
The p-spin model
Energy:       


spherical constraint:      


 independent and Gaussian with zero mean and variance 


Langevin dynamics:      


We want to calculate the response function 


where the average is both thermal (over noise) and over disorder ( the Jijs).

E = − ∑
i1<i2<⋯<ip

Ji1i2⋯ipSi1Si2⋯Sip − ∑
i

hiSi

∑
i

S2
i = N

Ji1i2⋯ip
J2p!

2Np−1

·Si = − rSi + ∑
j2<j3<⋯<jp

Ji,i2⋯ipSj2Sj3⋯Sjp + hi(t) + ξi(t)

G(t − t′￼) ≡ Gii(t − t′￼) =
⟨δSi(t)⟩
δhj(t′￼)



The equations of motion (p=3)
Define  by     ,i.e.


          with 


Equation of motion:    




iterate once:


    


iterate twice:


S0
i (t) (∂t + r)S0

i (t) = hi(t) + ξ(t)

S(0)
i (t) = ∫t′￼

G0(t − t′￼)[hi(t′￼) + ξi(t)] G0(t) = Θ(t)e−rt

Si(t) = S0
i (t) + ∫t′￼

G0(t − t′￼)∑
⟨jk⟩

JijkSj(t′￼)Sk(t′￼) = S0
i (t) + ∫t′￼

G0(t − t′￼)
1
2 ∑

jk

JijkSj(t′￼)Sk(t′￼)

S(1)
i (t) = S(0)

i (t) +
1
2 ∫t′￼

G0(t − t′￼)∑
jk

JijkS(0)
j (t′￼)S(0)

k (t′￼)

= ∫t′￼

G0(t − t′￼)[hi(t′￼) + ξi(t′￼)] +
1
2 ∫t1

G0(t − t1)∑
jk

Jijk ∫t2

G0(t1 − t2)[hj(t2) + ξj(t2)]∫t3

G0(t1 − t3)[hk(t3) + ξk(t3)]

S(2)
i (t) = S(0)

i (t) +
1
2 ∫t1

G0(t − t1)∑
jk

Jijk [S(0)
j (t1) +

1
2 ∫t2

G0(t1 − t2)∑
lm

JjlmS(0)
l (t2)S(0)

m (t2)] S(0)
k (t1) +

1
2 ∫t3

G0(t1 − t3)∑
pq

JkpqS(0)
p (t3)S(0)

q (t3)



Averaging over J and : just doing the algebra:ξ
Averaging over the J’s:





To survive the averaging, either  or  has to be equal to . 

There are 4 such pairs of factors, and the average of the product of the pair of J’s in each is , 

so summing over j and k yields


 


All s in the last term here are proportional to the (independent) noises  at their sites, so the only pair average that survives is 



We want the response function, which is the derivative of the averaged  with respect to :


S(2)
i (t) = S(0)

i (t) +
1
2 ∫t1

G0(t − t1)∑
jk

Jijk [S(0)
j (t1) +

1
2 ∫t2

G0(t1 − t2)∑
lm

JjlmS(0)
l (t2)S(0)

m (t2)] S(0)
k (t1) +

1
2 ∫t3

G0(t1 − t3)∑
pq

JkpqS(0)
p (t3)S(0)

q (t3)

Jjlm Jkpq Jijk
3J2/N2

S(2)
i (t) = S(0)

i (t) + ∫t1

G0(t − t1)
3J2

N2 ∑
jk [S(0)

j (t1)∫t2

G0(t1 − t2)S(0)
i (t2)S(0)

j (t2)]
S(0) ξ

⟨S(0)
j (t1)S(0)

j (t2)⟩ = ∫ dt′￼1dt′￼2G0(t1 − t′￼1)G0(t2 − t′￼2) ⋅ 2Tδ(t′￼1 − t′￼2) = C0(t1 − t2)

S(2)
i (t) hi(t′￼)

δ⟨S(2)
i (t)⟩

δhi(t′￼)
= G0(t − t′￼) + 3J2 ∫t1

G0(t − t1)∫t2

G0(t1 − t2)C0(t1 − t2)G0(t2 − t′￼)



Easier with diagrams:
Represent  by a thick solid line             and  by a thick dotted line


Represent  by a thin directed line from  to :


Equation of motion:   

Si(t) S0
i (t)

G0(t − t′￼) t′￼ t

Si(t) = S0
i +

1
2 ∫t′￼

G0(t − t′￼)∑
jk

JijkSj(t′￼)Sk(t′￼)

t t′￼

it

it

jt′￼

kt′￼

it

= +



Iterate:

it

jt′￼

kt′￼

= +

to next order,

it

jt1

kt1+ it
kt1

+

kt2 lt2

mt2

kt2

lt2

mt2

Averaging over s: First correction gives zero ( s have zero mean)

in 2nd and 3rd (which are the same), require 

(different s are independent)

J Jijk
⟨ij⟩ = ⟨ml⟩

Jijk

jt1



averaging over noise:
,


                where the dot means  and the asterisk means 

S0
i (t) = ∫t′￼

G0(t − t′￼)[h(t′￼) + ξ(t′￼)]

h(t′￼) ξ(t′￼)

= + *
ttt t′￼ t′￼

⟹
it

kt1
kt2

it2

jt1

jt2
it

kt1
kt2

it2

jt1

jt2

*jt3

it′￼

jt4
*

Averaging over noise

⇒ 2Tδ(t3 − t4)



or, finally, 
Using  or 


the graph becomes


         

C0(ω) = G0(ω) ⋅ 2T ⋅ G(−ω) C0(t1 − t2) = 2T∫ dt1G0(t1 − t3)G0(t2 − t3)

G0Σ0G0 = G0 G0

G0

C0



Summing all the terms:

G0 G0

G

C

These insertions can also be made on the internal lines: 


         


and they can be repeated arbitrarily many times:


                                                                                       etc.

G0ΣG0 =

G0

G

C

G0 G0

G

C



Finally,
These are the only graphs that survive the averaging over  and  (for ) !


so (Dyson equation)           


                      with        


or, in time domain,       


                       with        

J ξ N → ∞

G(ω) = G0(ω) + G0(ω)Σ(ω)G(ω) ⟹ G(ω) =
1

−iω + r − Σ(ω)
Σ(ω) = 3J2 ∫

dω′￼

2π
G(ω − ω′￼)C(ω′￼)

G(t − t′￼) = G0(t − t′￼) + ∫ dt1dt2G0(t − t1)Σ(t1 − t2)G(t2 − t′￼)

Σ(t − t′￼) = 3J2G(t − t′￼)C(t − t′￼)



General p:
Just add extra factors of C:


Σ(t − t′￼) =
p(p − 1)

2
J2Cp−2(t − t′￼)G(t − t′￼)



but what is C?

G

C

C

G

We could get it from the fluctuation-dissipation theorem, but here it is in diagrams, 

(not proved here):


                              p = 3:
+

or (general p):    C(t − t′￼) = 2T∫ dt1G(t − t1)G(t′￼− t1) +
pJ2

2 ∫ dt1dt2G(t − t1)Cp−1(t1 − t2)G(t′￼− t2)

Note: different factor from that in Σ



Summary:
As for the SK model, after averaging the problem is reduced exactly to a 

single-site self-consistent problem with a a retarded self-interaction and 

an effective (non-white) noise.  But now the self-interaction is


 


and the noise variance is





 


Σ(t − t′￼) =
p(p − 1)J2

2
G(t − t′￼)Cp−2(t − t′￼)

2Tδ(t − t′￼) +
pJ2

2
Cp−1(t − t′￼)



Looking for a spin glass state:
take  in the equation for , assuming it has a constant piece:





static response function measures fluctuations:





so we have                                      : 


          


                                 (or  )


t → ∞, t′￼ → − ∞ C

q =
pJ2

2
qp−1 ∫ dt1G(t − t1) ⋅ ∫ dt2G(t′￼− t2) =

pJ2

2
qp−1(G(ω = 0))2

G(ω = 0) =
⟨(Si − ⟨Si)2⟩

T
=

1 − q
T

p = 4, J = 1

q =
pJ2

2T2
qp−1(1 − q)2 2q2(1 − q)2 = T2

q = 0







T > Tg

T = Tg

T < Tg



Stability analysis
To analyse stability, look at the low-frequency limit of , 

as we did for the SK model:





 has a part proportional to :





But this is just like the calculation we did for the SK model, where we had




(for a different , but the s don’t matter except for a constant factor)

so we have 


G(ω)

τ(ω) ≡ i
∂G−1(ω)

∂ω
= 1 − i

∂Σ(ω)
∂ω

Σ ∝ Cp−2G qp−2

Σ(ω) = Σ0(ω) + Σ1(ω) =
p(p − 1)J2

2
qp−2G(ω) + Σ1(ω)

Σ(ω) = J2G(ω) + Σ1(ω)
Σ1 Σ1

τ(ω) =
1 − i∂Σ1/∂ω

1 − p(p − 1)J2

2 qp−2G2(ω)



marginal stability condition
The stability limit is when





But from the equation we got for q,





so





i.e., the solution we found for q is always unstable.  

1 −
p(p − 1)J2

2T2
qp−2(1 − q)2 → 0

q =
pJ2

2T2
qp−1(1 − q)2

1 −
p(p − 1)J2

2T2
qp−2(1 − q)2 = 1 − (p − 1) = 2 − p < 0



(for :)p = 4

Solutions in this range forbidden at this T



Add an external field:
Equation for q gets a new term:    


:





Can get stable solutions for 

big enough H

q =
pJ2

2T2
qp−1(1 − q)2 + H2 ( (1 − q)

T )
2

p = 4, J = 1

2q2(1 − q)2 +
H2(1 − q)2

2q
= T2



 “AT line”
Can plot limit of stable solutions in H-T plane:

(Analog for this problem of the Almeida-Thouless line we saw for the SK model, 

note very different shape)


        p = 3 :
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Fig. 2. Phase diagram for p = 3.Thin line: continuous transition, 
thick line: discontinuous transition obtained from dynamics, broken 
thick line: discontinuous transition obtained from replica theory 

For T < Tt~ the function ~(q) develops a local maxi- 
mum and a minimum. The latter is at q* = q* (T), q* being 
solution of  f '(q*) = 0 with f"(q*) > 0. For r - # < Y(q*), 
there exists again a unique solution of  (4.11) with field given 
by (4.17). For r - # > f(q*), three solutions can exist (see 
Fig.l). The one with the highest value of  q is the only one 
which can be accepted because the correlation function has 
to decrease monotonously as a function of  time, starting at 
C(0) = 1, and the other solutions would have to violate in- 
equality (4.9) somewhere. For r - /1,  = ~(q*) one has two 
solutions, q0 and ql, with q0 < ql = q* as shown in Fig.1. 
The corresponding values of  the external field, h0 and hi 
are found from (4.17). From this we have to conclude that 
for given T < Tt~ ergodic behaviour cannot be found for 
fields in the range h0 < h < hi. The resulting phase diagram 
is shown in Fig.2. The line h = hi(T)  marks a continuous 
phase transition as shown below, whereas the line h = ho(T) 
belongs to a discontinuous transition. The continuous transi- 
tion line is identical to the one found in I within replica the- 
ory, whereas the discontinuous freezing transition occurs at 
a temperature slightly above the corresponding replica sym- 
metry breaking transition found in I. We are coming back to 
this point later in the discussion. 

4.2 Critical slowing down 

We next consider the dynamical behaviour near the onset 
of  non ergodicity where the decay of the correlations is ex- 
pected to slow down. The dynamical equation (4.1) turns out 
to be very similar to the equation for the density correlation 
obtained from mode coupling theory in a liquid glass transi- 
tion model [13,14] and we can mainly follow the discussion 
by G6tze [13] for the liquid glass transition near type A and 
type B or the one by Sommers and Fischer [14] for the SK 
spin-glass model near the de Atmeida-Thouless (AT) line. 

Instead of  looking at h0,t(T), we can also use the external 
field h as an independent variable. The continuous transition 
line is then denoted as Tl(h) for h > ht~ and the discontin- 

uous transition line is To(h) for h < htT.. They merge at the 
tricritical point (Tt~; ht~). We are interested in temperatures 
T = (1 + e)T0,t slightly above the transition. In both cases 
we expect the onset of critical slowing down for C(t) near 
q*.  

Both cases can be treated simultaneously expanding in 
5C(t) = C(t) - q*. In general q* defined by f '(q*) = 0 differs 
from the asymptotic value q given by (4.17) and therefore 
6C(t) does not vanish for t ---+ ec. 

For convenience we introduce the parameters 

A = (1 - q.)3 (~(q) _ ~(q.)) (4.19) 

and 
(p  - 2 )  (1 - q * )  

r h  = (4 .2 0 )  
2q* 

For h > ht~ one finds A > 0 and for h < ht~ A < 0 and 
A is small for small e. Expanding (4.6) in first order in A 
and second order in 6C(t) we arrive at 

(1 - rh) 5C2(t) + dr' (~C(t - t') - cSC(t)) Ot,~C(t') 

= A .  (4.21) 

Anticipating critical slowing down, the contribution Ot(SC(t) 
in the first term of (4.6) has been neglected. The correspond- 
ing derivative in the integral has, however, to be kept. Terms 
of  order A6C(t )  are also dropped. It is convenient to intro- 
duce a scaling function writing 

6C(t) = IX/~[ f i ( t / t * )  (4.22) 

where the time scale t* has to be determined later. This 
yields with (4.21) 

/0 (1 - ~ )  f~:(x) + dy(f~=(x - y) - f •  

= &l (4.23) 

where "+" holds for h > ht~ and " -"  for h < ht~. The 
solutions of this equation are scale invariant, i.e. if f ( x )  is a 
solution, f()~x) is also solution. 

For x -+ 0 this equation is solved by fr~(x) ~ x -~ 
where 1/2 > v > 0 is solution of  (F is the gamma function) 

F2(1 - v) 
= (4.24) 

F(1 - 2u) 

This exponent depends only on temperature. For p = 3 it is 
shown in Fig.3 together with another exponent defined later. 

The time scale t* is obtained by matching the resulting 
asymptotic solution 5C(t) = ~ (t/ t*) -~ to 5C(t) ~- 1 - 
q* at t -~ 1. This yields 

t* _~ IA1-1/2~' . (4.25) 

This time scale diverges as the transition line is approached. 
It is now easily seen that the time derivative in (4.6) which 
has been dropped in the derivation of  (4.21) indeed gives 
corrections of  higher order. 

Continuing the discussion of the asymptotic properties 
of the correlation function, it is appropriate to treat h > htr 
and h < htr separately. 

Crisanti, Horner & Sommers, 1993



With a ferromagnetic interaction:

H = −
∑

i1<i2..<ip

Ji1i2..ipSi1Si2 ..Sip

−
J0
N

∑

ij

SiSj −H
∑

i

Si (1)

with independently distributed random quenched p-spin
interactions of mean zero and variance J2p!/2Np−1 and
nonrandom 2-spin interactions. The spins are subject
to the spherical constraint

∑

i S
2
i = N . Mean field the-

ory is exact for infinite-ranged interactions. The choice
of spherical spins simplifies the resulting self-consistency
equations, while p > 2 ensures that one-step replica-
symmetry breaking (1RSB) is sufficient.

p = 4

Glassy
Glass
Spin

Ferromagnet

o

Paramagnet

Ferromagnet

critical

0

1

2

T/J

1 2Jo/J

FIG. 1. Static and dynamic phase diagram for the model
with p = 4. When different from the dynamical ones, the
static phase boundaries are indicated by bold lines.

We have studied the model by two complementary ap-
proaches. The first employs the replica formalism and
permits us to obtain both the equilibrium and dynami-
cal order parameters. It is characterized by three order
parameters the maximum (self-) overlap q1, the mini-
mum (mutual) overlap q0, the magnetization M and the
amplitude (1 − x) of the self-overlap part of the over-
lap probability distribution. The spherical constraint is
ensured by a self-consistently determined Lagrange mul-
tiplier. Stationarity of the replica free energy

F = − 1
2J0M

2 − 1
4βJ

2[1− (1 − x)qp1 − xqp0 ]

− HM − 1
2 (T/x) log[1− (1− x)q1 − xq0]

+
(1− x)T

2x
log(1− q1) +

(M2 − q0)T

2(1− (1− x)q1 − xq0)
(2)

with respect to q0, q1 and M yields the self-consistency
equations

M = (βH + βJ0M)(1 − q) (3)

q0 = µ(1− q)2qp−1
0 +M2 (4)

q1 − q0 = µ(1− q)(1 − q1)(q
p−1
1 − qp−1

0 ), (5)

where we have used the shorthands µ = 1
2pβ

2J2 and
q = xq0 + (1− x)q1.

For the equilibrium (static) theory, a fourth self-
consistency condition is provided by requiring that the
derivative

∂F

∂x
=

T

2

[

1

x2
log

1− q

1− q1
−

q1 − q0
x(1 − q)

−
β2J2

2
(qp1 − qp0)−

(M2 − q0)(q1 − q0)

(1− q)2

]

(6)

vanish. Eqns. (3-6) are then solved for q0, q1, M and x.
To obtain the dynamical order parameters one em-

ploys, instead of Eqn. (6), the marginal stability con-
dition [14,21,22]

(p− 1)µqp−2
1 (1− q1)

2 = 1. (7)

As in the problem without a ferromagnetic term [14], this
procedure yields the same order parameters and transi-
tions that we find with our second approach, a direct
dynamical analysis.
That treatment starts from the Langevin equation

∂Si

∂t
= −

∂H
∂Si

− z(t)Si + ηi(t) (8)

where ηi(t) is white noise of temperature T and z(t)
has to be adjusted to satisfy the spherical constraint.
Following and extending now-standard procedures [23]
of introducing a generating functional, averaging over
stochastic noise and quenched disorder, introducing ap-
propriate macroscopic time-dependent quantities and us-
ing extremal analysis in the limit N → ∞, there result
self-consistent equations for the local correlation function
C(t, t′) = (1/N)

∑

i〈Si(t)Si(t′)〉, the local response func-
tion G(t, t′) = (1/N)

∑

i δ〈Si(t)〉/δHi(t′)|Hi(t′)=H , and
the global magnetization M(t) = (1/N)

∑

i〈Si(t)〉:

∂t C(t, t′) = −z(t)C(t, t′) + 2G(t′, t) + βHM(t′)

+ βJ0M(t)M(t′) + µ

∫ t′

0
dt1 C

p−1(t, t1)G(t′, t1)

+ (p− 1)µ

∫ t

0
dt1 G(t, t1)C

p−2(t, t1)C(t1, t
′) (9)

∂t G(t, t′) = −z(t)G(t, t′) + δ(t− t′)

+ (p− 1)µ

∫ t

t′
dt1 G(t, t1)C

p−2(t, t1)G(t1, t
′) (10)

∂t M(t) = −z(t)M(t) + βH + βJ0M(t)

+ (p− 1)µ

∫ t

0
dt1 G(t, t1)C

p−2(t, t1)M(t1) (11)

Together with the spherical constraint C(t, t) = 1, Eqs.
(9-11) determine the dynamics completely. However,
even for J0 = H = 0, they have not yet been solved. We
concentrate on long times, where z(t) and M(t) reach

2

JH, D Sherrington and T Niewenhuizen, 1999 



H = −
∑

i1<i2..<ip

Ji1i2..ipSi1Si2 ..Sip

−
J0
N

∑

ij

SiSj −H
∑

i

Si (1)

with independently distributed random quenched p-spin
interactions of mean zero and variance J2p!/2Np−1 and
nonrandom 2-spin interactions. The spins are subject
to the spherical constraint

∑

i S
2
i = N . Mean field the-

ory is exact for infinite-ranged interactions. The choice
of spherical spins simplifies the resulting self-consistency
equations, while p > 2 ensures that one-step replica-
symmetry breaking (1RSB) is sufficient.

p = 4
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FIG. 1. Static and dynamic phase diagram for the model
with p = 4. When different from the dynamical ones, the
static phase boundaries are indicated by bold lines.

We have studied the model by two complementary ap-
proaches. The first employs the replica formalism and
permits us to obtain both the equilibrium and dynami-
cal order parameters. It is characterized by three order
parameters the maximum (self-) overlap q1, the mini-
mum (mutual) overlap q0, the magnetization M and the
amplitude (1 − x) of the self-overlap part of the over-
lap probability distribution. The spherical constraint is
ensured by a self-consistently determined Lagrange mul-
tiplier. Stationarity of the replica free energy

F = − 1
2J0M

2 − 1
4βJ

2[1− (1 − x)qp1 − xqp0 ]

− HM − 1
2 (T/x) log[1− (1− x)q1 − xq0]

+
(1− x)T

2x
log(1− q1) +

(M2 − q0)T

2(1− (1− x)q1 − xq0)
(2)

with respect to q0, q1 and M yields the self-consistency
equations

M = (βH + βJ0M)(1 − q) (3)

q0 = µ(1− q)2qp−1
0 +M2 (4)

q1 − q0 = µ(1− q)(1 − q1)(q
p−1
1 − qp−1

0 ), (5)

where we have used the shorthands µ = 1
2pβ

2J2 and
q = xq0 + (1− x)q1.

For the equilibrium (static) theory, a fourth self-
consistency condition is provided by requiring that the
derivative

∂F

∂x
=

T

2

[

1

x2
log

1− q

1− q1
−

q1 − q0
x(1 − q)

−
β2J2

2
(qp1 − qp0)−

(M2 − q0)(q1 − q0)

(1− q)2

]

(6)

vanish. Eqns. (3-6) are then solved for q0, q1, M and x.
To obtain the dynamical order parameters one em-

ploys, instead of Eqn. (6), the marginal stability con-
dition [14,21,22]

(p− 1)µqp−2
1 (1− q1)

2 = 1. (7)

As in the problem without a ferromagnetic term [14], this
procedure yields the same order parameters and transi-
tions that we find with our second approach, a direct
dynamical analysis.
That treatment starts from the Langevin equation

∂Si

∂t
= −

∂H
∂Si

− z(t)Si + ηi(t) (8)

where ηi(t) is white noise of temperature T and z(t)
has to be adjusted to satisfy the spherical constraint.
Following and extending now-standard procedures [23]
of introducing a generating functional, averaging over
stochastic noise and quenched disorder, introducing ap-
propriate macroscopic time-dependent quantities and us-
ing extremal analysis in the limit N → ∞, there result
self-consistent equations for the local correlation function
C(t, t′) = (1/N)

∑

i〈Si(t)Si(t′)〉, the local response func-
tion G(t, t′) = (1/N)

∑

i δ〈Si(t)〉/δHi(t′)|Hi(t′)=H , and
the global magnetization M(t) = (1/N)

∑

i〈Si(t)〉:

∂t C(t, t′) = −z(t)C(t, t′) + 2G(t′, t) + βHM(t′)

+ βJ0M(t)M(t′) + µ

∫ t′

0
dt1 C

p−1(t, t1)G(t′, t1)

+ (p− 1)µ

∫ t

0
dt1 G(t, t1)C

p−2(t, t1)C(t1, t
′) (9)

∂t G(t, t′) = −z(t)G(t, t′) + δ(t− t′)

+ (p− 1)µ

∫ t

t′
dt1 G(t, t1)C

p−2(t, t1)G(t1, t
′) (10)

∂t M(t) = −z(t)M(t) + βH + βJ0M(t)

+ (p− 1)µ

∫ t

0
dt1 G(t, t1)C

p−2(t, t1)M(t1) (11)

Together with the spherical constraint C(t, t) = 1, Eqs.
(9-11) determine the dynamics completely. However,
even for J0 = H = 0, they have not yet been solved. We
concentrate on long times, where z(t) and M(t) reach
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Fig. 2. Phase diagram for p = 3.Thin line: continuous transition, 
thick line: discontinuous transition obtained from dynamics, broken 
thick line: discontinuous transition obtained from replica theory 

For T < Tt~ the function ~(q) develops a local maxi- 
mum and a minimum. The latter is at q* = q* (T), q* being 
solution of  f '(q*) = 0 with f"(q*) > 0. For r - # < Y(q*), 
there exists again a unique solution of  (4.11) with field given 
by (4.17). For r - # > f(q*), three solutions can exist (see 
Fig.l). The one with the highest value of  q is the only one 
which can be accepted because the correlation function has 
to decrease monotonously as a function of  time, starting at 
C(0) = 1, and the other solutions would have to violate in- 
equality (4.9) somewhere. For r - /1,  = ~(q*) one has two 
solutions, q0 and ql, with q0 < ql = q* as shown in Fig.1. 
The corresponding values of  the external field, h0 and hi 
are found from (4.17). From this we have to conclude that 
for given T < Tt~ ergodic behaviour cannot be found for 
fields in the range h0 < h < hi. The resulting phase diagram 
is shown in Fig.2. The line h = hi(T)  marks a continuous 
phase transition as shown below, whereas the line h = ho(T) 
belongs to a discontinuous transition. The continuous transi- 
tion line is identical to the one found in I within replica the- 
ory, whereas the discontinuous freezing transition occurs at 
a temperature slightly above the corresponding replica sym- 
metry breaking transition found in I. We are coming back to 
this point later in the discussion. 

4.2 Critical slowing down 

We next consider the dynamical behaviour near the onset 
of  non ergodicity where the decay of the correlations is ex- 
pected to slow down. The dynamical equation (4.1) turns out 
to be very similar to the equation for the density correlation 
obtained from mode coupling theory in a liquid glass transi- 
tion model [13,14] and we can mainly follow the discussion 
by G6tze [13] for the liquid glass transition near type A and 
type B or the one by Sommers and Fischer [14] for the SK 
spin-glass model near the de Atmeida-Thouless (AT) line. 

Instead of  looking at h0,t(T), we can also use the external 
field h as an independent variable. The continuous transition 
line is then denoted as Tl(h) for h > ht~ and the discontin- 

uous transition line is To(h) for h < htT.. They merge at the 
tricritical point (Tt~; ht~). We are interested in temperatures 
T = (1 + e)T0,t slightly above the transition. In both cases 
we expect the onset of critical slowing down for C(t) near 
q*.  

Both cases can be treated simultaneously expanding in 
5C(t) = C(t) - q*. In general q* defined by f '(q*) = 0 differs 
from the asymptotic value q given by (4.17) and therefore 
6C(t) does not vanish for t ---+ ec. 

For convenience we introduce the parameters 

A = (1 - q.)3 (~(q) _ ~(q.)) (4.19) 

and 
(p  - 2 )  (1 - q * )  

r h  = (4 .20 )  
2q* 

For h > ht~ one finds A > 0 and for h < ht~ A < 0 and 
A is small for small e. Expanding (4.6) in first order in A 
and second order in 6C(t) we arrive at 

(1 - rh) 5C2(t) + dr' (~C(t - t') - cSC(t)) Ot,~C(t') 

= A .  (4.21) 

Anticipating critical slowing down, the contribution Ot(SC(t) 
in the first term of (4.6) has been neglected. The correspond- 
ing derivative in the integral has, however, to be kept. Terms 
of  order A6C(t )  are also dropped. It is convenient to intro- 
duce a scaling function writing 

6C(t) = IX/~[ f i ( t / t * )  (4.22) 

where the time scale t* has to be determined later. This 
yields with (4.21) 

/0 (1 - ~ )  f~:(x) + dy(f~=(x - y) - f •  

= &l (4.23) 

where "+" holds for h > ht~ and " -"  for h < ht~. The 
solutions of this equation are scale invariant, i.e. if f ( x )  is a 
solution, f()~x) is also solution. 

For x -+ 0 this equation is solved by fr~(x) ~ x -~ 
where 1/2 > v > 0 is solution of  (F is the gamma function) 

F2(1 - v) 
= (4.24) 

F(1 - 2u) 

This exponent depends only on temperature. For p = 3 it is 
shown in Fig.3 together with another exponent defined later. 

The time scale t* is obtained by matching the resulting 
asymptotic solution 5C(t) = ~ (t/ t*) -~ to 5C(t) ~- 1 - 
q* at t -~ 1. This yields 

t* _~ IA1-1/2~' . (4.25) 

This time scale diverges as the transition line is approached. 
It is now easily seen that the time derivative in (4.6) which 
has been dropped in the derivation of  (4.21) indeed gives 
corrections of  higher order. 

Continuing the discussion of the asymptotic properties 
of the correlation function, it is appropriate to treat h > htr 
and h < htr separately. 

What happens here?

Critical slowing down like in SK model approaching these “AT lines” from above



Aging solution
(Cugliandolo and Kurchan, 1993)

Summary: System starts at  in a random configuration.  Consider dependence 

of  and  on , the “age” of the system in two time ranges:


(1) :  expect stationarity, FDT, i.e., just the theory so far.


(2) : not stationary, expect dependence on : 


What about ?      


so if we define      , the FDT would be 


The miracle: If assume a modified FDT,             ,

The equations for  and  simplify to a single equation (just as the short-time

equations did with the standard FDT.  (Use marginal stability condition to fix .)

t = 0
G(t, t′￼) C(t, t′￼) t′￼

t − t′￼ ≪ t′￼

t − t′￼ = O(t′￼) t/t′￼ C(t, t′￼) = 𝒞(t′￼/t)
G ∂t′￼

C(t, t′￼) =
1
t

∂t′￼
𝒞(t′￼/t)

G(t, t′￼) =
1
t

𝒢(t′￼/t) 𝒞′￼(t′￼/t) = T𝒢(t′￼/t)

x𝒞′￼(t′￼/t) = T𝒢(t′￼/t), x < 1
𝒞 𝒢

x



Generic shape of C(t)


q1

q0
For ,
H = J0 = 0
q0 = 0

t′￼ = 1


