
Neural Networks I
Outline:

1. Perceptrons

2. The capacity problem

3. Feedforward networks and their training

4. Recurrent networks

Perceptrons
The simplest network:

 inputs , 1 output , connection weights

 (“threshold unit”)

Could have multiple outputs, but each one would then be an

independent problem)

Could have a “bias”:

but can represent that by just adding an input

N {xi} O Ji

O = sgn (∑
i

Jixi) = sgn (J ⋅ x)

O = sgn (∑
i

Jixi + b) = sgn (J ⋅ x + b)

x0 = b

Binary classification problem
Have a set of input patterns and, for each, a desired output

Want to find a for which

geometric interpretation:

“Linear separability”

Note: some sets of can’t be separated linearly:

(figure: B Mehlig)

p {xμ} tμ = ± 1

J sgn(J ⋅ xμ) = tμ

xμ

A CLASSIFICATION TASK 67

x1

x2

w ·x (µ) = 0
w =
ï
1
1

ò

x1

x2

w ·x (µ) = ✓

✓
w2

w =
ï
1
1

ò

Figure 5.5: Decision boundaries without and with threshold.

What is the role of the threshold✓ ? Equation (5.11) shows that the decision
boundary is parameterised by w ·x = ✓ , or

x2 =�(w1/w2) x1+✓ /w2 . (5.15)

Therefore the threshold determines the intersection of the decision boundary
with the x2-axis (equal to ✓ /w2). This is illustrated in Figure 5.5.

The decision boundary – the straight line orthogonal to w – should divide
inputs with positive and negative targets. If no such line can be found, then
the problem cannot be solved with a single neuron. Conversely, if such a
line exists, the problem can be solved (and it is called linearly separable).
Otherwise the problem is not linearly separable. This can occur only when
p > N . Examples of problems that are linearly separable and not linearly
separable are shown in Figure 5.6.

Other examples are Boolean functions. A Boolean function takes N binary
inputs and has one binary output. The Boolean AND function (two inputs)
is illustrated in Figure 5.7. The value table of the function is shown on the
left. The graphical representation is shown in the centre of the Figure (É
corresponds to t =�1 andÑ to t =+1). Also shown is the decision boundary,
the weight vector w , and the network layout with the corresponding values
of the weights and the threshold. It is important to note that the decision

t =+1

t =�1

x1

x2

x1

x2

Figure 5.6: Linearly separable and non-separable data.

x1

x2

Legend:

tμ = + 1
tμ = − 1

J

Perceptron Learning Algorithm
(F Rosenblatt, 1962)

At each step, choose an , compute the output

Then change by (is learning rate)

This has been proved to converge if a that will give for every pattern exists

This an “online” algorithm (make changes one input pattern at a time)

Also possible: “batch” learning:

or something in between: sum at each step is over some subset of the patterns

(actually the most common thing done in everyday applications (though for more

complex models than perceptrons)

xμ Oμ = sgn(J ⋅ xμ)

J ΔJ = η(tμ − Oμ)xμ η

J Oμ = tμ

ΔJ = η∑
μ

(tμ − Oμ)xμ

The Capacity Problem
… “converges if a that will give for every pattern exists”

But when will this be true?

Specifically, for independent random input patterns of dimensionality ,

what is the maximum for which a exists that correctly classifies all the patterns?

Cover (1965) proved (combinatorics) that (as long as patterns are all linearly independent)

for the probability of complete correct classification is < 1/2

for the probability of complete correct classification is = 1/2

for the probability of complete correct classification is > 1/2

and the transition gets sharp as and

J Oμ = tμ

p N
p J

pmax < 2N
pmax = 2N
pmax > 2N

p N ⟶ ∞

Statistical-mechanical formulation
(Gardner, 1987)

Calculate the volume in -space in which all equations

are satisfied. Constraint:

(needed because multiplying all ’s by a constant wouldn’t change)

Volume shrinks as number of constraints increases, at critical

J p

Oμ = sgn N−1/2
N

∑
j=1

Jjx
μ
j = tμ

∑
j

J2
j = N

Jj Oμ

p ⟶ 0 p
pc = αN, α = O(1)

Replicas!
Constrained volume:

introduced : margin of stability, (is the unit step (Heaviside) function)

Need to average (just like in spin glass problems, so introduce replicas:

V =
∫ dJ (∏μ Θ(tμN−1/2 ∑j Jjx

μ
j − κ)) δ(∑j J2

j − n)

∫ dJδ(∑j J2
j − n)

κ Θ

log V log Z

⟨Vn⟩ =
∏a ∫ dJa (∏μ Θ(tμN−1/2 ∑j Ja

j xμ
j − κ)) δ(∑j (Ja

j)2 − N)

∏a ∫ dJaδ(∑j (Ja
j)2 − N)

Quick description of the replica calculation:
1. There are step functions and -funtions in the expression for . Use Fourier

integral representations of these. This way, when the random input patterns are

averaged over the J’s end up occurring at most quadratically in the

argument of exponential functions.

2. We then define an order parameter and assume replica

symmetry: . Enforcing this constraint with yet another delta function

and integrating the J’s out leads eventually to = a complicated function .

(The calculation is unfortunately too long to give here.)

δ ⟨Vn⟩

qab = (1/N)∑
j

Ja
j Jb

j

qab = q (a ≠ b)
⟨Vn⟩ G(q)

replica calculation result:
3. Finding its stationary point, lead to this equation for :

with .

4. As the volume in J space where solutions exist shrinks to zero, there will finally

be only one solution, so . Taking in the above equation leads to

 and, for no stability margin,

∂G/∂q = 0 q

α∫
dy

2π
e−y2/2 [∫

∞

u
dze−z2/2]

−1

e−u2/2
t + κ q

2 q(1 − q)3/2
=

q
2(1 − q)2

u = (κ + y q)/ 1 − q

q → 1 q → 1
αc(κ) =

1

[∫ ∞
−κ

dy

2π
e−y2/2(y + κ)2]

αc(0) = 2

(in agreement with Cover’s combinatoric results).

Beyond capacity:
(Whyte & Sherrington 1996, Györgyi & Reimann 1997)

What is the solution like for ?

Full replica symmetry breaking, like the SK spin glass

α > αc

Deeper networks
Real-life problems are not generally linearly separable —

require deeper networks

78 STOCHASTIC GRADIENT DESCENT

xk
w j k Vj

W1 j O1

1

2

3

1

2

1

2

3

4

5

Figure 6.1: Neural network with one hidden layer. Illustrates the notation used
in Section 6.1.

6.1 Chain rule and error backpropagation

The network is trained by gradient-descent learning on the energy function

H =
1
2

X

µi

Ä
t (µ)i �O (µ)i

ä2
, (6.4)

as described in Section 5.3. The weights are updated using the increments

�Wmn =�⌘
@H
@Wmn

and �wmn =�⌘
@H
@ wmn

. (6.5)

As above, the small parameter ⌘ > 0 is the learning rate. The derivatives
of the energy function are evaluated with the chain rule. For the weights
connecting to the output layer we apply the chain rule twice:

@H
@Wmn

=�
X

µi

Ä
t (µ)i �O (µ)i

ä @ O (µ)i

@Wmn
, (6.6a)

@ O (µ)i

@Wmn
=

@

@Wmn
g
ÄX

j

Wi j V (µ)j �⇥i

ä
= g 0(B (µ)i)�i m V (µ)n . (6.6b)

Thanks again to Bernhard

Mehlig for the figure

(continuous-valued unit outputs)

2-layer net

 : activation function

generalizable to any number of layers:

Oi = g ∑
j

J(2)
ij g (∑

k

J(1)
jk xk) g()

Oi = g ∑
j

J(n)
ij g (∑

k

J(n−1)
jk g(∑

l

Jn−2
kl g(∑

m

J(n−3)
lm ⋯xp))

Nonlinearity
Activation function : nonlinear

Commonly take or (sigmoidal)

 or (“threshold-linear”)

g
g(x) = tanh x 1/(1 + e−x)

xΘ(x)
Learning the ’s: Gradient descent

For a single-layer network, define an error (“cost” or “loss”) function, e.g.

and adjust weights by “Delta rule”:

with , the net input to output unit

(almost same form as perceptron learning)

J

E =
1

2p ∑
μ

(tμ
i − Oμ

i)2

ΔJjk = − η
∂E
∂Jjk

=
η
p ∑

iμ

(tμ
i − Oμ

i)
∂Oμ

i

∂Jij
=

η
p ∑

μ

g′￼(hμ
j)(tμ

j − Oμ
j)xμ

k

hμ
j = ∑

k

Jjkxμ
k k

Back-propagation:
2 layers:

(same as 1-layer case for hidden-to-output weights)

input-to-hidden weights: (use chain rule)

with

ΔJ(1)
pq = − η

∂E
∂J(1)

pq
=

1
p ∑

iμ

(Tμ
i − Oμ

i)g′￼(h(2),μ
i)J(1)

ip g′￼(h(1),μ
p)xq

h(2),μ
i = ∑

j

J(2)
ij g (∑

k

J(1)
jk xμ

k), h(1),μ
j = ∑

k

J(1)
jk xμ

k

Deep network

Oi

J(6)

J(5) J(4) J(3) J(2)
J(1)

General prescription, for any weight : consider paths backwards from all output units.

On each link, get a factor ; on each node (including) get a factor

Sum over all paths from all output units to : gives effective error on)

Multiply by = output of unit ()

J(m)
ij

J(m′￼)
i′￼j′￼

(n, j) (m, i) g′￼(h(j),μ
n)

(m, i) (m, i)
μ(m−1),μ

j = g(∑
k

J(m−2)
jk μ(m−2),μ

k) (m − 1,j) μ(0),μ
k = xμ

k

xμ
j

Cost functions:
Mean-square error (“MSE”):

Negative log-likelihood (“NLL”): for stochastic Ising output units with

, where is net input to unit

and targets : Probability of correct output = , so

 (single output case)

and

(like MSE with except no derivative factor)

E =
1

2p ∑
iμ

(tμ
i − Oμ

i)2

P(O = ± 1) =
e±h

eh + e−h
h = ∑

k

J(n)
k μ(n−1)

k

t = ± 1
eth

eh + e−h

E = −
1
p ∑

μ

[tμhμ − log cosh hμ]

ΔJ(n)
k =

η
p ∑

μ

(tμ − tanh hμ)μ(n−1),μ
k

g(h) = tanh h

Deep network: just one change in

backpropagation algorithm

Oi

J(6)

J(5) J(4) J(3) J(2)
J(1)

General prescription, for any weight : consider paths backwards from all output units.

On each link, get a factor ; on each node (EXCEPT) get a factor

Sum over all paths from all output units to : gives effective error on)

Multiply by = output of unit ()

J(m)
ij

J(m′￼)
i′￼j′￼

(n, j) (m, i) g′￼(h(j),μ
n)

(m, i) (m, i)
μ(m−1),μ

j = g(∑
k

J(m−2)
jk μ(m−2),μ

k) (m − 1,j) μ(0),μ
k = xμ

k

xμ
j

Online learning and stochastic gradient descent

So far, this was “batch update”.

Online learning: Instead, update one (randomly chosen) example at a time.

The average will be the same as before, but there will be a variance

intrinsic noise in the algorithm

Stochastic gradient descent (“SGD”): (the most commonly used algorithm)

At each step, average over a randomly chosen set of examples

(“minibatch”) of size . Still noisy, but noise variance reduced by a factor .

Δw
1
p ∑

μ

(ΔJμ
ij − ⟨ΔJμ

ij⟩μ)2

m m

Problem with deep networks:
If the s are too big or too small, the inputs to successive layers can grow

or shrink exponentially. (This hindered the use of deep networks for some time.)

One solution: use orthogonal matrices for .

Why? Consider the linear case (Saxe et al, 2014):

 SVD:

Stable propagation through layers (or time): make all (orthogonal matrix)

(Usually, orthogonal initialisation is sufficient)

w

𝖩j

μa
i = ∑

j

Ja
ijμ

a−1
j Ja

ij = ∑
β

uiβsβvT
βj

⟹ ∑
i

μ2
a,i = ∑

β

μ2
a,β = ∑

γ

s2
γ μ2

a−1,γ

sγ = 1

Recurrent networks
Simplest model: input time series

 recurrent interactions input output

xi(t), t = 1,2,3⋯

μi(t) = g ∑
j

Mijμj(t − 1) + ∑
k

Jikxi(t) , Oi(t) = g ∑
j

Kijμj(t)

like layers in time:
 (1)μ(2)μ(3)μ(4)μ

x(4) x(3) x(2) x(1)
J J J J

M M M

K K K K

O(4) O(3) O(2) O(1)

 time⟵

Learning sequences
Training: target

The memory mechanism:

Consider a recurrent layer with linear units ()

iterate:

In this way, the entire set of past inputs is represented on the hidden units,

to be fed onward to the outputs

T(t) = x(t + 1)

μt = ht + Mμt−1 h = Jx

μt = ht + Mht−1 + M2ht−2 + ⋯ + Mth0

Training recurrent networks

ordinary backprop

(through layers):

BPTT:

Backpropagation through time (“BPTT”)

