The p-spin model
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where the average is both thermal (over noise) and over disorder ( the J;s).

We want to calculate the response function G(1 — ') = G (1 — ') =



The equations of motion (p=3)

Define S(1) by (0, + NS () = h(t) + 1) Ji.e.
Si(o)(t) = [ Gyt —1)[h(t) + E(2)] with G(1) = O(r)e™"
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Equation of motion:
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iterate once:
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iterate twice;
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Averaging over J and ¢: just doing the algebra:

Averaging over the J'’s:
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To survive the averaging, either J;,, or J;,, , has to be equal to J;;.

There are 4 such pairs of factors, and the average of the product of the pair of J’s in each is 3J 2/N2,
SO summing over j and £ yields
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All S©s in the last term here are proportional to the (independent) noises & at their sites, so the only pair average that survives is

(SO)SPNy) = JdridtéGo(tl — 1)Gy(t, — 1) - 2T8(t; — t5) = Cy(t; — t,)

We want the response function, which is the derivative of the averaged Sl.(z)(t) with respect to h.(1'):
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Easier with diagrams:

Represent S:(7) by a thick solid line

— and Sl.o(t) by a thick dotted line =sssss-
it it

<

Represent G(¢# — 1) by a thin directed line from ' to £ t )

|
Equation of motion: S:(f) = SZ-O + EJ Gyt — 1) Z S ()51
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lterate:

to next order,
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Averaging over Js: First correction gives zero (/;;s have zero mean)

in 2nd and 3rd (which are the same), require (ij) = (ml)
(different J; ;s are independent)
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averaging over noise:

f
$0(1) = [ Go(t = () + EW)],  weeaen: - -
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where the dot means /(t’) and the asterisk means &(t')




or, finally,

the graph becomes

GpZoGy= +— 4
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Summing all the terms:

These Insertions can also be made on the internal lines:

Go etc.




Finally,

These are the only graphs that survive the averaging over J and & (for N — 00) |

so (Dyson equation) G(w) = Gy(w) + Gy(w)2(w)G(w) = G(w) = i+ ()
—iw+r—2(w

with 2(w) = 3J2J da),G(a) — " )C(w')
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or, intime domain, G(t—1) =Gyt —1') + JdtldtzGO(t — 1)X(t; — 1,)G(, — 1)
with  X(r—1) =3J°G(t—t)C(t -t



General p:

Just add extra factors of C:

Y(t—1) = PP 2_ D J°CP=2(t = tG(t — 1)




but what is C?

We could get it from the fluctuation-dissipation theorem, but here it is in diagrams,
(not proved here):

p = 3:

pJ
2
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or (general p): C(t—1t) = ZTJdth(t —1)G(t' — 1) JdtldtzG(t - tl)CP‘l(t1 —1,)G(t' —1,)
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Note: different factor from that in 2



Summary:

As for the SK model, after averaging the problem is reduced exactly to a
single-site self-consistent problem with a a retarded self-interaction and
an effective (hon-white) noise. But now the self-interaction is

— 1)J?
(i — 1y = PP : M G — her i — 1)
and the noise variance Is
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LookKing for a spin glass state:

take t = 00, ' = — o0 in the equation for C, assuming it has a constant piece:

J? J?
q = p2 g de1G(f — 1) - dezG(f’ — ) = p2 g" ' (G(w = 0))°
static response function measurezs fluctuations:
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Stability analysis

To analyse stability, look at the low-frequency limit of G(w),
as we did for the SK model:

oG (0)  OX()
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¥ « CP~%G has a part proportional to qp_z:

— 1)J?
2(w) = 2p(w) + 2(w) = PP > ) qp_zG(a)) + 2 (w)
But this is just like the calculation we did for the SK model, where we had

Y(w) = J*G(w) + Z(w)
(for a different 2, but the 2;s don’t matter except for a constant factor)
so we have

(w) =1

| —102/0w

— 1)J?2
- pp : ) a-2G2(w)

T(w) =

1



marginal stability condition

The stability limit is when

p(p o 1)J2 ) )
| — P=%(1 —g)* - 0
4 =a)
But from the equation we got for g,
q = ek "~ (1 - gq)”
2T?
SO ,
p(p o 1)J ) )
] — P21l—-gP=1-(p=1)=2-p<0
4" (=) (p—1)=2-p

..e., the solution we found for ¢ is always unstable.
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Add an external field:

Equation f t t P P=1(1 = g)* + H? -\’
uation for g gets a new term: — —
g qg9 g 2T2q q -
p=4, J=1:
H*(1 — g)? N
2g°(1 — q)* + d-ar _ T2 [ — \
2q 0a] Him
Can get stable solutions for | 03 { — ?t;;nlrynne
big enough H . .
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“Al line”

Can plot limit of stable solutions in H-T plane:
(Analog for this problem of the Almeida-Thouless line we saw for the SK model,
note very different shape)

p=23:

Crisanti, Horner & Sommers, 1993




With a ferromagnetic interaction:

1T Jo/d 2

JH, D Sherrington and T Niewenhuizen, 1999



Spin glass phase?

What happens here”?
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Critical slowing down like in SK model approaching these “AT lines” from above



(Cugliandolo and Kurchan, 1993)
Summary: System starts at # = () in a random configuration. Consider dependence

of G(t,t") and C(¢,t) on t', the “age” of the system in two time ranges:
(1) t — t' K t". expect stationarity, FDT, i.e., just the theory so far.

(2) t — t' = O(¢'): not stationary, expect dependence on t/t": C(t,t") = € (t'/1)
|
What about G?  0,C(1,1') = 7@%@’/ f)

|
so if we define  G(7,1) = 73?(t’/t) , the FDT would be €'(t'/t) = TG (t'/t)
The miracle: If assume a modified FDT, X6 (') =TE({'1), x< 1,

The equations for & and & simplify to a single equation (just as the short-time
equations did with the standard FDT. (Use marginal stability condition to fix x.)



Generic shape of C(1)




