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(1) Framework

Local QM Made Simple and Flexible



consistent
QuantumTheory

Robert B.Griffiths




e Space-time lattice theory

e [he framewo
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ics are fully respected.

e Simple formulation in the L-picture”

e [oy models of hard-to-treat problems

o ~ Unitary cellular automata: “Inner locality”



* E Versus L Pictures

. ®, D .
Eulerian —+v-V= —  Lagrangian
Ot i
\ ~ J N,
/‘ Eulerian Lagrangian
, derivative (Material )
* 2 derivative
3 7;'
——’"""-g-“‘ t+6t
Spatially fixed

Following the motion

volume element of the fluid element






An orthonormal™ basis of states: ]

9‘_3>9|_2>9‘_1>9‘O>9‘1>9‘2>9‘3>9

Interpretation: the particle is at the indicated place.



The dynamics is specified by a unitary operator £2
that implements a unit time step

Qlny=|n+1)forn+#-1,0

Q0) = —p*[0) + a|l)

Q| —1) =a*|0) + p|1)
lal”+ |17 =1

Since this takes one orthonormal basis to another, it
IS Indeed unitary.
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Interpretation: the partic

toward points with larger
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Griffiths used this model to display the basic
guantum mechanics of decay.

ndeed, if we start at time O with | 0), then at time n we
nave

(=)' |0) + a((=f*)" 1) + (=p*)"2|2) + ... + |n))

This i1s exponential decay, with an explicit radiation field

12



More expansively, we can use It discuss the physics
of traps:

When || =1 (soa = 0), |0) is an isolated
state. It can neither be entered nor exited.

When || iscloseto 1, |0 ) isatrap. Itis

difficult to enter, but once you’re Iin, it is difficult
to exit.
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Traps are lurking everywhere:
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https://www.youtube.com/watch?v=WHuZ3b0wxe4
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—xploiting the ideas further, we’ll display tractable QM
models that illustrate and provide sanity checks for

radiation fields and black holes,
nd topology change, advanced

N and tunneling, to
it time.




(2) Green Function and
Quasi-Normal Modes

An Enlightening Exercise



For amplitudes (wave-functions, E picture) we have

a(n,t+1) = an—1,t) n< -1
a(0,t+1) = «aa(-1,t) — 5%a(0,1)
a(l,t+1) = pBa(—1,t) +a*a(0,t)
an,t+1) = an—1,t) n>2

For eigenmodes a(n, t + 1) = o a(n, t), giving

o) = W n<-—1
(w) &
1+ B*w
n—1
o) = 2 CR S

1+ B8*w -
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Applying periodic boundary conditions
¢_» = Pn_, We have

DN w+p
1l + fp*w

The solutions are complex numbers of
magnitude unity. (This is not quite trivial to
orove directly — see the notes.)
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But if we take N — 00, I.e. an open line, then
there are other kinds of solution. We can take

o = (=f%)"11 The corresponding mode:
o\ = d(n)+ H(n—1)a*(=g")""
aPV(t) = PN (=B

IS not normalizable - not even In the sense of
olane waves - but (as we’ll see) it has a clear
ohysical interpretation and conceptual utility. It
IS a quasi-normal mode.
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'he quasi-normal mode grows In space, but shrinks
N time. It is the "completed” form of the radiation

field that arises from decay of the trap state.

o
IN

Cl

N0or

In many contexts, e.g. In acoustics and microwave
ngineering, quasi-normal modes arise as one

udes dissipative “loss” corrections to idealized

mal modes.

-Here are getting imaginary energies™ by allowing
non-normalizable configurations - going outside of
Hilbert space!
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The Green function, defined by
aln,t) = Z G(n,t;n',t"Ya(n',t'), is a useful encoding of the

n
dynamics.

lt is straightforward in principle to calculate it, piecewise, by
following particle trajectories. One finds (with7 =t — ' > 0):
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Gn,n',7) = on—n'—7)H(-n—-1)H(-n'—1)+H(n—-1)H(n' —1))
+ (=8")70(n)é(n')H(T — n)

+ " (=p7)""H(n - 1)H(r —n)é(n')

+ H(—n'—1)H(r+n +1)(B6(r—n+n"+1)H(n—1)

+ (=) S(n)H (T —n+n')

+ (=) H(n = 1)H(r —n+n))
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At first sight this Is a hideous mess, but using the
guasi-normal mode it becomes beautifully
transparent.

G(n,n',7) = é(n—n"—7)H(—n—-1)H(-n'—1)+ Hn—-1)H(n' — 1))
+ 6(n)al®N)(T)H (T —n)
v H(—n' —V)H(r+n' —1) (55(7 40’ + 1) H(n—1)
+ OéCL,,(%QN)(T—I—TL,)H(T—n—Fn/))

. free propagation, no encounter with trap
. decay/radiation from trap location
. (with prefactor) free propagation, hopping over trap

. (with prefactor) falling into trap, then decay/radiation
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More Complex Traps

Double trap

RiNg trap

Dynamic geometry (see below)
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(3) Many-Particle
Traps

Serious Toy Models



By taking tensor products, we can build many-
particle versions of the model.

We can incorporate boson or fermion statistics by
taking symmetric or antisymmetric tensor products.
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If the trap is very trappy (|a| < < < 1), then we
can have an interesting model of pseudo-
iInformation loss.

Namely, we start at time 7 = 0 with a large number
of particles having moderately small negative
coordinates and let it evolve.

Most of the particles will hop over the trap, but (if
we started with enough particles) many will
accumulate there.
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The resulting “object” at | 0) will then slowly decay,
as particles slowly escape.

The emitted radiation field will display only very
subtle signs of how the object was formed: slight

offsets in the starting times for the quasi-normal
modes!

36



Nevertheless, the overall process is entirely unitary.

In principle, we can follow the entropy flow In detall

... and we can in practice, too.
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(4) Radiation Field
Properties

Building Up To Statistics and Entropy



o probe the radiation field, introduce a “detector” or
“internal state” at | 1)

W = (1—\1><1\)®1+\1><1‘®((1) (1))

The complete model is

()4
U

Q®I
W4



Wo(0) = 10) ® |e)

U'yp(0) = (=F*)"'10) @ e) + a((=F*)" " |1) + (=f*)"?[2) + ... [n) ® |g)

The density matrix for the detector is

2n
o = (5 1 )



For the entropy of the detector, which is also the
entropy of the radiation field, we have

Enty(n) =— (1817"log, | 81" + (1 = | B1*" Qogy(1 — | BI"))

or in continuous form

CEnt(t) = t27¢ — (1 —27%)log,(1 — 27%)

¢ = nlog,|f|™



We get this universal function:

1.0
0.8
0.6
0.4

0.2

as we evolve from pure excitation to pure radiation,
with entanglement in between.




By starting with two particles at | — 1), |0), and
introducing two detectors (or one counter) down the
ine, we can see the effect of guantum statistics:
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Figure 3: Entropy of the radiation field evolving from initial fermionic (or-
ange), bosonic (green), and distinguishable (blue) initial states based on

Y0(0) ® ¥_1(0).



Given our Green functions, it is straightforward in
principle to set up and investigate our “serious
toy model”.

Note that the ideal remnant object Is governed
by the quasinormal modes!




A most intesting possibility - also for experiments
- IS to make parts of guantum radiation fields
interfere, by keeping the detectors pure and later
“detecting the (quantum state of) the detectors”.




(5) Encoding Motion

Spreading Made Simple-ish



We define models that can accommodate motion and barriers to
motion through:

Qlk, R)
Ok, L)

a(k)|k+1,R) + B(k)|k—1,L)
—B(k)* |k +1,R) + a(k)*|k—1,L)

When a(k) = 1 we have an obvious interpretation in terms of
eft-moving and right-moving states of motion. More general

functional forms for a(k), (k) allow us to set up mesas for

oarrier penetration problems, double mesas for tunneling
oroblems, and so forth.
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By doubling the unit cell - encoding direction of motion as a
position variable! -

n, R)
n, L)

2n,)
2n + 1)

we turn the evolution rule into a unitary matrix operation

Q2k)
Q2k + 1)

a(k)[2k +2) + B(k)|2k — 1)
— B(k)*|2k +2) + a(k)*|2k — 1)
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The associated amplitude evolution is

a(2k,t+ 1) alk —1)a(2k —2,t) — Bk —1)"a(2k — 1,1)
a(2k+1,t 4+ 1) =Bk +1)a(2k +2,t) + a(k + 1) a(2k + 3,1)

hese are the equations we can use to set up mesa and double
mesa problems in a form that is very tractable numerically,
allowing complete tracking of space-time behavior.

51



ere I1s a well simulation:
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outl J= {{1, O}, {0.717143, 0.0110749}, {0.714658, 0.00632496}, {0.691595, 0.0224914}, {0.669931, 0.0374848}, {0.690849, 0.0101604}, {0.671085, 0.0237343},
{0.674648, 0.0142014}, {0.676588, 0.00653748}, {0.663252, 0.0143282}, {0.661436, 0.0107956}, {0.65314, 0.0139542}, {0.638042, 0.0240755}, {0.648975, 0.00836001},
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Stasis
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ere IS a mesa simulation:
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sumsOfSquaresList

- {{1, 0}, {0.694996, 0.0574852}, {0.529383, 0.0129451}, {0.409525, 0.027169}, {0.34023, 0.0194715}, {0.293258, 0.00707725},
{0.259054, 0.00704314}, {0.233574, 0.00265455}, {0.208804, 0.00520115}, {0.188835, 0.00487302}, {0.171595, 0.00354193},
{0.157154, 0.00271286}, {0.144692, 0.00167875}, {0.133032, 0.00170071}, {0.122177, 0.00191354}, {0.112262, 0.00197515},
{0.10313, 0.00194983}, {0.0949741, 0.00176228}, {0.0875012, 0.00160466}, {0.0806313, 0.00145507}, {0.0743741, 0.00130179},
{0.0686257, 0.00109876}, {0.0634007, 0.000926616}, {0.0585994, 0.000787572}, {0.0541581, 0.000722494}, {0.0500141, 0.000722713},
(0.0461696, 0.000732902}, {0.0425822, 0.000744982}, {0.0392829, 0.00072564}, {0.0362421, 0.000676478}, {0.0334534, 0.000604123},
{0.0309037, 0.000520754}, {0.0285623, 0.000436544}, {0.0264116, 0.000371394}, {0.0244241, 0.000326034}, {0.0225789, 0.00030593},
{0.0208599, 0.000304117}, {0.0192606, 0.0003085}, {0.0177724, 0.000311265}, {0.0163982, 0.000302984}, {0.0151321, 0.000281971},
{0.0139714, 0.000250605}, {0.0129087, 0.000214436}, {0.0119338, 0.000179755}, {0.0110365, 0.000152961}, {0.0102064, 0.000135843},
(0.00943504, 0.000128841}, {0.00871643, 0.000128631}, {0.0080474, 0.00013075}, {0.00742586, 0.000131246}, {0.00685167, 0.000127051},
(0.00632322, 0.000117502}, {0.00583885, 0.000103806}, {0.00539525, 0.0000884263}, {0.00498823, 0.0000741549}, {0.00461331, 0.0000633098},
(0.00426621, 0.0000567641}, {0.00394349, 0.0000543043}, {0.00364282, 0.0000544686}, {0.0033629, 0.0000553855}, {0.00310309, 0.0000553512},
{0.00286315, 0.0000532612}, {0.00264252, 0.0000489306}, {0.00244033, 0.0000429673}, {0.00225513, 0.0000364625},
({0.00208515, 0.0000305938}, {0.00192845, 0.0000262477}, {0.00178328, 0.0000237533}, {0.00164824, 0.0000229118},
(0.00152243, 0.0000230762}, {0.00140533, 0.0000234486}, {0.00129672, 0.0000233284}, {0.00119647, 0.0000223077},
(0.00110435, 0.0000203573}, {0.00101995, 0.0000177728}, {0.000942631, 0.0000150328}, {0.000871627, 0.000012626},
{0.000806128, 0.000010896}, {0.000745407, 9.95239x10°°}, {0.000688903, 9.67573x10 °}, {0.000636254, 9.77865x10 °},

0 } }
{0.000587271, 9.92251><10‘6}, {0.00054187, 9.82432><10‘6}, {0.000499992, 9.33436><10‘6}, {0.000461531, 8.46174><10‘6},
0.000426298, 7.34667x10°}, {0.000394018, 6.19683x10 °}, {0.000364357, 5.21339x10°°}, {0.000336976, 4.52878x10°°},
.000311575, 4.17526><10‘6}, {0.000287931, 4.08942><10‘6}, {0.000265901, 4.14406><10‘6}, {0.000245413, 4.19659><10‘5},
.000226436, 4.13385><10‘6}, {0.000208943, 3.90208><10‘6}, {0.000192886, 3.51409><10‘6}, {0.000178179, 3.03505><10‘6},
.0001647, 2.55429x10°°}, {0.000152308, 2.15404x10 °}, {0.000140861, 1.88471x10 °}, {0.000130235, 1.75382x10 °}}
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This work Is very much In progress.

A plausible guiding hypothesis: In trappy
situations the general excitation settles, after
some non-universal transients, into a set of
slowly decaying quasi-normal modes
(approximate bound states).

Causality might appear as a cutoff, as in the
simple model. The would resolve the “no phase”
paradox.



(6) Dynamical Space-
Times

Suggested Explorations



Scissor and paste



OO O O O O O OO
O * * O O O O % x O
O *x *x O O O O % x O
OO O O O O A0 O O
O O O OO - O O O O
OO O O - O O O O O
O O O A O O O O O O
O *x * O O O O % x O
O X% * O O O O % x O
— O O O O O O O O O

Shift - or
motion!



We can make the * 4x4 unitary time-dependent,
or even move It around, stochastically or
“lawfully” (autonomously or externally controlled).

Particles will propagate, and waves will spread,
accordingly.

All this happens within the kinematic framework
of quantum-mechanical unitary time evolution.



| expect that we can made nice caricatures of
several kinds of interesting physical systems:




(1) (2)

3) (4)

Woodward-Hoffman Rules (and Their Violation)
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n-system molecualr orbitals
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HSCM CHs

H,C ég E;CV
i Y CHg

constructive orbital overlap

HsC
;CH3

symmetry allowed product




(a)

R 10)
Q, |0)
Q; (0)
<
Qs [0)
Q, [0)
X/2
) —hy (e iy
0.8 lve) ¢+ — Vertex: (|\|Jg)+|\ye))/\/§

Charge & Flux

- & (Unltary) SWItChGS' 083 c.)'.25 05 075 10 025 05 075 1

6/



Formation of a “baby universe”

Ors(O « e fO
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