The p-spin model

Energy: $\quad E=-\sum_{i_{1}<i_{2}<\cdots<i_{p}} J_{i_{1} i_{2} \cdots i_{p}} S_{i_{1}} S_{i_{2}} \cdots S_{i_{p}}-\sum_{i} h_{i} S_{i}$
spherical constraint: $\quad \sum S_{i}^{2}=N$
$J_{i_{1} i_{2} \cdots i_{p}}$ independent and Gaussian with zero mean and variance $\frac{J^{2} p!}{2 N^{p-1}}$
Langevin dynamics: $\quad \dot{S}_{i}=-r S_{i}+\sum_{j_{2}<j_{3}<\cdots<j_{p}} J_{i, i_{2} \cdots i_{p}} S_{j_{2}} S_{j_{3}} \cdots S_{j_{p}}+h_{i}(t)+\xi_{i}(t)$
We want to calculate the response function $G\left(t-t^{\prime}\right) \equiv G_{i i}\left(t-t^{\prime}\right)=\frac{\left\langle\delta S_{i}(t)\right\rangle}{\delta h_{j}\left(t^{\prime}\right)}$
where the average is both thermal (over noise) and over disorder (the $J_{i j} \mathrm{~S}$).

The equations of motion $(p=3)$

Define $S_{i}^{0}(t)$ by $\quad\left(\partial_{t}+r\right) S_{i}^{0}(t)=h_{i}(t)+\xi_{(}(t)$,i.e.
$S_{i}^{(0)}(t)=\int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right)\left[h_{i}\left(t^{\prime}\right)+\xi_{i}(t)\right] \quad$ with $G_{0}(t)=\Theta(t) \mathrm{e}^{-r t}$
Equation of motion:
$S_{i}(t)=S_{i}^{0}(t)+\int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right) \sum_{\langle j k\rangle} J_{i j k} S_{j}\left(t^{\prime}\right) S_{k}\left(t^{\prime}\right)=S_{i}^{0}(t)+\int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right) \frac{1}{2} \sum_{j k} J_{i j k} S_{j}\left(t^{\prime}\right) S_{k}\left(t^{\prime}\right)$
iterate once:

$$
\begin{aligned}
S_{i}^{(1)}(t) & =S_{i}^{(0)}(t)+\frac{1}{2} \int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right) \sum_{j k} J_{i j k} S_{j}^{(0)}\left(t^{\prime}\right) S_{k}^{(0)}\left(t^{\prime}\right) \\
& =\int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right)\left[h_{i}\left(t^{\prime}\right)+\xi_{i}\left(t^{\prime}\right)\right]+\frac{1}{2} \int_{t_{1}} G_{0}\left(t-t_{1}\right) \sum_{j k} J_{i j k} \int_{t_{2}} G_{0}\left(t_{1}-t_{2}\right)\left[h_{j}\left(t_{2}\right)+\xi_{j}\left(t_{2}\right)\right] \int_{t_{3}} G_{0}\left(t_{1}-t_{3}\right)\left[h_{k}\left(t_{3}\right)+\xi_{k}\left(t_{3}\right)\right]
\end{aligned}
$$

iterate twice:
$S_{i}^{(2)}(t)=S_{i}^{(0)}(t)+\frac{1}{2} \int_{t_{1}} G_{0}\left(t-t_{1}\right) \sum_{j k} J_{i j k}\left[S_{j}^{(0)}\left(t_{1}\right)+\frac{1}{2} \int_{t_{2}} G_{0}\left(t_{1}-t_{2}\right) \sum_{l m} J_{j l m} S_{l}^{(0)}\left(t_{2}\right) S_{m}^{(0)}\left(t_{2}\right)\right]\left[S_{k}^{(0)}\left(t_{1}\right)+\frac{1}{2} \int_{t_{3}} G_{0}\left(t_{1}-t_{3}\right) \sum_{p q} J_{k p q} S_{p}^{(0)}\left(t_{3}\right) S_{q}^{(0)}\left(t_{3}\right)\right]$

Averaging over J and ξ : just doing the algebra:

Averaging over the J 's:

$$
S_{i}^{(2)}(t)=S_{i}^{(0)}(t)+\frac{1}{2} \int_{t_{1}} G_{0}\left(t-t_{1}\right) \sum_{j k} J_{i j k}\left[S_{j}^{(0)}\left(t_{1}\right)+\frac{1}{2} \int_{t_{2}} G_{0}\left(t_{1}-t_{2}\right) \sum_{l m} J_{j l m} S_{l}^{(0)}\left(t_{2}\right) S_{m}^{(0)}\left(t_{2}\right)\right]\left[S_{k}^{(0)}\left(t_{1}\right)+\frac{1}{2} \int_{t_{3}} G_{0}\left(t_{1}-t_{3}\right) \sum_{p q} J_{k p q} S_{p}^{(0)}\left(t_{3}\right) S_{q}^{(0)}\left(t_{3}\right)\right]
$$

To survive the averaging, either $J_{j l m}$ or $J_{k p q}$ has to be equal to $J_{i j k}$.
There are 4 such pairs of factors, and the average of the product of the pair of J's in each is $3 J^{2} / N^{2}$, so summing over j and k yields

$$
S_{i}^{(2)}(t)=S_{i}^{(0)}(t)+\int_{t_{1}} G_{0}\left(t-t_{1}\right) \frac{3 J^{2}}{N^{2}} \sum_{j k}\left[S_{j}^{(0)}\left(t_{1}\right) \int_{t_{2}} G_{0}\left(t_{1}-t_{2}\right) S_{i}^{(0)}\left(t_{2}\right) S_{j}^{(0)}\left(t_{2}\right)\right]
$$

All $S^{(0)}$ s in the last term here are proportional to the (independent) noises ξ at their sites, so the only pair average that survives is $\left\langle S_{j}^{(0)}\left(t_{1}\right) S_{j}^{(0)}\left(t_{2}\right)\right\rangle=\int d t_{1}^{\prime} d t_{2}^{\prime} G_{0}\left(t_{1}-t_{1}^{\prime}\right) G_{0}\left(t_{2}-t_{2}^{\prime}\right) \cdot 2 T \delta\left(t_{1}^{\prime}-t_{2}^{\prime}\right)=C_{0}\left(t_{1}-t_{2}\right)$
We want the response function, which is the derivative of the averaged $S_{i}^{(2)}(t)$ with respect to $h_{i}\left(t^{\prime}\right)$:
$\frac{\delta\left\langle S_{i}^{(2)}(t)\right\rangle}{\delta h_{i}\left(t^{\prime}\right)}=G_{0}\left(t-t^{\prime}\right)+3 J^{2} \int_{t_{1}} G_{0}\left(t-t_{1}\right) \int_{t_{2}} G_{0}\left(t_{1}-t_{2}\right) C_{0}\left(t_{1}-t_{2}\right) G_{0}\left(t_{2}-t^{\prime}\right)$

Easier with diagrams:

Represent $S_{i}(t)$ by a thick solid line $\int_{i t}$ and $S_{i}^{0}(t)$ by a thick dotted line
Represent $G_{0}\left(t-t^{\prime}\right)$ by a thin directed line from t^{\prime} to t :

Equation of motion: $S_{i}(t)=S_{i}^{0}+\frac{1}{2} \int_{t^{\prime}} G_{0}\left(t-t^{\prime}\right) \sum_{j k} J_{i j k} S_{j}\left(t^{\prime}\right) S_{k}\left(t^{\prime}\right)$

Iterate:

to next order,

Averaging over J s: First correction gives zero ($J_{i j k}$ s have zero mean) in 2nd and 3rd (which are the same), require $\langle i j\rangle=\langle m l\rangle$ (different $J_{i j k} \mathrm{~s}$ are independent)

averaging over noise:

where the dot means $h\left(t^{\prime}\right)$ and the asterisk means $\xi\left(t^{\prime}\right)$

or, finally,

Using $C_{0}(\omega)=G_{0}(\omega) \cdot 2 T \cdot G(-\omega)$ or $C_{0}\left(t_{1}-t_{2}\right)=2 T \int d t_{1} G_{0}\left(t_{1}-t_{3}\right) G_{0}\left(t_{2}-t_{3}\right)$
the graph becomes

Summing all the terms:

These insertions can also be made on the internal lines:

and they can be repeated arbitrarily many times:

Finally,

These are the only graphs that survive the averaging over J and $\xi($ for $N \rightarrow \infty)$!
so (Dyson equation) $\quad G(\omega)=G_{0}(\omega)+G_{0}(\omega) \Sigma(\omega) G(\omega) \Longrightarrow G(\omega)=\frac{1}{-\mathrm{i} \omega+r-\Sigma(\omega)}$

$$
\text { with } \quad \Sigma(\omega)=3 J^{2} \int \frac{d \omega^{\prime}}{2 \pi} G\left(\omega-\omega^{\prime}\right) C\left(\omega^{\prime}\right)
$$

or, in time domain, $\quad G\left(t-t^{\prime}\right)=G_{0}\left(t-t^{\prime}\right)+\int d t_{1} d t_{2} G_{0}\left(t-t_{1}\right) \Sigma\left(t_{1}-t_{2}\right) G\left(t_{2}-t^{\prime}\right)$
with $\quad \Sigma\left(t-t^{\prime}\right)=3 J^{2} G\left(t-t^{\prime}\right) C\left(t-t^{\prime}\right)$

General p:

Just add extra factors of C :

$$
\Sigma\left(t-t^{\prime}\right)=\frac{p(p-1)}{2} J^{2} C^{p-2}\left(t-t^{\prime}\right) G\left(t-t^{\prime}\right)
$$

but what is C ?

We could get it from the fluctuation-dissipation theorem, but here it is in diagrams, (not proved here):

$$
p=3:
$$

or (general p): $\quad C\left(t-t^{\prime}\right)=2 T \int d t_{1} G\left(t-t_{1}\right) G\left(t^{\prime}-t_{1}\right)+\frac{p J^{2}}{2} \int d t_{1} d t_{2} G\left(t-t_{1}\right) C^{p-1}\left(t_{1}-t_{2}\right) G\left(t^{\prime}-t_{2}\right)$
Note: different factor from that in Σ

Summary:

As for the SK model, after averaging the problem is reduced exactly to a single-site self-consistent problem with a a retarded self-interaction and an effective (non-white) noise. But now the self-interaction is
$\Sigma\left(t-t^{\prime}\right)=\frac{p(p-1) J^{2}}{2} G\left(t-t^{\prime}\right) C^{p-2}\left(t-t^{\prime}\right)$
and the noise variance is
$2 T \delta\left(t-t^{\prime}\right)+\frac{p J^{2}}{2} C^{p-1}\left(t-t^{\prime}\right)$

Looking for a spin glass state:

take $t \rightarrow \infty, t^{\prime} \rightarrow-\infty$ in the equation for C, assuming it has a constant piece:

$$
q=\frac{p J^{2}}{2} q^{p-1} \int d t_{1} G\left(t-t_{1}\right) \cdot \int d t_{2} G\left(t^{\prime}-t_{2}\right)=\frac{p J^{2}}{2} q^{p-1}(G(\omega=0))^{2}
$$

static response function measures fluctuations:

$$
G(\omega=0)=\frac{\left\langle\left(S_{i}-\left\langle S_{i}\right)^{2}\right\rangle\right.}{T}=\frac{1-q}{T}
$$

so we have

$$
q=\frac{p J^{2}}{2 T^{2}} q^{p-1}(1-q)^{2} \quad \begin{array}{ll}
& 2 q^{2}(1-q)^{2}=T^{2} \\
& (\text { or } q=0)
\end{array}
$$

$$
\begin{aligned}
& \text { (or } q=0 \text {) } \\
& p=4, \quad J=1: \\
& T>T_{g} \\
& T=T_{g} \\
& T<T_{g}
\end{aligned}
$$

Stability analysis

To analyse stability, look at the low-frequency limit of $G(\omega)$, as we did for the SK model:

$$
\tau(\omega) \equiv \mathrm{i} \frac{\partial G^{-1}(\omega)}{\partial \omega}=1-\mathrm{i} \frac{\partial \Sigma(\omega)}{\partial \omega}
$$

$\Sigma \propto C^{p-2} G$ has a part proportional to q^{p-2} :

$$
\Sigma(\omega)=\Sigma_{0}(\omega)+\Sigma_{1}(\omega)=\frac{p(p-1) J^{2}}{2} q^{p-2} G(\omega)+\Sigma_{1}(\omega)
$$

But this is just like the calculation we did for the SK model, where we had

$$
\Sigma(\omega)=J^{2} G(\omega)+\Sigma_{1}(\omega)
$$

(for a different Σ_{1}, but the $\Sigma_{1} s$ don't matter except for a constant factor) so we have
$\tau(\omega)=\frac{1-\mathrm{i} \partial \Sigma_{1} / \partial \omega}{1-\frac{p(p-1) J^{2}}{2} q^{p-2} G^{2}(\omega)}$

marginal stability condition

The stability limit is when

$$
1-\frac{p(p-1) J^{2}}{2 T^{2}} q^{p-2}(1-q)^{2} \rightarrow 0
$$

But from the equation we got for q,

$$
q=\frac{p J^{2}}{2 T^{2}} q^{p-1}(1-q)^{2}
$$

so

$$
1-\frac{p(p-1) J^{2}}{2 T^{2}} q^{p-2}(1-q)^{2}=1-(p-1)=2-p<0
$$

i.e., the solution we found for q is always unstable.

(for $p=4:$)

Solutions in this range forbidden at this T

Add an external field:

Equation for q gets a new term: $\quad q=\frac{p J^{2}}{2 T^{2}} q^{p-1}(1-q)^{2}+H^{2}\left(\frac{(1-q)}{T}\right)^{2}$

$$
\begin{aligned}
p= & 4, J=1: \\
& 2 q^{2}(1-q)^{2}+\frac{H^{2}(1-q)^{2}}{2 q}=T^{2}
\end{aligned}
$$

Can get stable solutions for big enough H

"AT line"

Can plot limit of stable solutions in H -T plane: (Analog for this problem of the Almeida-Thouless line we saw for the SK model, note very different shape)

Crisanti, Horner \& Sommers, 1993

With a ferromagnetic interaction:

JH, D Sherrington and T Niewenhuizen, 1999

Spin glass phase?

Critical slowing down like in SK model approaching these "AT lines" from above

Aging solution

(Cugliandolo and Kurchan, 1993)
Summary: System starts at $t=0$ in a random configuration. Consider dependence of $G\left(t, t^{\prime}\right)$ and $C\left(t, t^{\prime}\right)$ on t^{\prime}, the "age" of the system in two time ranges:
(1) $t-t^{\prime} \ll t^{\prime}$: expect stationarity, FDT, i.e., just the theory so far.
(2) $t-t^{\prime}=\mathrm{O}\left(t^{\prime}\right)$: not stationary, expect dependence on $t / t^{\prime}: C\left(t, t^{\prime}\right)=\mathscr{C}\left(t^{\prime} / t\right)$

What about $G ? \quad \partial_{t^{\prime}} C\left(t, t^{\prime}\right)=\frac{1}{t} \partial_{t^{\prime}} \mathscr{C}\left(t^{\prime} / t\right)$
so if we define $G\left(t, t^{\prime}\right)=\frac{1}{t} \mathscr{G}\left(t^{\prime} / t\right)$, the FDT would be $\mathscr{C}^{\prime}\left(t^{\prime} / t\right)=T \mathscr{G}\left(t^{\prime} / t\right)$
The miracle: If assume a modified FDT, $\quad x \mathscr{C}^{\prime}\left(t^{\prime} / t\right)=T \mathscr{G}\left(t^{\prime} / t\right), \quad x<1$, The equations for \mathscr{C} and \mathscr{G} simplify to a single equation (just as the short-time equations did with the standard FDT. (Use marginal stability condition to fix x.)

Generic shape of $C(t)$

For $H=J_{0}=0$, $q_{0}=0$

