w <1 and

(3.2) / l‘igfg d¢ > —oo.

e Lipschitz regularity: For some K > 0 it holds that for every &, € R

(3.3) [ log(€) — log(n)| < K¢ —n|. Should be log w(&) etc.

The integrability for example means that you cannot take w(§) = exp(—|&|) since f ﬁ;{gl dg

“le
TogZ (D) 46

does not converge. On the other hand w(¢) = exp(—|¢|/ log(|€]?)) is fine because [ ERTE

does converge.



The! Lifshitz condition

tell you that if w 1s going to be very small at some point it actually has to be small near

that point too. look like exponential growth or decay.

Theorem 3.1 (Beurling-Malliavin). If w satisfies log-integrability and Lipschitz reqularity

as above, then there exists a nonzero f with supp f C [—1,1] such that

(3.4) 1£(9)] < w(8).

Special thanks to Felipe Hernandez



There are good practical constructions
based on the following classic function that
's smooth (but not analytic) and vanishes
on one side:

fx) = H(x)e=

Its Fourier transform falls off as

[eikxf(x) ~ V2oV 2%




Multiplying by a translated retlection, we
get a nice windowing function:



in[ ]:= smoothBox[a , x ] := smoothieLeftZero[a- x] *xsmoothieLeftZero[a + x]

in[ ]:= Plot[smoothBox[5, x], {x, -10, 10}]

0.7,

Out[ »|=

-10 10



In[ ]:= smoothieLeftZero[x ] := Piecewise[{{0, x < 0}, {Exp[-1/x], x> 0}}]
In[ = g[x_] := smoothieLeftZero[x] » smoothieLeftZero[5 - x]

In[ = Plot[g[x], {x, -5, 10}]

Out[«]=

-4 -2 6 8 10

In[ ]= h[k_]1 := NIntegrate[Exp[k*I*x]*g[x], {x, -1, 6}]
in[ 1= Plot[Abs[h[k]], {k, 40, 50}]
o.oooozo}
0.000015

Out[«]=
0.000010

5.x1078 -




To have more tlexibility, we could consider

hic,a,x) =0;x<0

hic,a,x) =exp(—c/x%); x>0

which leads to

T , T

— 1COS ))
2+1) 2a+1)

Jeikx h(c,a,x) ~ exp (—k#l (a+1) (()cc)oc+1 (sin
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(2) Restoring
Relativity

Schrodinger to Klein-Gordon



Now let's put a causal equation - namely,
(complex) Klein-Gordon - underneath the
spinless Schrodinger equation.

Mathematically, this is not difficult:
07p — 0°¢p + m*gp = 0

¢ — €_imtl//

—2imoy + 0y — ooy =0



Conceptual issues:

e \What is the conserved density?

e \What is the initial value problem?

e \What is causality”? (Already addressed.)
e \What are we talking about?
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Conserved Current

J, = Im¢*9 ¢

1 2 2
m(V Wry + Vo)

Jo = — m1//Tl//+ Imy*ogy ~ — my™ | 7



Thu
rep

1
S, V' — V¥V is a more accurate
resentation of charge density than y™*y . Of

course, It Is has the appropriate large m limit.

't is not positive definite, but unless the NR

SC
Of

Nrodi

negat

nger equation is being misapplied regions

IV

resolve wi

ity will be small, and impossible to

‘hout bringing In large momenta.



“‘Self-Consistent” Initial Value

Problem

Since the KG equation is second order, we

need the time derivative of the Init
function as well as the wave funct

lal wave
on Itself.

A nice way to finesse this issue is to

time 0.

impose the NR Schrodinger equation at



Role of PDEs in QFT

They govern appropriate correlation functions.

The correlation functions, In turn, govern
physical excitation and detection processes.
Glauber spelled this out in the context of QED
and photo-detection.




(3) Comparing Green
F'unctions

Correspondence and Divergence



Non-relativistic Propagator (Green
Function)

wix,t) = de Gx—x,t—1t)yx',t)

2

G on(r. 12 0.0) m IMmXx
X, 14U, — CX
SVR it P



Relativistic Green Function(s)

p(x,0) = fix) 0p(x,0) = g(x) (07 — 97 + V(x)p(x,1) = 0
P(x, 1) = de’G”(x, t; x,0)f(x") + de’GT(x, t; x,0)g(x")

(07 — 0> + m>)G(x,t;x,t) = 0
0,G°(x,t;x',t) = 0 G, t;x,1) = 8(x—x')

Eveninrt—1t

(07 — 0> + m*)G"(x,t;x,t) = 0
G'(x,t;x,0) = 0 0G(x,1;,x,0) = o(x—Xx')

Oddinr—1



G'(x,1;0,0) = % (H(x +t) — H(x — 1)) Jy(mr)

(t =V —x%)

0
G°(x,1,0,0) = EGT(X, t;0,0)



Non-Relativistic Limit of Relativistic
Green Function

e "My (x, 1) ~ de’G"(x, tx,0w(x,0) — idex’GT(x, t; x",0w(x’,0)

) J dx'(9, — im)G*(x, 1; , X' Oy (x',0)

. l
G.r(X, 5x50) = e™(0, — im A 5 0%) G*(x, t; x',0)
m \
Incorporating “self-consistency”;
applicable to



(Pictorial) Numerical Comparisons:
Correspondence and Divergence

il - Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 100, 200}, PlotRange » All, PlotPoints - 1000]

0.01 —> oo '
" t=1000, 0 < x < 100;
overlay

[ ]- Plot[Re[greenSNR[x, 1000]] - Re[greenIMPO[x, 1000]], {x, 100, 200}, PlotRange » All, PlotPoints -» 1000]

0.0015 —» ==

0.0010 |

0.0005 |

© 0,005

absolute difference

-0.0010 |

-0.0015 |

-0.0020 |

In[-]:= («blue plotted firstx)

In[ = Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]1}, {x, 200, 300}, PlotRange » All, PlotPoints - 1000]

/\

overlay

t=1000, 0 < x < 100;

T {NAE | N4 B 1 N & o t = 1000, 200 < x < 300;

m=1

Real parts



In[ = Plot[ {Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]1}, {x, 400,

0015}

In[ ]:= Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 500,

0.015"

0.01 —»

0.005 &

Out[«]=

-0.005
-0.010-

-0.015

0.015

0-01 —_— 0010

0.005

Out[«]=

|

%}o

In[ ]:= Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 600,

-0.005 |
-0.010 |

-0.015 -

In[ ]:= Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 700,

0.02‘(

‘._
[
|

0.01 —> o

Out[~]=

|

|

T —

|

ﬂ

75

|
\ﬂ

500}, PlotRange » All, PlotPoints - 1000]

t = 1000, 400 < x < 500;
overlay

600}, PlotRange » All, PlotPoints - 1000]

t=1000, 500 < x < 600;
overlay

700}, PlotRange » All, PlotPoints -» 1000]

t =1000, 600 < x < 700;
overlay

800}, PlotRange » All, PlotPoints - 1000]

t =1000, 700 < x < 800;
overlay



Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 900, 975}, PlotRange » All, PlotPoints -

0.06
0.04

0.02

0.01 — NN (LA ALV ML t=1 75;
/ \\940 \\ //gl_'q / \gﬂfo /94\) // \gpo \J i \Q /j \\'g}’b"“' 000, 900 < x < 975;

-0.02 l I overlay

-0.04

-0.06

Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]1}, {x, 950, 995}, PlotRange » All, PlotPoints -

0.2

0.1 —» o

AT AT gAY ST TN S (T T et t =1000, 950 < x < 995;
overlay

The improved Green function piles up at the light
cone, before it suddenly dies:



Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]}, {x, 995, 999}, PlotRange » All, PlotPoints -» 1000]

04 — 0.4;

0.2 g

"_ 995 loo7 | | | ooe 999 t = 1000, 995 < x < 999

[ = Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]1}, {x, 999, 999.9}, PlotRange » All, PlotPoints -» 1000]

3/
20 —:
1

t = 1000, 999 < x < 999.9

999.2 999.4 9996 | | 999.8

_3'

-4

In[ = Plot[{Re[greenSNR[x, 1000]], Re[greenIMPO[x, 1000]]1}, {x, 999.9, 999.99}, PlotRange » All, PlotPoints -» 1000]
20

15.0 — =

5

t = 1000, 999.9 < x < 999.99

999.92 999.94 999.96 999.98

o This is bringing out a square root singularity
approaching the light cone



(3) Examples of
Spreading

Speed Limit and Traffic Jam



LOW

0.2 -

— ‘ -—J\AAMN\//\/\‘ | \/\M ‘ -

-150 -100 -50 50 100 150

Smooth box with 2-sided width 20, evolved for 20 time steps.

Blue: NR Schrodinger; Gold: causal Schrodinger



LOY

06 -

‘04—— ‘

0.2 -

A A---.M/\f | \\M.-- ——

-150 -100 -50 50 100 150

Smooth box with 2-sided width 20, evolved for 20 time steps.

Blue: NR Schrodinger; Gold: causal Schrodinger including improvement term



|
_A__A‘.A‘ kA“A_>A

-150 -100 -50 50 100 150

t =50



. 4‘_ Numerically noisy
| out here —
03
02
01
N\ r”\ : /‘\ /1)
| I B T R I B T R B L
-150 —100 -50 - 150

t =150



ini263):= Plot[ {Abs[evolvedSmoothBoxSNR[10, x, 100]], Abs[evolvedSmoothBoxIMP1[106, x , 150]]}, {x, 130, 170}, PlotRange -> All, PlotPoints -> 1600] // Timin

04+
03}
Out[263)= {1609 .05, }l
0.2}
0.1}
A\ /N\ \
140 150 160 170

De-noised (imperfectly)



0.4

0.3

0.2

0.1

PlotPoints -> 100




Important comment: The “traftic jam”™ does not
appear to consist of high spatial frequency
osclllations.




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-20 -10 10 20

Filtered smooth box, width 10, time 10,
low-pass filter k<=2

0

0.2+~

-20

-20 20

Smooth box, width 10, time 10

L L L L L L L L L L
-10 I 10

Box, width 10, time 10

20



The structure you observed depends upon
your time resolution:



o u -0.2}

: “ U 0.4 u
., VY |
Real part of Green function att = 100
Left: non-relativistic; Right: relativistic

Upper: Raw; Lower: smeared over 10 time steps






(5) Interpretation as
Selective Propagation

A Different v/ KG



_P+m? = (9, +z\/m — 9%)(0, \/m _ )

To propagate using the first factor (positive
energy), we invert both and then multiply by
the second:

Gy ~ (0, — i\/mz— ) G

Now approximate to make It local, and take out
the (trivial) rest mass factor:

Goar(6 X0) = €™ — im+2La§) G*(x, 1; x',0)
m



(5) Restoring
Relativity, with Spin

Pauli to Dirac



To Incorporate spin, we want to get causal
propagation for a given 2-component wave
function. (Also, Dirac is simply the right

starting point for electrons.)

(iyFo,—m) ¢ =

— Four functions instead of on

Fortunately, each of them satis

e.

les KQG.

We need to identity the NR limit and to

from.

identify where enough initial data comes



For the Initial data:

¢ = e™™w Expandind,/m*

(2 () -
—0 -V —2im + O (Fs

O+ (0-V)hs = 0
Ys = m-va

2m
These are enough to get yw(t = 0) and
05t = 0) from yy(t = 0), and with
o (t = 0) = 0 we're good to go.




Then we can propagate forward using the KG
Green function technology.

Thus, component by component the behavior
'S covered by the same machinery as we
have |ust discussed.




In this way, we will have solvead
(tyFo, —m)(y o, + m)y,, = 0.

We want to solve (iy*d, —m)y = 0.
Vo= (i}’”aﬂ +m)y,,, = 0 does the job!

Of course, this projection can be done once
and for all at the level of Green functions.



We discussed how the NR limit works earlier,
including interaction with external fields.

A noteworthy feature is that the corrected
probabillity density

1
b ¢ = v + o |V
wiwp + Wiy generally, Is non-negative (unlike

for KG) - indeed, generically it is free of
nodes!/

\2 at time 0, and



(6) Being Where You
Shouldn’t Be

Localizing in Space with Limited Energy
(“Oft Shell”, “Under Barrier”)



e RihoGhees 1’ \CRE. 4

T i——— e . S



Using appropriate sources, we can put in lots
of excitation “where it shouldn't be”, or “oft
shell”.

Basically, one uses signal processing ideas
(filtering) to generate small energy but large
momentum fields in a confined space-time
region, and see what happens.




”“H




sourceTimeFilteredBoxCosSNRJ[tav ,yint ,k ,x ,t ]:=
Nintegrate[
greenSNR[x - y, t - s]*Cos[k*y]*Exp[lI*k”*2/s], {y, -yint,
yint}, {s, .01, tav}]



-200 200

Plot[Re[sourceTimeFilteredBoxCosSNRI[4, 4, 5, x, 20]], {x, -200, 200},
PlotRange -> All] // Timing
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