Bo Sundborg, 29th Oct 2024 — 33rd Nordic Network Meeting on "Strings, Fields and Branes"

Quantum scalar fields in D=4 What have we missed?

Problems, puzzles and potential

Problems

- Proper (not EFT) scalar $\lambda \varphi^4$ theory has been proven to be trivial in D = 4.
- The coupling λ diverges in the UV (Landau pole).
- Scalar theories are UV sensitive in EFT effective field theory.

Fröhlich '82 Aizenman and Duminil-Copin, '21

Problems

- Proper (not EFT) scalar $\lambda \phi^4$ theory has been proven to be trivial in D = 4.
- The coupling λ diverges in the UV (Landau pole).
- Scalar theories are UV sensitive in EFT effective field theory.

Yet, scalars are essential in the Standard Model and in string theory.

- Renormalisation group (RG) flow appears to be a gradient flow.
- This seem to hold up to 6 loops.
- Nobody seems to know why.
- *not* trivial.

• It has recently been claimed (again) that for many, N, scalars, $\lambda \phi^4$ theory is **Romatschke '23**

Pannell and Stergiou '24

- Renormalisation group (RG) flow appears to be a gradient flow.
- This seem to hold up to 6 loops.
- Nobody seems to know why.
- *not* trivial.

We are missing something about scalars or about QFT.

Pannell and Stergiou '24

• It has recently been claimed (again) that for many, N, scalars, $\lambda \phi^4$ theory is

Romatschke '23

Potential

- A non-perturbative RG may address triviality (and UV Landau poles).
	- Is large N (number of scalars) limits the right path?
	- Does QFT in $D = 4 \epsilon$ indicate a difference between small N and large N?
- Complex CFTs may evade UV sensitivity.
- RG flow geometry may explain the gradient flow.

Potential

- A non-perturbative RG may address triviality (and UV Landau poles).
	- Is large N (number of scalars) limits the right path?
	- Does QFT in $D = 4 \epsilon$ indicate a difference between small N and large N?
- Complex CFTs may evade UV sensitivity.
- RG flow geometry may explain the gradient flow.

We can learn something.

RG flows and scalars

Technical note:

- For simplicity, I will focus on classically scale invariant theories.
- This involves fine tuning, or fitting into a bigger framework with conformal invariance, for example.

Renormalisation overview

Action
$$
S(\lambda_I) \rightarrow S(\lambda_I(\mu))
$$

 λ_I are couplings.

Typically μ is replaced with a dynamical scale Λ . For example, $\lambda(\Lambda_c) = c$.

Perturbative sums diverge due to integrals over scale.

The definition of the theory without Λ was too naive.

Integrals over scales are not a problem if we study scale dependence

Technical challenge:

Introduce a scale without ruining Poincaré and gauge symmetries…

Renormalisation: physical scale dependence

Scale invariant theories

The scale μ is introduced for technical reasons, but drops out in observables.

Non-scale invariant theories

The scale μ still drops out of observables, but other scales Λ_c characterise the theory.

 $\lambda_I(\mu)$ are not directly observable.

Correlators or amplitudes which depend on $\lambda_I(\mu)$, can probe its scale dependence indirectly.

The number of fields is important

Multi-scalar λφ4 theory

Multi-scalar λφ⁴ theory in D = 4 - ε

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \qquad i = 1
$$

ϕkϕ^l i = 1,…, *n*

$D=4-\epsilon$

<i>+ 2 permutations)

$$
\beta_{ijkl} = \frac{d}{dt} \lambda_{ijkl} = \left(-\varepsilon \lambda_{ijkl} \right) + B \left(\lambda_{ijmn} \lambda_{mnkl} + \right.
$$

 $D = 4 - \epsilon$? Mainly for $d = 3$ phase transitions and general QFT...

Rychkov and Stergiou '19 Osborn and Stergiou '18 Brézin, Le Guillou and Zinn-Justin '74 **Osborn and Stergiou '18 Herzog, Jepsen, Osborn, Oz '24 Osborn and Stergiou '21**

One loop beta function

Michel '84 Wallace and Zia '74

Multi-scalar λφ⁴ theory in D = 4 - ε

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \qquad i = 1.
$$

ϕkϕ^l i = 1,…, *n*

 $D=4-\epsilon$

<i>+ 2 permutations)

$$
\beta_{ijkl} = \frac{d}{dt} \lambda_{ijkl} = \left(-\varepsilon \lambda_{ijkl} \right) + B \left(\lambda_{ijmn} \lambda_{mnkl} + \right.
$$

 $t = \ln(\mu/\mu_0)$ is the "renormalisation time". t decreases from UV to IR.

 μ is the RG scale and μ_0 a reference scale.

One loop beta function

Rychkov and Stergiou '19 Osborn and Stergiou '18 Brézin, Le Guillou and Zinn-Justin '74 **Osborn and Stergiou '18 Herzog, Jepsen, Osborn, Oz '24 Osborn and Stergiou '21**

Michel '84 Wallace and Zia '74

$$
\beta_{ijkl} = \frac{d}{dt} \lambda_{ijkl} = \left(-\varepsilon \lambda_{ijkl} \right) + B \left(\lambda_{ijmn} \lambda_{mnkl} + \right.
$$

 $t = \ln(\mu/\mu_0)$ is the "renormalisation time". t decreases from UV to IR.

 μ is the RG scale and μ_0 a reference scale.

 \ldots , *n*

 $D=4-\epsilon$

<i>+ 2 permutations)

One loop beta function

We will take
$$
B = \frac{1}{16\pi^2} \rightarrow 1
$$
.

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \qquad i = 1.
$$

Multi-scalar λφ⁴ theory in D = 4 - ε

$$
\beta_{ijkl} = \frac{d}{dt} \lambda_{ijkl} = \left(-\varepsilon \lambda_{ijkl} \right) + \left(\lambda_{ijmn} \lambda_{mnkl} + 2 \right)
$$

 $t = \ln(\mu/\mu_0)$ is the "renormalisation time". t decreases from UV to IR.

 μ is the RG scale and μ_0 a reference scale.

 \ldots , *n*

$D=4-\epsilon$

<i> 2 **permutations)**

One loop beta function

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \qquad i = 1
$$

Multi-scalar λφ⁴ theory in D = 4 - ε

Interactions generate one loop Feynman diagrams

 $\mathscr{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_i \phi_k \phi_l$ $i = 1, ..., n$ 1 $rac{1}{2}$ $\partial_m \phi_i$ $\partial^m \phi_i - \frac{1}{4}$ 4! $\lambda_{ijkl}\phi_i\phi_j\phi_k\phi_l$

 $\beta_{ijkl} =$ *d dt* $\lambda_{ijkl} = \big(- \varepsilon \lambda_{ijkl} \big) + \big(\lambda_{ijmn} \lambda_{mnkl} + 2 \text{ permutations } \big)$

Classical scale dependence in $D = 4 - \epsilon$

One loop beta function

 $D=4-\epsilon$

Single-scalar intermission

One field intermission, n = 1 Example: scale symmetry breaking

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi \partial^m \phi - \frac{1}{4!} \lambda \phi^4
$$

$$
\beta = \frac{d\lambda}{dt} = 3\lambda^2
$$

 μ is the RG scale and μ_0 a reference scale. $t = \ln(\mu/\mu_0)$ is the "renormalisation time". t decreases from UV to IR.

$D = 4$

One loop beta function

One field intermission, n = 1 Example: Landau pole

$$
\beta = \frac{d\lambda}{dt} = 3\lambda^2
$$

 μ is the RG scale and μ_0 a reference scale. $t = \ln(\mu/\mu_0)$ is the "renormalisation time". t decreases from UV to IR.

One loop beta function

$$
-\frac{1}{3\lambda} = t - t_0 \qquad \lambda = \frac{1}{3(t_0 - t)}
$$

$D = 4$

A Landau pole
at
$$
t = t_0 = t_{LP}
$$
 $\lambda(\mu) = \frac{1}{3 \ln \frac{\mu_{LP}}{\mu}}$

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi \partial^m \phi - \frac{1}{4!} \lambda \phi^4
$$

One field intermission, n = 1 Dimensional transmutation and Landau poles

- Solved at one loop by $\lambda(\mu)$.
- *λ* varies continuously from 0 to ∞ . Define a physical scale Λ_c by
- Λ_1 is the scale where $\lambda = 1$, which is a bit arbitrary but appears physical.

• The RG equation
$$
\frac{d\lambda}{dt} = \beta(\lambda)
$$
.

$$
\lambda(\mu) = \frac{1}{3 \ln \frac{\mu_{LP}}{\mu}}
$$

$$
c = \lambda(\Lambda_c) \qquad \Lambda_c = e^{-1/3c} \mu_{LP}
$$

Dimensional transmutation and Landau poles Summary

We used the one loop approximation $\beta^{(1)}(\lambda)$ and found

- Dimensional transmutation: A physical scale Λ_1 in spite of scale invariance.
- Landau pole: a divergence of λ at a slightly higher scale.

- Dimensional transmutation is under control in perturbation theory.
- The Landau pole signals divergent coupling and one loop is not enough…
	- There are no signs of stable zeros of β which would stop the running to $\infty...$

 $\pmb{\beta}^{(1)}(\pmb{\lambda})$

How to view this?

Dimensional transmutation and Landau poles Summary

We used the one loop approximation $\beta^{(1)}(\lambda)$ and found

- Dimensional transmutation: A physical scale Λ_1 in spite of scale invariance.
- Landau pole: a divergence of λ at a slightly higher scale.

- Dimensional transmutation is under control in perturbation theory.
- The Landau pole signals divergent coupling and one loop is not enough… Ugh...
incord perturbation theory
	- There are no signs of stable zeros of β which would stop the running β^{β} β^{β} ...

 $\pmb{\beta}^{(1)}(\pmb{\lambda})$

How to view this?

Multi-scalar λφ4 stability

There are two concepts of stability:

The different concepts are related by values of λ_{ijkl} .

- 1. The stability of the critical point $\phi_i = 0$ in the potential $V_{\lambda}(\phi)$.
- 2. The stability of the RG flow determined by $\beta(\lambda)$ in the space of couplings . *λijkl*

Classical stability and the RG flow

 $V(\phi) = \lambda(\phi) = \lambda_{ijkl}\phi_i\phi_j\phi_k\phi_l \ge 0$ For all ϕ_i . *i*

Rychkov and Stergiou '19

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \quad i = 1,.
$$

Classical stability at $λ_{iikl}$:

̂ $\lambda(\boldsymbol{\phi}) = 0$ ̂

Fluctuation driven first order phase transition

Rychkov and Stergiou '19

"Fluctuation driven first order phase transition" if stabilised

$$
V(\phi) = \lambda(\phi) = \lambda_{ijkl}\phi_i\phi_j\phi_k\phi_l \ge 0
$$

For all ϕ_i .

Coleman-Weinberg mechanism via Gildener-Weinberg in $D = 4$.

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \quad i = 1,.
$$

Classical stability at λ_{ijkl} :

̂

̂

RG flow does not enter stability cone

 $V(\phi) = \lambda(\phi) = \lambda_{ijkl}\phi_i\phi_j\phi_k\phi_l \ge 0$ For all ϕ_i . *i*

Rychkov and Stergiou '19

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \quad i = 1,.
$$

Classical stability at λ_{iikl} :

̂ $\lambda(\boldsymbol{\phi}) = 0$ ̂

The RG flow equation

$$
\frac{d}{d(-t)}\lambda(\bar{\phi}) = \varepsilon \lambda(\bar{\phi}) - 3V_{ij}V_{ij} \leq \varepsilon \lambda(\bar{\phi})
$$

$$
V_{ij} = \lambda_{ijmn} \bar{\phi}_m \bar{\phi}_n
$$

• Dominated by $\lambda(\phi)$ for $\epsilon > 0$, and by $V_{ij}(\phi)$ for $D = 4$.

• Why the fixed point equations are different in $D = 4$ and $D < 4$ ($\epsilon > 0$):

and $**D** = 4 - $\epsilon$$ **Purely scalar λφ⁴ theories**

- In $D = 4$ there is classical scale invariance, and there is only a trivial fixed point in perturbation theory.
- Dimensional transmutation yields non-trivial vevs of scalars for RG trajectories reaching the boundary of the stability cone. Vevs in the almost flat directions.
- In $D = 4$ ε classical scale symmetry is broken by ε giving non-trivial fixed points. Fixed points bring back scale invariance.
	- Fluctuation driven first order phase transitions result from RG flows leaving the stability cone.

Coleman and Weinberg '73 Gildener and Weinberg '76 Rychkov and Stergiou '19

The number of fields is important

Symmetries in multi-scalar theories

Hierarchies of symmetric flows

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \quad i = 1, ..., n
$$

Consider $O(n)$ transformations in a subgroup $G \subset O(n)$.

Suppose G preserves λ_{ijkl} . Then G also preserves the beta function at λ_{ijkl} and the flow remains in the space of G invariant λ_{ijkl} .

A hierarchy of subgroups $G \subset O(n)$ yields a hierarchy of symmetric flows.

Fixed points are characterised by their symmetry groups $G \subset O(n)$.

Rychkov and Stergiou '19 Michel '84

-
-
- Transformations in $O(n)$ not preserving λ_{ijkl} map it to an equivalent λ'_{ijkl} .
	-

Symmetries of fixed points, invariants

The number of independent two-tensors, I_2 , measure the degree of fine tuning required in the action.

The invariant tensors of a given rank form a linear space.

The number of independent four-tensors, I_4 , gives the dimension of a G invariant RG flow.

Rychkov and Stergiou '19

 \cdot , *n*

-
-
-

$$
\mathcal{L} = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i - \frac{1}{4!} \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l \quad i = 1, ..., n
$$

Subgroups $G \subset O(n)$ may be characterised by their invariants, eg quadratic invariants $A_{ij}\phi_i\phi_j$ and quartic invariants $B_{ijkl}\phi_i\phi_j\phi_k\phi_l$.

Classes of symmetries of fixed points Rychkov and Stergiou '19

The subgroups of *O*(*n*) depend sensitively on n .

Infinite classes have been studied.

Nam

 $O(N)$ cubio tetra

"MN

tetra Mich bicon

 I_2 measures the fine tuning required in the action. I_4 gives the dimension of a G invariant RG flow.

Table 1: Summary of examples of fully interacting fixed points given in text.

Classes of symmetries: universality Rychillies Rychkov and Stergiou '19

The subgroups of *O*(*n*) depend sensitively on n .

Example: A subgroup of transforms m^2 scalars as matrices. $O(m)$ × $O(m)$ ⊂ $O(m^2)$

I₂ measures the fine tuning required in the action. I_4 gives the dimension of a G invariant RG flow.

Table 1: Summary of examples of fully interacting fixed points given in text.

Infinite classes have been studied.

We can *represent any symmetry acting linearly* on real scalars in *O*(*n*).

Classes of symmetries: universality Rychillies Rychkov and Stergiou '19

The subgroups of *O*(*n*) depend sensitively on n .

Example: A subgroup of transforms m^2 scalars as matrices. $O(m)$ × $O(m)$ ⊂ $O(m^2)$

I₂ measures the fine tuning required in the action. I_4 gives the dimension of a G invariant RG flow.

Table 1: Summary of examples of fully interacting fixed points given in text.

Infinite classes have been studied.

We can *represent any symmetry acting linearly* on real scalars in *O*(*n*).

The number of fields *n* is important

RS classes of symmetries: maximal symmetry Rychkov and Stergiou '19

The maximal subgroup of $O(n)$ is $O(n)$.

 $\mathscr{L} =$ 1 $rac{1}{2}$ $\partial_m \phi_i$ $\partial^m \phi_i - V(\phi)$ $V(\phi) =$ $\frac{1}{2}m^2$ $\phi_i \phi_i + \frac{1}{4}$ 4! $λ$ ($φ_i$ $φ_i)$ 2

 $\lambda_{ijkl} =$ 1 $\frac{1}{3}(\delta_{ij}\delta_{ij} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk})\lambda$

tetra Mich bico₁

Summary of examples of fully interacting fixed points given in text.

 $I_2 = 1$ *requires fine tuning the coefficient of* $\phi_i \phi_i.$ $I_4 = 1$ gives a 1-dimensional G invariant RG flow.

Summary, so far

- The RG flow encodes the change of the action with scale.
- The classically stable potentials $V_\lambda(\phi)$ lie in a "stability cone".
- Couplings may flow out of the stability cone in the IR.
- In $D < 4$, no RG flows enter the stability cone.
- All fixed points are inside the stability cone, or on its boundary.
- The RG flow is organised hierarchically by symmetry subgroups.

Summary, so far

- The RG flow encodes the change of the action with scale.
- The classically stable potentials $V_\lambda(\phi)$ lie in a "stability cone".
- Couplings may flow out of the stability cone in the IR.
- In $D < 4$, no RG flows enter the stability cone.
- All fixed points are inside the stability cone or its boundary.
- The RG flow is organised hierarchically by symmetry subgroups.

Fixed point structure in multi-scalar theories

Fixed points

- Real fixed points are scale invariants
- The corresponding theories are CFTs
- Complex conjugate pairs of fixed points represent complex CFTs
- Real couplings between the complex fixed points evolve slowly, "walking" rather than running.
	- A large scale ratio corresponds to a $\delta \lambda$ of order unity
	- Complex fixed points come with hierarchies of scales!
-
-

Gorbenko, Rychkov and Zan '18

Fixed points can collide and move out into the complex plane

$$
\bullet \ \beta(\lambda) = \frac{d\lambda}{dt} = -y - \lambda^2 + O\left(\lambda^3\right)
$$

- $\Lambda_{UV}/\Lambda_{IR} \sim e^{\Delta t} \sim \exp(\pi/\sqrt{y})$ for \sim exp(π/\sqrt{y}) for $|\lambda| \sim 1$
- A natural large hierarchy is generated from a small y.

Bounds for real fixed points Rychkov and Stergiou '19

• Bounds are saturated when two fixed points coincide. There is then a marginal

• Fixed points *λ***ijklλ***ijkl* ≤ ϵ^2 8 *n*

\n- Lower bound
$$
A_* \geq -\frac{\epsilon^3}{48}n
$$
\n

operator.

Fixed points λ_* in $D=4-\epsilon$, governed by roots of second order polynomial:

Extremal CFTs

Fixed points λ_* in $D = 4 - \epsilon$ are governed by roots of second order polynomial.

- Consider an *extremal* fixed point CFT saturating the bounds. Since A always decreases towards the IR, no flow away from this fixed point reaches another fixed point. Deformation by relevant operators makes no difference:
- If any flow leaves, it goes outside the stability cone or to strong coupling.

- The bound on the roots is saturated at an extremal location of the roots.
- How can roots of a second order polynomial be extreme? They coincide.
- Polynomial algebra yields a direction of coincidence and *a marginal operator*.

Extremal CFTs, *n* **and D**

Rychkov and Stergiou '19

- Consider an *extremal* fixed point CFT saturating the bounds. Since A always decreases towards the IR, no flow away from this fixed point reaches another
- If any flow leaves, it goes outside the stability cone or to strong coupling.

- Extremal fixed points are reasonable guesses for the vacuum of a theory, if the vacuum is determined by one-loop effects.
- For $n < 4$ the general form of the bounds cannot be saturated. For $n < 4$, the extremal CFTs are not maximally symmetric.
- Perhaps we can learn about $D = 4$ limit vacua by taking limits of extremal fixed points? For $n > 4$, we would then expect non-trivially broken symmetry.

fixed point. Deformation by relevant operators makes no difference:

A potential for the flow Gradient flow at one loop Rychkov and Stergiou '19

- Beta function is gradient of $A(\lambda)$: $\delta A(\lambda) = \beta_{ijkl}(\lambda) \delta \lambda_{ijkl}$
- Fixed points λ_* with scale invariance: $0 = \beta_{ijkl}(\lambda_*) =$

The existence of $A(\lambda)$ to this order, demonstrates monotonicity of RG flow. The RG flow is always in the gradient direction. A decreases in the IR.

$$
\frac{d\lambda_{ijkl}}{dt} = \beta_{ijkl}(\lambda) = \frac{\delta A}{\delta \lambda_{ijkl}}
$$

Wallace and Zia '74,'75

Pannell and Stergiou '24

"The $\lambda_{ijkl}\phi_i\phi_j\phi_k\phi_l$ RG flow seems to be a gradient flow to six loops."

It stops being a gradient flow at 6 loops or L loops.
It is a gradient flow to all orders.

RG flows and scalars comments

- The RG flow is a gradient flow: "potential" A changes monotonously.
	- To finite loop order or all loops?
- Couplings may flow out of the stability cone in the IR.
	- Radiative corrections, Coleman-Weinberg, Gildener-Weinberg
- In $D = 4 \epsilon$, no RG flows enter the stability cone.
- The RG flow is organised hierarchically by symmetry subgroups.

R **evisiting** $D = 4$ **and** $D = 4 - \varepsilon$ **Purely scalar λφ⁴ theories**

- In $D = 4$ ε classical scale symmetry is broken by ε giving non-trivial fixed points. Fixed points bring back scale invariance.
	- Fluctuation driven first order phase transitions result from RG flows leaving the stability cone.
- In $D = 4$ there is classical scale invariance, and there is only a trivial fixed point in perturbation theory.
- Dimensional transmutation yields non-trivial vevs of scalars for RG trajectories reaching the boundary of the stability cone. Vevs in the almost flat directions.
- There may be symmetric vacua, eg in O(N) model, with RG flow of couplings.
- Gildener-Weinberg vacua do not have maximal symmetry. Extremal fixed points do not have maximal symmetry.

• Choosing explicitly symmetric RG flows is consistent.

Coleman and Weinberg '73 Gildener and Weinberg '76 Rychkov and Stergiou '19

Large N and strong coupling

Large N methods are advertised as non-perturbative.

- What does this mean?
- Is it relevant for scalar $\lambda \phi^4$ theory and its Landau pole?
- Is strong coupling in the UV worse than strong coupling in the IR?

Triviality at large *N***? Are scalar λφ⁴ theories non-trivial for large enough** *n***? Romatschke '23**

- Romatschke questions the general triviality of $\lambda \Phi^4$ proven only for $n = 1, 2$.
- A lot at stake! Perhaps scalar QFT are well defined.
- We have seen that the properties of scalar QFT change with *n.*
	- To deal with Landau pole non-perturbative methods are needed
	- To avoid the triviality take *n* large.
	- Large *n* methods are claimed to be non-perturbative...

The symmetric O(N) model diagrams

• Consider the maximally symmetric $O(n)$ model, the $O(N)$ model, in $D=4$.

The O(N) model Hubbard-Stratonovic

Romatschke '23

• Consider the maximally symmetric $O(n)$ model, the $O(N)$ model, in $D=4$.

$$
Z = \int \mathcal{D}\phi_i e^{-S_E} \qquad \mathcal{L}_E = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i + \frac{1}{2} m_0^2 \phi_i \phi_i + \frac{\lambda_0}{N} (\phi_i \phi_i)^2
$$

$$
e^{-\int dx \frac{\lambda_0}{N} (\phi_i \phi_i)^2} = \int D\zeta e^{-\int dx \left[\frac{i}{2}\zeta \phi_i \phi_i + \frac{\zeta^2 N}{16\lambda_0}\right]}
$$

Do the Gaussian ϕ integral: $Z = \int \mathcal{D}\zeta e^{-NA} \qquad A = \frac{1}{2}$ Tr

Vary ζ for saddle point of $z^* = i\zeta$.

$$
\zeta e^{-NA} \qquad A = \frac{1}{2} \text{Tr} \ln \left[-\partial^2 + m_0^2 + i\zeta \right] + \int dx \frac{\zeta^2}{16\lambda_0}
$$

$$
0 = \frac{1}{2} \int d^d k \frac{1}{k^2 + m_0^2 + z^*} - \frac{z^*}{8\lambda_0}
$$

The O(N) model Hubbard-Stratonovic

Romatschke '23

• Consider the maximally symmetric $O(n)$ model, the $O(N)$ model, in $D=4$.

out the leading large N result

$$
Z = \int \mathcal{D}\phi_i e^{-S_E} \qquad \mathcal{L}_E = \frac{1}{2} \partial_m \phi_i \partial^m \phi_i + \frac{1}{2} m_0^2 \phi_i \phi_i + \frac{\lambda_0}{N} (\phi_i \phi_i)^2
$$

$$
e^{-\int dx \frac{\lambda_0}{N} (\phi_i \phi_i)^2} = \int D\zeta e^{-\int dx \left[\frac{i}{2}\zeta \phi_i \phi_i + \frac{\zeta^2 N}{16\lambda_0}\right]}
$$
The saddle picks on

Do the Gaussian ϕ integral: $Z = \mathcal{D}\mathcal{Z}$

Vary ζ for saddle point of $z^* = i\zeta$.

Note the ϕ_i propagator $M^2 = m_0^2 + z^*$

$$
\zeta e^{-\underline{N}A} \qquad A = \frac{1}{2} \text{Tr} \ln \left[-\partial^2 + \left[m_0^2 + i\zeta \right] \right] + \int dx \frac{\zeta^2}{16\lambda_0}
$$
\n
$$
0 = \frac{1}{2} \int d^d k \frac{1}{k^2 + m_0^2 + z^*} - \frac{z^*}{8\lambda_0}
$$
\n
$$
= m_0^2 + z^*
$$

The O(N) model cutoff regularisation

UV cutoff Λ_{UV} in $D=4$

Romatschke '23

$$
0 = \frac{1}{2} \int d^d k \frac{1}{k^2 + m_0^2 + z^*} - \frac{z^*}{8\lambda_0} \qquad \frac{z^*}{\lambda_0} = \frac{1}{(2\pi)^2} \left[\Lambda_{UV}^2 + (m_0^2 + z^*) \ln \frac{m_0^2 + z^*}{\Lambda_{UV}^2} \right]
$$

Using the physical ϕ_i mass combination $M^2 = m_0^2 + z^*$:

$$
\frac{m_0^2 + z^*}{\lambda_0} =
$$

$$
= \frac{1}{(2\pi)^2} \left(m_0^2 + z^* \right) \ln \frac{m_0^2 + z^*}{\Lambda_{\text{UV}}^2} + \frac{m_0^2}{\lambda_0} + \frac{1}{(2\pi)^2} \Lambda_{\text{U}}^2
$$

The O(N) model cutoff renormalisation

Using physical ϕ_i mass:

Defining renormalised λ_R , m_R

Romatschke '23 Abbott, Kang and Schnitzer '76

$$
\frac{M^2}{\lambda_0} = \frac{1}{(2\pi)^2} M^2 \left[\ln \frac{M^2}{\Lambda_{\text{UV}}^2} + \frac{m_0^2}{\lambda_0} + \frac{1}{(2\pi)^2} \Lambda_{\text{UV}}^2 \right]
$$

$$
\frac{1}{\lambda_0} = \frac{1}{(2\pi)^2} M^2 \left(\ln \frac{M^2}{\mu^2} + \ln \frac{\mu^2}{\Lambda_{\text{UV}}^2} \right) + \frac{m_0^2}{\lambda_0} + \frac{1}{(2\pi)^2} \Lambda_{\text{UV}}^2
$$

$$
= \frac{1}{(2\pi)^2} \ln \frac{\mu^2}{\Lambda_{\text{UV}}^2} = \frac{1}{(2\pi)^2} M^2 \left(\ln \frac{M^2}{\mu^2} + \ln \frac{\mu^2}{\Lambda_{\text{UV}}^2} \right) + \frac{m_R^2}{\lambda_R}
$$

$$
\frac{M^2}{\lambda_R} = \frac{1}{(2\pi)^2} M^2 \ln \frac{M^2}{\mu^2} + \frac{m_R^2}{\lambda_R}
$$

Yielding the saddle condition

The O(N) model renormalisation cont'd

For the critical theory with the saddle condition is $m_R = 0$ M^2

The renormalisation conditions: 1

Romatschke '23 Abbott, Kang and Schnitzer '76

$$
\frac{M^2}{\lambda_R} = \frac{1}{(2\pi)^2} M^2 \ln \frac{M^2}{\mu^2}
$$

with solutions $M^2 = 0, M^2 = \mu^2 e^{(2\pi)^2/\lambda_R}$

The O(N) model renormalisation cont'd

For the critical theory with the saddle condition is $m_R = 0$ M^2

 $$

The renormalisation conditions: 1

Romatschke '23 Abbott, Kang and Schnitzer '76

$$
\frac{M^2}{\lambda_R} = \frac{1}{(2\pi)^2} M^2 \ln \frac{M^2}{\mu^2}
$$

$$
M^2 = 0, M^2 = \mu^2 e^{(2\pi)^2/\lambda_R}
$$

Truly non-perturbative.

Defining a cut-off independent theory

the leading result is non-perturbative.

RG theory does not tell us how to remove the cutoff. What is λ_0 ?

The O(N) model removing cutoff? Are scalar λφ⁴ theories non-trivial for large enough *n***? Romatschke '23** The running coupling is similar to that of simple $\lambda \phi^4$ theory, $\beta = \lambda^2_R/(2\pi)^2$, but now $\lambda \phi^4$ theory, $\beta = \lambda_R^2$ $\frac{2}{R}$ /(2*π*) 2 $\lambda_R^{}=$ 1 1 *λ*0 $+\frac{1}{\sqrt{2}}$ $\frac{1}{(2\pi)^2}$ ln Λ_{UV}^2 μ^2 **Abbott, Kang and Schnitzer '76**

This argument is nonperturbative and consistent with quantum triviality.

the leading result is non-perturbative.

The O(N) model removing cutoff? Are scalar λφ⁴ theories non-trivial for large enough *n***? Romatschke '23** The running coupling is similar to that of simple $\lambda \phi^4$ theory, $\beta = \lambda^2_R/(2\pi)^2$, but now $\lambda \phi^4$ theory, $\beta = \lambda_R^2$ $\frac{2}{R}$ /(2*π*) 2 $\lambda_R^{}=$ 1 1 *λ*0 $+\frac{1}{\sqrt{2}}$ $\frac{1}{(2\pi)^2}$ ln Λ_{UV}^2 μ^2 **Abbott, Kang and Schnitzer '76**

RG theory does not tell us how to remove the cutoff.

Suppose we fix the UV coupling to a finite λ_{ref} and then take $\Lambda_{UV} \rightarrow \infty$.

We seem to find $\lambda_R(Q) \rightarrow 0$ for any finite Q.

$$
\lambda_R(\mu = \Lambda_{UV}) = \lambda_0 = \lambda_{ref}
$$

$$
\lambda_R(\mu = Q) \to 0
$$

the leading result is non-perturbative.

RG theory does not tell us how to remove the cutoff. What is λ_0 ?

Suppose we ask that $\lambda_R(Q)$ is independent of large Λ_{UV} . Then there is a compensating term in λ_{0} .

The O(N) model removing cutoff? Are scalar λφ⁴ theories non-trivial for large enough *n***? Romatschke '23** The running coupling is similar to that of simple $\lambda \phi^4$ theory, $\beta = \lambda^2_R/(2\pi)^2$, but now $\lambda \phi^4$ theory, $\beta = \lambda_R^2$ $\frac{2}{R}$ /(2*π*) $\lambda_R =$
 $\lambda_R =$ 1 1 *λ*0 $+\frac{1}{\sqrt{2}}$ $\frac{1}{(2\pi)^2}$ ln Λ_{UV}^2 μ^2 **Abbott, Kang and Schnitzer '76**

$$
\lambda_R(\mu = Q) \text{ is fixed}
$$

$$
\lambda_0 = \frac{(2\pi)^2}{\ln \frac{\Lambda_{LP}^2}{\Lambda_{UV}^2}}
$$

the leading result is non-perturbative.

RG theory does not tell us how to remove the cutoff. What is λ_0 ?

The O(N) model removing cutoff? Are scalar λφ⁴ theories non-trivial for large enough *n***? Romatschke '23** The running coupling is similar to that of simple $\lambda \phi^4$ theory, $\beta = \lambda^2_R/(2\pi)^2$, but now $\lambda \phi^4$ theory, $\beta = \lambda_R^2$ $\frac{2}{R}$ /(2*π*) $\lambda_R =$
 $\lambda_R =$ 1 1 *λ*0 $+\frac{1}{\sqrt{2}}$ $\frac{1}{(2\pi)^2}$ ln Λ_{UV}^2 μ^2 **Abbott, Kang and Schnitzer '76**

(2*π*)

 $\ln \frac{\Lambda_L^2}{\Omega}$

2

LP

 \mathcal{Q}^2

Suppose we ask that $\lambda_R(Q)$ is independent of large Λ_{UV} . Then there is a compensating term in λ_{0} .

We find a Landau pole: $\lambda_R(Q) =$

 $\lambda_0 =$ (2*π*) 2 $\ln \frac{\Lambda_L^2}{\Lambda^2}$ *LP* Λ_{UV}^2 $\lambda_R(\mu = Q)$ is fixed

Removing the cutoff we get a trivial theory OR a Landau pole and $\lambda_R(Q) < 0$ for $Q > \Lambda_{LP}$.

The O(N) model summary

- The leading large N result sums diagrams of all orders in λ_0 .
- The leading large N result is non-perturbative.
- Due to the simplicity of the $O(N)$ model the non-perturbative beta function has the same form as the one loop beta function of simple $\lambda\boldsymbol{\phi}^4$ model! $\lambda \boldsymbol \phi^4$
	- One solution has a Landau pole (now to take seriously) and negative coupling in the deep UV.

• Another solution is trivial.

Romatschke '23, Abbott, Kang and Schnitzer '76,…

Challenges for the Landau pole O(N) model

- Negative coupling in the deep UV suggests instability.
	- Does it really?
- framework required?
- Landau pole in non-perturbative $\lambda_R(\mu)$ suggests divergence in observables.
	- Does it really?
- There may be controlled phase transitions, or instabilities, in the finite temperature $O(N)$ model...

• Is negative coupling related to PT-symmetry replacing Hermiticity?? Is such a

Potential takeaways

Potential

- A non-perturbative RG may address triviality (and UV Landau poles).
	- Is large N (number of scalars) limits the right path?
	- Does QFT in $D = 4 \epsilon$ indicate a difference between small N and large N?
- Complex CFTs may evade UV sensitivity.
- RG flow geometry may explain the gradient flow.

We can learn something.

Potential

- A non-perturbative RG may address triviality (and UV Landau poles).
	- Is large N (number of scalars) limits the right path? **Flodgren '24 Flodgren and Sundborg '23, '24**
	- Does QFT in $D = 4 \epsilon$ indicate a difference between small N and large N?
- Complex CFTs may evade UV sensitivity.
- RG flow geometry may explain the gradient flow. **Guan and Sundborg '25?**

We can learn something.

