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Motivation and Outline

• Large	networks	exhibit	phase	transitions	in	hyperparameter	space


• Knowing	the	phase	diagram	is	essential	for	applications	(M	Tegmark)


• Here:	the	simplest	kind	of	transition:	learnable/unlearnable


• deep	recurrent	networks


• locating	the	transition


• critical	slowing	down	of	learning	near	the	transition


• aging	



Data



Model: deep recurrent nets



μa(t) = tanh[𝖩aμa−1(t) + 𝖬aμa(t − 1)]

cost function: negative log likelihood

training: BPTT



Running the trained network
• “Seed” it by forcing it through a starting sequence of notes


• Then use the outputs as the inputs for the next step, repeat …



Performance: general features
• Can train networks with  hidden layers,  

units/layer to the NLL (negative log likelihood /unit /timestep) on the 
training set (20-300 chorales) to generate recognisable music.


• Require an NLL  0.02 bits or less for reasonable results.


• Generalization error not informative about performance quality.

NL = 1 − 10 Nh = 25 − 300

≲



Learning: general features
NL=1                      NL=2 NL=5

Interesting region: 0.01 < NLL < 0.1 (power law decay NLL ~ )1/τγ

: learning time measured in units of inverse learning rateτ



Deeper is faster*

* as measured in  ;  but learning rate has to be reduced with increasing depthτ



The Learnability Transition
• Similar to the capacity problem for a perceptron with  input components                                

(Cover, Gardner & Derrida): What is the maximum number  of input 
patterns that can be correctly classified into 1 of 2 possible classes? 


• Gardner-Derrida analysis (simplest case): .                                  
For , replica symmetry holds; for  solution requires full 
(Parisi) replica symmetry breaking.  I.e.,  is in the same class as 
the Sherrington-Kirkpatrick (SK) spin glass.


• Is the learnability transition here like that in the perceptron and the SK 
model?

N
p

p < 2N
p < 2N p > 2N

p > 2N



Dynamical perspective
• At the SG transition, the Almeida-Thouless (AT) instability is reached — 

diverging fluctuations of the pair correlations:


•  


• This is reflected in the dynamics: critical slowing down.   
(Sompolinsky-Zippelius).


• Do we see this here?

⟨SiSj⟩ = 0
1
N ∑

ij

⟨SiSj⟩2 ∝
1

T2 − T2
g

τ ∝ 1/(T − Tg)



Learning times

Nh

(Nl = 2)



Inverse learning times

Nh



Deeper network:
   NL = 5 : inverse time to reach NLL .01 (blue), .02 (orange), .03 (green), .05 (red), .1 ( violet)



Locating the transition



 NLL vs critical Nh



Glassy dynamics
In a spin glass phase, dynamics show aging                                                                      


(longer time since quench  slower dynamics)


measure of aging: 

weights spread away from values at , mean square displacement at :      

effective noise (temperature) in stochastic gradient descent:


                                                                            


where  is the cost function evaluated on training example  at time .


At each step  between  and , accumulate the growth of D relative to :


                                                                


(studied for non-recurrent nets far from transition by Bati-Jesi et al, ICML 2018)

⟹
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Here, NL = 2, Nh = 30:


     vs :                                                           vs :Δ t Δ t/tw

tw:

80: blue

160: orange

320: green

640: red

1280: violet




NL = 2, Nh = 30 log-log plots:


 vs :                                             vs :


 

log Δ log t log Δ log t/tw

Collapse to function of : like ``weak ergodicity breaking’’ seen in p-spin glass modelst/tw

tw:

80: blue

160: orange

320: green

640: red

1280: violet




60 hidden units / layer:


tw:

80: blue

160: orange

320: green

640: red

1280: violet




NL = 2, Nh = 90: 

Scaling with t/tw breaks down



What we’ve learned
1. Learning undergoes critical slowing down  like that in spin glasses


2. Weight correlations show aging behaviour (function of ), independent of 

    (but for  (overparametrized case), aging stops at very long times.)

τ ∝ 1/(Nh − Nc
h)

τ/τw τw
Nh > Nc

h



Things we still want to know:
1. The  we find is not of the power-law form found by Cugliandolo & Kurchan.  

    Why?

2.  We have data only up to .  

     What is the asymptotic  behaviour?

3.  In Cugliandolo-Kurchan theory, there is no aging at or above the transition at .

     But we find it, at least if  is not too long, even above   (“para-aging?”)  Why?

4.  Everything here was for NLL cost function and stochastic gradient descent.

     What would happen for other cost functions and learning algorithms?

5.  We used a layered recurrent architecture with orthogonal matrices.

     What about other architectures?

6.  Further exploration of the phase diagram - 

     Other phases?

7.  Your suggestions?


C(τ/τw)

τ/τw = 2
τ/τw → ∞

Nc
h

τw Nc
h



A quantum connection
Every step of the operation of our networks involves a orthogonal transformation

(and could also be done with general unitary matrices).


Quantum computation is also done with unitary transformations.


So how would one make a quantum network do our problem?



Quantum computing
Quantum computing is done with quantum gates

Quantum gates perform unitary transformations on 1 or 2 qubits (spinors)


Classical computers also do simple operations at the bit level, but we never 

think about what is happening to the individual transistors.  We have (several 

levels up) compilers, etc.  But in quantum computing we think (for now) at the 

level of qubits and gates.


However, qubits are much richer objects than bits, so we can do some

interesting things already using manipulations at the 1- and 2-qubit level.



qubits and gates:
A general qubit is just a spinor 

A physical qubit can be rotated by applying a magnetic field.


Simplest kind of gate (1-qubit) just rotates it around a specific axis

by a specific angle.  (Angle  time the field is applied.)


2-qubit gate entangles the input qubits (makes an output qubit which

is a linear combination of them).  Coefficients in the linear combination

can be controlled (using a 1-qubit rotation gate as part of the gate).


So how do we make a quantum recurrent network?

α |1⟩ + β |0⟩, |α |2 + |β |2 = 1

∝



 Preparing the input 
Richer possibilities than classical bits: 

 

In our problem inputs are combinations of 4 musical notes (SATB).  

So, for example, we could (with good enough hardware) encode all 

12 notes in 1 octave by rotation an initially spin-up qubit by multiples 

of  around (say) the y axis (like hours on a clock).  Then we would 

only need 4 qubits (1 for Soprano, 1 for alto, etc.).  


In general, many ways to exploit the different rotation possibilities.


π/6



First processing layer:
In the classical network we first calculate 


In the quantum network, we have to entangle all the input qubits

(and differently for each receiving unit ).  To do this with 2-qubit

gates only, do it in steps:

∑
j

Jijxj

i

capability, and circuit cost. When having the same number of two-qubit
gates (e.g., D = 4 for NN, D = 3 for CB, and D = 1 for AA in Fig. 5), NN
circuit has the worst expressibility and entangling capability, but the lowest
circuit depth; while AA has the best expressibility and entangling capabil-
ity, but the highest requirement of circuit depth and connectivity. The CB
circuit can provide a good balance. CB has a much cheaper circuit, while
its expressibility and entangling capability are slightly less and equal to AA.
Therefore, we apply the CB configuration in the ansatz circuit.
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Figure 5: The circuits for the three configurations of two-qubit gates, (a) nearest-neighbor
(NN), (b) circuit-block (CB), and (c) all-to-all (AA).

Finally, we put all the things together, including the single-qubit gates
in Equation 5, the two-qubit gates in Fig. 4 and the CB configuration of
two-qubit gates in Fig. 5, then the circuit of the ansatz in Fig. 2 is obtained.
Fig. 6 shows one ansatz circuit with 6 qubits.

2.3. Partial quantum measurement

The final step of the recurrent block is to output a prediction yt of the cur-
rent stage, and maintain an intermediate state ht that contains information
about the history of the sequential data. This is achieved by implementing

10

From Li et al, arXiv 2302.03244

The angles  play the role here of the θ Jij



Recurrent layer
Now we have to entangle these outputs with the hidden-unit qubits

(here: just 1 hidden layer)

(modified from Li et al)

x(t)

μ(t − 1)
h(t)

entanglement like on preceding slide

But where is the nonlinearity?



Recurrent layer output:
Need to make a measurement! 

(or many to average over, to estimate output qubits better)

x(t)

μ(t − 1)
h(t)

μ(t)

entanglement 

𝖮(t)

measurement 



Alternative scheme
(Li et al)

x(t)

μ(t − 1)

𝖮(t)

μ(t)

entanglement 

(Linear except for output measurement)


