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"Framework”
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Hopeful models



Probability Density
Versus | y(x) |2

They’re not the same, and it’s interesting

Z. Yu



(1) A Motivating
Example

Non-relativistic limit of Dirac electron



he relativistic (Dirac) theory suggests a correction of
to probabillity density in the effective description of non-
relativistic electrons:

p(x) = ¥ WX)
U (4 50)

1
p — l//*l/f+4—m2Vl//*Vl/f



The correction term is of order v/c?. Itis usually - but
not always” - quite small for practical purposes.

It removes "dead spots”’, gets more competitive near
steep potential gradients, comes into highly excited
states ...

... raises conceptual issues ... and maybe suggests
opportunities.



(1a) Addendum

Non-relativistic limit of Dirac electron, made simple
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Substituting for 4, and dropping 4, for A; < < m
the first line becomes the Pauli equation
(Schrddinger + magnetic moment).

AO

To next order iIn — we get a spin-orbit term and a
m

“Darwin” term « £ -p”.
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With A = 0 anc Ay < < m we get the modified
Schrodinger equation we'll be focusing on.

't Is straightforward in principle to relax those
conditions.
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The next correction to A brings in second-order
time derivatives of y, which modity the initial value
problem.

hose can probably be handled sensibly, though
it's not straighttorward. But at some point we have
to ask ourselves why we're not just solving the
Dirac equation. (See Lecture 3.)
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(2) A Basic Question

What's a Point?



extbooks on basic quantum mechanics, when come to
make contact with the empirical world, tend to
postulate that there Is such a thing as a particle that
has amplitudes at different times and places - i.e., a
wave-function w(x, t) - and that ™y represents the
probability density for it to “be there then”.
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Here's how an argument might go:

1. A particle is associated with a dynamical variable x,

its position. We can diagonalize it, and then label
particle states by their coefficients in that basis, using
the wave-function y(x) in

| w) = [dx w(x)|x)

| 4



2. Assuming that the wave function for the ket (y
associated with |y) is y*, the amplitude to observe
the eigenvalue X, is then proportional to

(w|o(x —xp) ly) = doxydx y*(x,)0(x; — Xo)w(x (x| Xp)

3. If we make the “obvious” choice for a structureless
point

X X))y = 6(x —xy)

then the integral reduces to y™*(x,) w(x)

We will challenge assumption 3. We could (alternatively) challenge 2.

|5



But we can contemplate other possibilities. An
iInteresting possibility that preserves locality, translation
symmetry, and parity Is

This amounts to a

<X2 ‘X1> — (1 — adﬁz) 5()62 — xl) choice

of measure.
It leads (in 3D) to

(wlox —xp) ly) = y*y + aVy* - Vy

In this way, we've reverse-engineered the Dirac-
inspired form.

|6



In other parts of the textbooks, it is emphasized that we
should be careful about assigning physical reality to
things that we don't measure.

Many practical measurements ultimately come down to
interactions with electromagnetic fields. “Electron
position” offers a convenient way to discuss charge
density. From this perspective electron probability
density is a secondary rather than a primary concept.
The tundamental object is the charge density
associated with a U(1) symmetry and a conserved

current.
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(3) Derivation from
LLagrangian

Moditied Schrodinger Equation and Conserved Current



The a term arises within a broader “philosophy”:

1. Quantum theory can/should be built up from
Lagrangians

2. Symmetry, locality and simplicity” guide us in
selecting interesting Lagrangians

3. *Polynomial terms of small degree / low mass
dimension are especially worthy of consideration.
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These considerations apply to other kinds of particles
and quasiparticles, besides electrons.

Let's see what the equations this philosophy suggests
tell us:
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The usual Schrodinger equation can be derived from
the Lagrangian

2 2m
It supports a conserved probability current

oL 0L L oL

5
50@‘” 50,V VY, WW — 0 50,V

whose 0 component is the probability density y*y.

[m ( )
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The a term in probability density arises from adding to
LY the term

1 <
LM = %vw* 9, Vi

(The modification suggested by the Dirac equation

1

corresponds to a = )
4m?
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Having the Lagrangian, we can shift from assumption
to deduction.

From LY + LM we derive the modified Schrodinger
equation (equation of motion)

z(@tw — &8tv2w) —

1
Ve + Vb
2m

and the probabillity current

x * 1 x x
(67 +aVy™ - Vb, Im (5 - V™ — SO, ($Ve7)))
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Note that the equation of motion and the number
conservation equation are not independent.

When the dynamics follows the moditied Schrédinger
equation, y*y is not conserved, and cannot be
iInterpreted as a probability density.

Given the modified Schrédinger equation, or the
Lagrangian it came from, the modified probability
density iIs manaatory.
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(4) Basic Examples

Some Surprising Dynamics



—1Et

For stationary states, with y(x, 1) w(x)e ™ the a
term the modified Schrédinger equation becomes™

E(1 —avz)w = 2;v2w+vw

Thus, the a term has the same form as the mass term.
We capture its influence in an etfective mass

1 1
= al
2meff. 2m
m
Mo =

1 —2amkE
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*Note: Here we have coupled V to y™ . It would be
Interesting - and maybe more “photon-like” - to

consider coupling to the conserved density. We're
doing that.
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This enables us, when we have a formula for how
energy € depends on m in the ordinary (a = 0)
Schrodinger equation, to infer £ in the general
situation.

For the harmonic oscillator, after some algebra we find
the discrete spectrum

E, = en(\/ 1 + (e, am)* — ¢,am)
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* [he energy levels are no longer equally spaced
e The corrections become more significant as n grows

® [here Is a limiting energy

1
L =
101. 2am

for the discrete spectrum!
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That last fact has a clear and remarkable explanation.

As the energy grows, the effective mass also grows,

until at £ it diverges. Then it becomes negative.

Note that in a sense infinitely large positive and
infinitely large negative mass are close to one another,
since it is m~! that appears in the Schrodinger
eqguation.
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Classically, a negative mass particle will accelerate into
a rising potential.
k2

Quantum mechanically we find, from E — V ~ py that
m

when m < 0O forbidden regions (where V > E) are
associated with real values of k — that is, with
oscillatory behavior ..

.. and the more forbidden, the taster the oscillation!
This corresponds beautifully to the acceleration
suggested classically.
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Thus, the modified Schrédinger equation allows a
particle to “lonize” its way out of an harmonic oscillator
potential!

This under-barrier behavior i1s reminiscent of the famous
Klein paradox. (See Supplement 4a.)

Here it is occurring in the framework of a fully
consistent set-up, where in particular energy Is
bounded below, so maybe we should try to take it
seriously
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(a) Ground state

(b) Fifth excited state

Figure 1: Corrected probability density of the harmonic oscillator from
Eqn. (18), where the states are modified using the effective mass from
Eqn. (26). Here, m = w = 1, for a = 0 (blue), a = 0.1 (red), a = 0.5
(green).
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For an infinite well we find

€
E, = & .
1 + 2ame,

n’m?

o—
" 2ml?

Again we have the limiting energy (2am)~!. But now
there i1s no possibility for ionization; the energy is simply
bounded above!
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(b) Fifth excited state

Figure 2: Corrected probability density of the infinite well, from Eqn. (18)
with L = 3, for a = 0 (blue), a = 0.1 (red), a = 0.5 (green).



For a free particle we have the dispersion relation
k2
w(l +ak?) = —
2m

leading to phase and group velocities

W k 1

k 2m 1 + ak?

dw k 1

dk m (1 +ak??

hus, the highly excited waves slow down!
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As we'll see shortly, the energy associated with the

wave e =) is @ while the momentum is k(1 + ak?).

Again we encounter the limiting energy (2am) ™"
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(4a) Addendum

Step Potential / Klein Paradox



The Klein paradox is a classic of guantum field
theory. It concerns the behavior of the Dirac equation
in the presence of a high potential step.

When A¢ > 2m the wave-function oscillates rather
than dies in the classically forbidden region.

In the context of quantum field theory, this gets
interpreted quite differently from barrier penetration.

The particle is totally reflected, but induces pair
creation.

40



In our examples we don't have negative energies, or
pairs, so the interpretation must be self-contained.

Though it seems strange on first encounter, | don't

see anything wrong with an effective mass going
negative at high energy.
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For a direct comparison, following Klein, let’s look at
the step problem.

First, with the V™ interaction:

42



(E—V.)2m
k? = ’
1 —2makE

If £ < (Zma)_l, all is normal: allowed region allowed,

forbidden region torbidden, quantitative changes in
transmission and retlection.

f E > (2ma)~!, this is reversed: “allowed” region
forbidden, “forbidden” region allowed. The anomalous
allowed region only occurs if V; > E > 2ma)~! (e,

large, “Klein-ish™ potentials).
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Second, with the V = Ay minimal coupling
Interaction:

1
((i0,— V) — ad(io,— V)o,) y = oy
2m
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f2
E-V, = 4
2m(1 + ak?)

Here the a term (with a > 0 ) introduces quantitive

changes, but the qualitative behavior is basically
‘normal”.

(There is also a singular interaction at the jJump.)
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(5) Local Energy and
Momentum Currents

Derived from Lagrangian Dynamics



We can derive other conservation laws too, as
Noether’s theorem assures us.

It Is Instructive, and reassuring, to get them directly
from the Lagrangian equations.

Here | will indicate the logic and the results, foregoing
the algebra:
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To get energy conservation, multiply the equation of
motion for y with 0™, add the complex conjugate,

and re-organize.

Onefinds d,e + Vj. = 0, with

Same, same
but different.

1
e = y*Vy4 2mV1//*-V1//<—

. . 1
Je = 1a@y*o,Vy —0,Vy*oy) . Q™ Vy + Vy*oy)
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To get momentum conservation - and to identity
stresses - multiply the equation of motion for yr by

J, ™, add the complex conjugate, and re-organize.
One finds atﬂk —+ alle — — l//*ale//, with
m, = —2Im@OQw*y+aVy* o, Vy)

1
U= Re (w*0,0y — oo ™) — 2alm (00,0 + wo,0,0*)
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(6) Hamiltonian
Formulation

Closing the Loop



Time-energy duality is embodied in the equation
0y = Hy

In our context, this identifies

H=(1-av)™"( 21 VZ+ V)
m

Note that 1 — a V? is invertible for a > (). The inverse

IS non-local, but can be expressed as a simple
convolution in space.
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How is this result consistent with the unmodified
expression for energy density?

The point Is that when we take expectation values the
ket vector has an extra factor, stemming from

|y) = JW(X) | x) = (y| = Jl/f*(y)@\

with the non-standard overlap we saw earlier. This
factor can also be regarded as a non-standard
measure in spatial integrals.

52



Putting it in, we find

(w|H|y) = Jl/f*(l — aV*)Hy = Jvf*el/f

AKKRkkAKkkAkkkhkkhkkkhkkkhkkhkkkhkkkx

Going back to the Lagrangian: it tells us that the
canonical conjugate to wis (1 — aV?) w*. Thus,
expressions that are simple and local in terms of y and
w™* will be non-local and generally awkward in terms of
canonical variables. Presumably, in the end they lead
to the same results.
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(7) Extensions

Things Worthy of Further Exploration



1. For two-component spinor fields, we could also
include AL «x Re y*o - Vo, which has even
ower dimension. It violates parity, however, and it
iInvolves a conserved charge density that is not

necessarily positive.

Positivity can be restored by combining this with
the sort of term we've been discussing, in the

form AL o Re y*(1 + ibo - V)* 0y
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2. One could also explore, at a formal level, the
use of general kernels, in the form

A JL = de dy y*(x) K(x,y) 10y (y)

with suitable reality and positivity properties.
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3. There is no difficulty in extending the preceding
discussions to many-body wave functions and to
models with more complex conventional
interactions. Thus we can infer modified
equations of state for guantum ideal gases,
modified densities of states, and so forth.
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4. Since the a term and its relatives improve
ultraviolet behavior, one might consider their use
as regulators in field theory. They are free of the

"ghosts” that plague covariant higher-derivative
regulators.

58



59



