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Sharp Questions and Answers



The non-relativistic Schrödinger equation 
gives wave packets that spread infinitely 
fast, in the sense that even if they start out 
in a confined region, they extend over all 
space immediately afterward. 
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Related to this, there are issues around “time 
under the barrier” in tunneling problems that 
have been debated, inconclusively, for many 
years. 



Given advances in precision trapping and 
sudden releasing of particles, and in 
resolving short time intervals - broadly, 
“attosecond physics” - the problem getting a 
clear, quantitative account of wave packet 
spreading that does a better job of 
respecting special relativity seems timely.   
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(1) Refining 
Uncertainty

Limits of Localization
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To pose questions around superluminal spreading - 
that is, presumably, its absence, and the existence 
or not of near-luminal spreading - sharply, one 
should start with wave functions that are strictly 
localized in space. 
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On the other hand it is desirable to suppress, or 
at least keep watch over, the large-k and high-
energy components, since these are going to 
bring in high velocities (and, in tunneling, over-
the-barrier propagation) “trivially”. 



These requirements are in tension, for 
reasons related to the uncertainty principle.  
But here the uncertainty principle as such is 
too crude for our purposes.
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It is relatively simple to show that one 
cannot have strict limits in both position 
and momentum space.
(Proof: The Fourier transform of a function that 
is bounded in space can be continued into an 
analytic function in a strip around the real axis. 
But the only analytic function that vanishes in 
an interval is just plain zero.) 
There is a remarkable theorem that tells a 
precise, detailed story:



Should be  log ω(ξ) etc .



The Lifshitz condition

Special thanks to Felipe Hernandez



11

There are good practical constructions 
based on the following classic function that 
is smooth (but not analytic) and vanishes 
on one side:  

                    f(x) = H(x) e− 1
x

Its Fourier transform falls off as 

        ∫ eikxf(x) ∼ ei 2ke− 2k
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Multiplying by a translated reflection, we 
get a nice windowing function:







To have more flexibility, we could consider
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 h(c, α, x) = 0 ; x ≤ 0

h(c, α, x) = exp (−c/xα) ; x > 0

which leads to 

∫ eikx h(c, α, x) ∼ exp (−k
α

α + 1 (α + 1) (αc) 1
α + 1 (sin

π
2(α + 1)

− i cos
π

2(α + 1)
))



(2) Restoring 
Relativity

Schrödinger to Klein-Gordon
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Now let’s put a causal equation -  namely, 
(complex) Klein-Gordon - underneath the 
spinless Schrödinger equation.  
Mathematically, this is not difficult: 

 
 

∂2
t ϕ − ∂2

xϕ + m2ϕ = 0
ϕ = e−imtψ
−2im∂tψ + ∂2

t ψ − ∂2
xψ = 0
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Conceptual issues: 
• What is the conserved density? 
• What is the initial value problem? 
• What is causality? (Already addressed.) 
• What are we talking about?
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Conserved Current

jμ = Im ϕ*∂μϕ

j0 → − mψ†ψ + Im ψ*∂0ψ ≈ − mψ* +
1

4m
(∇2ψ*ψ + ψ*∇2ψ)



Thus,                               is a more accurate 
representation of charge density than  .   Of 
course, it is has the appropriate large  limit. 

ψ*ψ
m

It is not positive definite, but unless the NR 
Schrödinger equation is being misapplied regions 
of negativity will be small, and impossible to 
resolve without bringing in large momenta.

ψ*ψ −
1

4m2
∇ψ*∇ψ



“Self-Consistent” Initial Value 
Problem

Since the KG equation is second order, we 
need the time derivative of the initial wave 
function as well as the wave function itself.   
A nice way to finesse this issue is to 
impose the NR Schrödinger equation at 
time 0.



Role of PDEs in QFT

They govern appropriate correlation functions. 
The correlation functions, in turn, govern 
physical excitation and detection processes. 
Glauber spelled this out in the context of QED 
and photo-detection. 



(3) Comparing Green 
Functions

Correspondence and Divergence
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Non-relativistic Propagator (Green 
Function)

ψ(x, t) = ∫ dx G(x − x′ , t − t′ ) ψ(x′ , t′ )

GsNR(x, t; 0,0) =
m

2πit
exp

imx2

2t



Relativistic Green Function(s)

ϕ(x, t) = ∫ dx′ Gσ(x, t; x′ ,0)f(x′ ) + ∫ dx′ Gτ(x, t; x′ ,0)g(x′ )

ϕ(x,0) = f(x) ∂tϕ(x,0) = g(x) (∂2
t − ∂2

x + V(x))ϕ(x, t) = 0

(∂2
t − ∂2

x + m2)Gσ(x, t; x′ , t′ ) = 0

Gσ(x, t; x′ , t) = δ(x − x′ )∂tGσ(x, t; x′ , t) = 0

(∂2
t − ∂2

x + m2)Gτ(x, t; x′ , t′ ) = 0

Gτ(x, t; x′ ,0) = 0 ∂tGτ(x, t; x′ ,0) = δ(x − x′ )

Even in t − t′ 

Odd in t − t′ 



Gτ(x, t; 0,0) =
1
2

(H(x + t) − H(x − t)) J0(mτ)

(τ = t2 − x2)

Gσ(x, t; 0,0) =
∂
∂t

Gτ(x, t; 0,0)



Non-Relativistic Limit of Relativistic 
Green Function

e−imtψ(x, t) ≈ ∫ dx′ Gσ(x, t; x′ ,0)ψ(x′ ,0) − im∫ dx′ Gτ(x, t; x′ ,0)ψ(x′ ,0)

= ∫ dx′ (∂t − im)Gτ(x, t; , x′ ,0)ψ(x′ ,0)

GcNR(x, t; x′ ,0) = eimt(∂t − im +
i

2m
∂2

x) Gτ(x, t; x′ ,0)

Incorporating “self-consistency”;  
applicable to ψ



(Pictorial) Numerical Comparisons: 
Correspondence and Divergence

t = 1000, 0 < x < 100;  
overlay

t = 1000, 0 < x < 100;  
absolute difference

t = 1000, 200 < x < 300;  
overlay

0.01

0.0015

0.01

m = 1
Real parts



t = 1000, 400 < x < 500;  
overlay

0.01

0.01

0.01

0.01

t = 1000, 500 < x < 600;  
overlay

t = 1000, 600 < x < 700;  
overlay

t = 1000, 700 < x < 800;  
overlay



0.1

0.01 t = 1000, 900 < x < 975;  
overlay

t = 1000, 950 < x < 995;  
overlay

The improved Green function piles up at the light 
cone, before it suddenly dies:



0.4

2.0

15.0

t = 1000, 995 < x < 999

t = 1000, 999 < x < 999.9

t = 1000, 999.9 < x < 999.99

This is bringing out a square root singularity

approaching the light cone 



(3) Examples of 
Spreading

Speed Limit and Traffic Jam
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Smooth box with 2-sided width 20, evolved for 20 time steps. 

Blue: NR Schrödinger; Gold: causal Schrödinger 
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Smooth box with 2-sided width 20, evolved for 20 time steps. 

Blue: NR Schrödinger; Gold: causal Schrödinger including improvement term 
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Numerically noisy 
out here →



De-noised (imperfectly)





Important comment: The “traffic jam” does not 
appear to consist of high spatial frequency 
oscillations.
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Filtered smooth box, width 10, time 10, 
low-pass filter k<=2 

Smooth box, width 10, time 10

Box, width 10, time 10



The structure you observed depends upon 
your time resolution:
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Real part of Green function at t = 100 

Left: non-relativistic; Right: relativistic

Upper: Raw; Lower: smeared over 10 time steps
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(5) Interpretation as 
Selective Propagation

A Different KG
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∂2
t − ∂2

x + m2 = (∂t + i m2 − ∂2
x)(∂t − i m2 − ∂2

x)

Gpos. ∼ (∂t − i m2 − ∂2
x) Gτ

To propagate using the first factor (positive 
energy), we invert both and then multiply by 
the second:

Now approximate to make it local, and take out 
the (trivial) rest mass factor:

GcNR(x, t; x′ ,0) = eimt(∂t − im +
i

2m
∂2

x) Gτ(x, t; x′ ,0)



(5) Restoring 
Relativity, with Spin

Pauli to Dirac
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To incorporate spin, we want to get causal 
propagation for a given 2-component wave 
function.  (Also, Dirac is simply the right 
starting point for electrons.)

 Four functions instead of one. 
Fortunately, each of them satisfies KG. 
⇒

(iγμ∂μ − m) ϕ = 0

We need to identify the NR limit and to 
identify where enough initial data comes 
from. 



ϕ = e−imt ψ Expand in  *.∂t /m
For the initial data:

These are enough to get  and 
 from , and with 

 we’re good to go.

ψS(t = 0)
∂tψB(t = 0) ψB(t = 0)
∂tψS(t = 0) = 0



Then we can propagate forward using the KG 
Green function technology. 

Thus, component by component the behavior 
is covered by the same machinery as we 
have just discussed.



In this way, we will have solved 
 . (iγμ∂μ − m)(iγμ∂μ + m) ψaux. = 0

We want to solve  .  (iγμ∂μ − m) ψ = 0

 does the job!  ψ = (iγμ∂μ + m) ψaux. = 0

Of course, this projection can be done once 
and for all at the level of Green functions.



A noteworthy feature is that the corrected 
probability density 

 at time 0, and 

 generally, is non-negative (unlike 
for KG) - indeed, generically it is free of 
nodes! 

ϕ*ϕ → ψ*B ψB +
1

4m2
|∇ψB |2

ψ*B ψB + ψ*S ψS

We discussed how the NR limit works earlier, 
including interaction with external fields.



(6) Being Where You 
Shouldn’t Be

Localizing in Space with Limited Energy 
(“Off Shell”, “Under Barrier”)
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Using appropriate sources, we can put in lots 
of excitation “where it shouldn’t be”, or “off 
shell”. 

Basically, one uses signal processing ideas 
(filtering) to generate small energy but large 
momentum fields in a confined space-time 
region, and see what happens.  
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sourceTimeFilteredSNR[a_, x_, t_] :=  
 NIntegrate[greenSNR[x, t - s], {s, 0, a}, MinRecursion -> 8]



sourceTimeFilteredBoxCosSNR[tav_, yint_, k_, x_, t_] :=  
 NIntegrate[ 

  greenSNR[x - y, t - s]*Cos[k*y]*Exp[I*k^2/s], {y, -yint,  
   yint}, {s, .01, tav} ]



Plot[Re[sourceTimeFilteredBoxCosSNR[4, 4, 5, x, 20]], {x, -200, 200},  
  PlotRange -> All] // Timing
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