How to study dynamics on the Quantum scale?

Eva Lindroth

Stockholm University

Quantum Connections, 14 June 2024

High Speed Camera \sim 1000 fps

- Take snap shots on the time scale of the movement
- what can we learn?

How can we see what happens very quickly?

Are all four feet of a horse off the ground at the same time? In 1878 Muybridge settled it.

Method:

• 12 cameras photographing a galloping horse in a sequence of shots

HOW CAN WE "SEE WHAT" HAPPENS VERY QUICKLY?

Direct Observation of Transition States. Once a Holy Grail of Chemistry

HOW CAN WE "SEE WHAT" HAPPENS VERY QUICKLY?

Direct Observation of Transition States. Once a Holy Grail of Chemistry

- Femtosecond (10⁻¹⁵ s) laser pulses. Infrared light.
- $\Delta t = 10 100 \text{ fs}$

NOBEL PRIZE BACKGROUND MATERIAL 1999

"Femtochemistry has fundamentally changed our view of chemical reactions. From a phenomenon described in relatively vague metaphors such as *activation* and *transition state*, we can now see the movements of individual atoms as we imagine them."

• The "orbit time" in the Bohr model is 150 as $(1 \text{ as} = 10^{-18} \text{ s})$

Simulation of charge migration in a bromobenzene molecule. From Folorunso et al.

Eva Lindroth, Stockholm University Time in Quantum Mechanics

HIGH HARMONIC GENERATION

Compare David Busto's Monday lecture

- M Ferray A L'Huillier et al J. Phys. B 21, L31 (1988)
- XUV pulses with a duration of 100as

TO BE BOTH A PARTICLE AND A WAVE

• All matter has both particle and wave properties, $\lambda_B = h/p$

Atoms in chemical reactions are mostly particle-like.

TO BE BOTH A PARTICLE AND A WAVE

• All matter has both particle and wave properties, $\lambda_B = h/p$

Atoms in chemical reactions are mostly particle-like. Activation Energy 100kJ/mol ~ 1 eV/particle. carbon atom $\lambda_B \sim 0.1$ Bohr radii

Electrons around atoms and molecules are mostly wave-like: $E = 1 \text{ eV } \lambda_B \sim 23 \text{ Bohr radii}$

TIME IN QUANTUM MECHANICS?

There is no time operator. Wolfgang Pauli 1933: *We conclude* that the introduction of an operator *T* must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

Eva Lindroth, Stockholm University Time in Quantum Mechanics

TIME IN QUANTUM MECHANICS?

There is no time operator. Wolfgang Pauli 1933: We conclude that the introduction of an operator T must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

• canonical commutation relation

$$[\hat{x}, \hat{p}_x] = i\hbar
ightarrow \Delta x \Delta p_x \ge \hbar/2$$

• \hat{x} and \hat{p}_x have both spectra $-\infty \rightarrow \infty$ • similar for time and energy?

$$\Delta t \Delta E \geq \hbar/2 \rightarrow \left[\hat{t}, \hat{H} \right] = i\hbar??$$

- But what would then \hat{t} be?
- a physically realistic Hamiltonian must be bounded from below!

TIME IN QUANTUM MECHANICS?

There is no time operator. Wolfgang Pauli 1933: We conclude that the introduction of an operator T must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

- no self-adjoint time operator conjugate to a general H
- $t \neq -i\hbar \frac{\partial}{\partial E}$

- life time $\Delta E \Delta t \geq \hbar/2$
- tunneling time?
- arrivial time
- delay time

USE THE WAVE PROPERTIES

THE RELATION BETWEEN A PHASE SHIFT AND TIME

• Free particle in empty space

USE THE WAVE PROPERTIES

THE RELATION BETWEEN A PHASE SHIFT AND TIME

• Over attractive potential

• A free particle passes over a potential well

Classically

• the particle speeds up over the well

$$v_{I} = \sqrt{2E/m}$$
$$v_{II} = \sqrt{2(E+V_0)/m}$$

and arrives earlier

• A free particle passes over a potential well

Classically

• the particle speeds up over the well

$$v_{I} = \sqrt{2E/m}$$
$$v_{II} = \sqrt{2(E+V_0)/m}$$

and arrives earlier

Quantum Mechanically

• the wavelength gets shorter over the well

$$k_I = \sqrt{2Em}/\hbar$$

$$k_{II} = \sqrt{2(E+V_0)m}/\hbar$$

• and there is a phase shift

A CLASSICAL ANALOGY

Classically

Quantum Mechanically

• There is a phase shift η

 The particle arrives earlier/later

• For the square well

$$\Delta t = \Delta x \left(\frac{1}{v_{II}} - \frac{1}{v_I} \right)$$

A CLASSICAL ANALOGY

Classically

Quantum Mechanically

• There is a phase shift η

• The group velocity $v_g = \frac{1}{\hbar} \frac{dE}{dk} = \frac{\hbar k}{m}$

• The particle arrives earlier/later

• For the square well

$$\Delta t = \Delta x \left(\frac{1}{v_{II}} - \frac{1}{v_I} \right)$$

A CLASSICAL ANALOGY

Quantum Mechanically

- The particle arrives
 - earlier/later

Classically

- $\frac{d\eta}{dE} = \frac{d\eta}{dk}\frac{dk}{dE}$
- The group velocity $v_g = \frac{1}{\hbar} \frac{dE}{dk} = \frac{\hbar k}{m}$

• There is a phase shift η

$$\hbar \frac{d\eta}{dE} = \frac{d\eta}{dk} \left(\hbar \frac{dk}{dE} \right)$$

• For the square well

$$\Delta t = \Delta x \left(\frac{1}{v_{II}} - \frac{1}{v_I} \right)$$

• For the square well $\left(\frac{\Delta\eta}{\Delta k} = \Delta x\right)$ $\Delta t = \hbar \frac{d\eta}{dE} = -\frac{m}{\hbar} \Delta x \left(\frac{1}{k_{II}} - \frac{1}{k_{I}}\right)$

EISENBUD -48 WIGNER -55 SMITH -60

$$\tau = \hbar \frac{d\eta}{dE}$$

• With a twist the concept is valid also for long range potentials

EISENBUD -48 WIGNER -55 SMITH -60

$$\tau = \hbar \frac{d\eta}{dE}$$

- With a twist the concept is valid also for long range potentials
- possible to define an hermitian delay operator

$$\hat{ au} = -i\hbar S^{\dagger}\left(E
ight)rac{\partial}{\partial E}S\left(E
ight)$$

Classical scattering process

• Photoionization can be seen as half scattering

Photoionization

ELECTRONS RELEASED BY LIGHT FROM A QUANTUM SYSTEM

Outgoing wave packet

FROM BOUND STATES TO THE CONTINUUM

Radial Coulomb eigenfunctions, $\ell = 0$. Bound states renormalized $\sim 1/\Delta E$. Continuum state with energy normalization. After H. Friedrich: Th. Atomic Physics.

But a travelling wave has to be complex!

• The perturbed wave function concept

But a travelling wave has to be complex!

• The perturbed wave function concept (one or several ph:s)

$$\rho(\mathbf{r}) \sim \lim_{\varepsilon \to 0^+} \sum_{\mathbf{p}} \frac{|\mathbf{p}\rangle \langle \mathbf{p} | \mathbf{e} \mathbf{E}_{\omega} \cdot \mathbf{r} | \mathbf{a}\rangle}{\epsilon_{\mathbf{a}} + \hbar \omega - \epsilon_{\mathbf{p}} + i\varepsilon}$$

But a travelling wave has to be complex!

• The perturbed wave function concept (one or several ph:s)

$$\rho(\mathbf{r}) \sim \lim_{\varepsilon \to 0^+} \sum_{\mathbf{p}} \frac{|\mathbf{p}\rangle \langle \mathbf{p} | \mathbf{e} \mathbf{E}_{\omega} \cdot \mathbf{r} | \mathbf{a}\rangle}{\epsilon_{\mathbf{a}} + \hbar \omega - \epsilon_{\mathbf{p}} + i\varepsilon}$$

When the photon energy is high enough there will be a **pole**!

Pole-contribution $(\rightarrow i \sin(...)) +$ Principal value part $(\rightarrow \cos(...))$

But a travelling wave has to be complex!

• The perturbed wave function concept (one or several ph:s)

$$\rho(r) \sim \lim_{\varepsilon \to 0^+} \underbrace{\int_{p}}_{p} \frac{|p\rangle \langle p | e \mathbf{E}_{\omega} \cdot \mathbf{r} | a \rangle}{\epsilon_{a} + \hbar \omega - \epsilon_{p} + i\varepsilon} \rightarrow_{r \to \infty} A e^{i(kr + \frac{Z}{k} \ln 2kr - \ell \frac{\pi}{2} + \sigma_{\ell} + \delta)}$$

When the photon energy is high enough there will be a **pole**!

 Decreased probability density around the atom equals probability flux through spherical surface

$$\frac{i\hbar}{2m} \left(\rho^* \frac{\partial \rho}{\partial r} - \rho \frac{\partial \rho^*}{\partial r} \right) \to -\frac{\hbar k}{m} \mid A \mid^2$$

$$ightarrow Ae^{i(kr+rac{Z}{k}ln2kr-\ellrac{\pi}{2}+\sigma_\ell+\delta)}$$

- ionization rate (per unit time)
- energy absorbed: rate $\times \hbar \omega$

• Decreased probability density around the atom equals probability flux through spherical surface

$$\frac{i\hbar}{2m} \left(\rho^* \frac{\partial \rho}{\partial r} - \rho \frac{\partial \rho^*}{\partial r} \right) \to -\frac{\hbar k}{m} \mid A \mid^2$$

$$ightarrow Ae^{i(kr+rac{Z}{k}ln2kr-\ellrac{\pi}{2}+\sigma_{\ell}+\delta)}$$

- ionization rate (per unit time)
- energy absorbed: rate $\times \hbar \omega$
- Photoabsorption cross section σ

 $\sigma = \frac{\text{Energy per unit time absorbed by the atom}}{\text{Energy flux of the radiation field}}$

Example: Ar $3p \rightarrow d$, $E_{kin} \sim 3$ eV

- Current constant $(k\hbar/2m)$ when the photoelectron has left the core region.
- $\bullet\,$ Cross section determined by the square of the amplitude at $\infty.$

$$\frac{k\hbar}{2m}|A|^2$$

• The perturbed wave function is **phase shifted** compared to the pure Coulomb wave

Phase shift (Ar $3p \rightarrow d$)

 The perturbed wave function is phase shifted compared to the pure Coulomb wave

• Free particle in empty space

Phase shift (Ar $3p \rightarrow d$)

• The perturbed wave function is **phase shifted** compared to the pure Coulomb wave

• Over attractive potential

Coulomb F (×10)

The "local wave number"

$$k(r) = \sqrt{2m(E - V(r))}$$

Accumulated phase.

$$\eta(r) = \int_0^r \sqrt{2m(E - V(r'))} dr'$$

 $\rightarrow \frac{d\eta}{dr} \text{ gives } V(r)$

20

30

r [Bohr radii]

40

50

Phase shift (Ar $3p \rightarrow d$)

 $Im(\rho)$

10

10

5 0 -5 -10

Wave function

Coulomb F (×10)

The "local wave number"

$$k(r) = \sqrt{2m(E - V(r))}$$

Accumulated phase.

$$\eta(r) = \int_0^r \sqrt{2m(E - V(r'))} dr'$$

 $\rightarrow \frac{d\eta}{dr} \text{ gives } V(r)$

• The perturbed wave function is **phase shifted** compared to the pure Coulomb wave

20

30

r [Bohr radii]

40

50

Phase shift (Ar $3p \rightarrow d$)

 $Im(\rho)$

10

10

5 0 -5 -10

Wave function

 Phase shift δ due to many-body potential at small distances.

$$e^{i(kr+rac{Z}{k}ln2kr-\ellrac{\pi}{2}+\sigma_{\ell}+\delta)}$$

- After all: both amplitude and phase required to characterize the wave function!
- Did we never try to get hold of the phase before?

$$\Psi_{\epsilon_{f}}(r,\theta,0) \longrightarrow e^{i(kr+\frac{Z}{k}\ln 2kr)} \sum_{\ell_{f},m} M_{\ell_{0},m \to \ell_{f},m} e^{i\Delta_{\ell_{f}}} Y_{\ell_{f}m}(\theta,0)$$

$$\stackrel{e^{\cdot}}{\underset{p\text{-orbital}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}}}}}}}}}}}}}}}}$$

s-wave

d-wave

$$\Psi_{\epsilon_{f}}(r,\theta,0) \longrightarrow e^{i(kr+\frac{Z}{k}\ln 2kr)} \sum_{\ell_{f},m} M_{\ell_{0},m \to \ell_{f},m} e^{i\Delta_{\ell_{f}}} Y_{\ell_{f}m}(\theta,0)$$

$$\stackrel{e^{\cdot}}{\underset{p\text{-orbital}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}}{\overset{e^{\cdot}}{\overset{e^{\cdot}}}}}}}}}}}}}}}}}}}}}}}$$

s-wave

d-wave

$$\sum_{m} |A(\theta,0)|^{2} = \left| \sum_{\ell_{f}} Y_{\ell_{f},m}(\theta,0) e^{i\Delta_{\ell_{f}}} M_{\ell_{f}m} \right|^{2}$$
$$= \dots M_{\ell_{i}m}^{*} M_{\ell_{j}m} e^{i\left(\Delta_{\ell_{j}} - \Delta_{\ell_{i}}\right)} Y_{\ell_{i},m}^{*} Y_{\ell_{j},m} + c.c$$

• Non-diagonal terms depend on the scattering phase

$$\Psi_{\epsilon_{f}}(r,\theta,0) \longrightarrow e^{i(kr+\frac{Z}{k}\ln 2kr)} \sum_{\ell_{f},m} M_{\ell_{0},m \to \ell_{f},m} e^{i\Delta_{\ell_{f}}} Y_{\ell_{f}m}(\theta,0)$$

$$\stackrel{e^{e^{i}}}{\underset{p\text{-orbital}}{\overset{e^{-}}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}}{\overset{e^{-}}{\overset{e^{-}}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}}{\overset{e^{-}}{\overset{e^{-}}{\overset{e^{-}}}}}}}}}}}}}}}}}}}$$

- Cooper & Zare 1968
- valid both for atoms and molecules (when averaged over molecular orientation)

Resonances: Two path interference

direct photoionization AND via resonance

- Fano 1961
- Asymmetric line profiles quantified by *q*

• Amplitude & Phase

Traditional methods

- Angular dependence (β)
- Resonances (q)

New possibilities

• to get hold of the phase with attosecond techniques...

COULOMB FIELD

Hydrogen

• When $r
ightarrow \infty$

$$\rho(\mathbf{r}) \to e^{i\left(k\mathbf{r} + \frac{1}{ka_0}ln2k\mathbf{r} - \ell\frac{\pi}{2} + \sigma_{\ell}(E)\right)}$$
$$\sigma_{\ell}(E) = \arg\left[\Gamma\left(\ell + 1 - i\frac{Z}{ka_0}\right)\right]$$

COULOMB FIELD

Hydrogen

• When $r \to \infty$

$$\rho(\mathbf{r}) \to e^{i\left(k\mathbf{r} + \frac{1}{ka_0}ln2k\mathbf{r} - \ell\frac{\pi}{2} + \sigma_{\ell}(E)\right)}$$
$$\sigma_{\ell}(E) = \arg\left[\Gamma\left(\ell + 1 - i\frac{Z}{ka_0}\right)\right]$$

• The logarithmic term:

$$\hbar \frac{\partial}{\partial E} \left(\frac{1}{ka_0} \log 2kr \right) \rightarrow \frac{m}{\hbar k^3 a_0} \left(1 - \log 2kr \right)$$

- We cannot compare with a plane wave
- But we can compare different systems with the same long-range Coulombic potential

COULOMB FIELD

Hydrogen

• When $r \to \infty$

$$\rho(r) \to e^{i\left(kr + \frac{1}{ka_0}\ln 2kr - \ell\frac{\pi}{2} + \sigma_{\ell}(E)\right)}$$
$$\sigma_{\ell}(E) = \arg\left[\Gamma\left(\ell + 1 - i\frac{Z}{ka_0}\right)\right]$$

Pure Coulomb field

$$\Delta \tau = \hbar \frac{d\sigma_{\ell}\left(E\right)}{dE}$$

 Additional phase shift in many-electron systems!

- Waves interfere
- When there is a phase difference new patterns emerge

EARLY EXAMPLE

Photoelectron emission from single-crystal tungsten

Illustration from Attophysics: At a glance Villeneuve Nature 449, 997,-07

Eva Lindroth, Stockholm University Time in Quantum Mechanics

INTERFEROMETRIC MEASUREMENT - STREAKING

- Photoelectron versus delay between the pulses
- $\Delta au = 110 \pm 70$ as

Cavalieri *et al.* Nature 449,1029. Pulse: $au \sim$ 300 as, $\hbar\omega \sim$ 91 \pm 3 eV

• Short (attosecond duration) bursts of short wave-length light

- Short IR-pulse → isolated atto - second pulse. Broad pulse in the energy domain. Simultaneous pump and probe. (Streaking)
- Train of attosecond pulses (RABBIT). Simultaneous pump and probe. Comb of XUV frequencies in the energy domain.

Laser Assisted Photoionization

Above Threshold Ionization

- the electron absorbs or emits extra photons when it is already in the continuum
- Strong field phenomena
- First seen by P. Agostini et al. Phys. Rev. Lett. 42, 1127, -79 with $10^{13}~{\rm W/cm^2}~\hbar\omega=1.17~{\rm EV}$

Eva Lindroth, Stockholm University Time in Quantum Mechanics

Redistribution of three harmonic peaks due to laser dressing: Formation of sidebands. (Courtesy Marcus Dahlström)

Redistribution of three harmonic peaks due to laser dressing: Formation of sidebands. (Courtesy Marcus Dahlström)

Redistribution of three harmonic peaks due to laser dressing: Formation of sidebands. (Courtesy Marcus Dahlström)

Redistribution of three harmonic peaks due to laser dressing: Formation of sidebands. (Courtesy Marcus Dahlström)

HOW IT LOOKS IN REALITY

A. L'Huillier group Isinger et al. Science358, 893, 2017

LASER-ASSISTED PHOTOIONIZATION - RABBIT

Compare David Busto's Monday Lecture

where $au_{
m GD} pprox (\phi_> - \phi_<)/2\omega$ is group delay of attopulse

LASER-ASSISTED PHOTOIONIZATION - RABBIT COMPARE DAVID BUSTO'S MONDAY LECTURE

where $au_{
m GD} pprox (\phi_> - \phi_<)/2\omega$ is group delay of attopulse

BACK TO HYDROGEN - PHASE

- The experiments do not measure the Wigner phase
- they measure the difference between the emission and absorption path.

BACK TO HYDROGEN -DELAY

THE DIFFERENCE: ABOVE THRESHOLD IONIZATION

• Continuum-Continuum transitions

Rather Universal Contribution

Vinbladh et al. Atoms 2022, 10, 80

lsinger et al Science **358** 893 2017

Eva Lindroth, Stockholm University Time in Quantum Mechanics

- There is time information in the scattering phase shift
- Photoionization is "half scattering"
- Interferometric techniques measure relative phases
- The measurement technique itself contribute with an extra phase that we have to understand and account for.