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Quantum scalar fields in D=4
What have we missed?



What is the role of scalars? 
Who ordered them?

Standard model High energy/StringsScalars



Problems, puzzles and potential



Problems

• Proper (not EFT) scalar λφ4 theory has been proven to be trivial in D = 4.


• The coupling  diverges in the UV (Landau pole).


• Scalar theories are UV sensitive in EFT — effective field theory.

λ
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Problems

• Proper (not EFT) scalar λφ4 theory has been proven to be trivial in D = 4.


• The coupling  diverges in the UV (Landau pole).


• Scalar theories are UV sensitive in EFT — effective field theory.


Yet, scalars are essential in the Standard Model and in string theory.

λ



Puzzles

• Renormalisation group (RG) flow appears to be a gradient flow.


• This seem to hold up to 6 loops. 


• Nobody seems to know why.


• It has recently been claimed (again) that for many, N, scalars,  theory is 
not trivial.

λϕ4
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Puzzles

• Renormalisation group (RG) flow appears to be a gradient flow.


• This seem to hold up to 6 loops. 


• Nobody seems to know why.


• It has recently been claimed (again) that for many, N, scalars,  theory is 
not trivial.


We are missing something about scalars or about QFT.

λϕ4

Pannell and Stergiou ’24

Romatschke ’23



Potential

• A non-perturbative RG may address triviality (and UV Landau poles).


• Is large N (number of scalars) limits the right path?


• Does QFT in  indicate a difference between small N and large N?


• Complex CFTs may evade UV sensitivity.


• RG flow geometry may explain the gradient flow.

D = 4 − ϵ



Potential

• A non-perturbative RG may address triviality (and UV Landau poles).


• Is large N (number of scalars) limits the right path?


• Does QFT in  indicate a difference between small N and large N?


• Complex CFTs may evade UV sensitivity.


• RG flow geometry may explain the gradient flow.


We can learn something.

D = 4 − ϵ



RG flows and scalars



Technical note:


• For simplicity, I will focus on 
classically scale invariant theories.


• This involves fine tuning, or fitting 
into a bigger framework with 
conformal invariance, for example.



Renormalisation overview

Action S(λI) → S(λI(μ))

Typically  is replaced with a dynamical scale .μ Λ

 are couplings.λI

For example, .λ(Λc) = c

Perturbative sums diverge 
due to integrals over scale.

The definition of the 
theory without  
was too naive.

Λ

Integrals over scales are 
not a problem if we 
study scale dependence

Technical challenge: 
Introduce a scale without 
ruining Poincaré and gauge 
symmetries…



Renormalisation: physical scale dependence

Scale invariant theories

The scale  is introduced for technical 
reasons, but drops out in observables.

μ

Non-scale invariant theories

The scale  still drops out of 
observables, but other scales 

 characterise the theory.

μ

Λc

 are not directly observable.λI(μ)

Correlators or amplitudes which 
depend on , can probe its 
scale dependence indirectly.

λI(μ)



The number of fields is important



Multi-scalar λφ4 theory



Multi-scalar λφ4 theory in D = 4 - ε

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl i = 1,…, n

βijkl =
d
dt

λijkl = (−ελijkl) + B (λijmnλmnkl + 2 permutations )

D = 4 − ϵ

One loop 
beta function

Rychkov and Stergiou ’19 Brézin, Le Guillou and Zinn-Justin ’74

Michel ’84

Osborn and Stergiou ’18
Wallace and Zia ’74

Herzog, Jepsen, Osborn, Oz ’24
Osborn and Stergiou ’21

D = 4 − ϵ?
Mainly for  phase transitions and general QFT…d = 3



Multi-scalar λφ4 theory in D = 4 - ε

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl i = 1,…, n

βijkl =
d
dt

λijkl = (−ελijkl) + B (λijmnλmnkl + 2 permutations )

 is the RG scale and  a reference scale.μ μ0

D = 4 − ϵ

One loop 
beta function

 is the “renormalisation time”.  decreases from UV to IR.t = ln(μ/μ0) t
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i = 1,…, n

βijkl =
d
dt

λijkl = (−ελijkl) + B (λijmnλmnkl + 2 permutations )

 is the RG scale and  a reference scale.μ μ0

D = 4 − ϵ

One loop 
beta function

 is the “renormalisation time”.  decreases from UV to IR.t = ln(μ/μ0) t

We will take  .B = 1
16π2 → 1

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl

Multi-scalar λφ4 theory in D = 4 - ε



i = 1,…, n

βijkl =
d
dt

λijkl = (−ελijkl) + (λijmnλmnkl + 2 permutations )

 is the RG scale and  a reference scale.μ μ0

D = 4 − ϵ

One loop 
beta function

 is the “renormalisation time”.  decreases from UV to IR.t = ln(μ/μ0) t

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl

Multi-scalar λφ4 theory in D = 4 - ε



Interactions generate one loop Feynman diagrams

i = 1,…, n

βijkl =
d
dt

λijkl = (−ελijkl) + (λijmnλmnkl + 2 permutations )

D = 4 − ϵ

One loop 
beta function

i

j k

l

m

n

++

Classical scale dependence in D = 4 − ϵ

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl



Single-scalar intermission



One field intermission, n = 1
Example: scale symmetry breaking
ℒ = 1

2 ∂mϕ∂mϕ− 1
4! λϕ4

β =
dλ
dt

= 3λ2

 is the RG scale and  a reference scale.μ μ0

D = 4

One loop 
beta function

 is the “renormalisation time”.  decreases from UV to IR.t = ln(μ/μ0) t



One field intermission, n = 1
Example: Landau pole

β =
dλ
dt

= 3λ2

 is the RG scale and  a reference scale.μ μ0

D = 4

One loop 
beta function

 is the “renormalisation time”.  decreases from UV to IR.t = ln(μ/μ0) t

− 1
3λ = t − t0 λ = 1

3(t0 − t)
A Landau pole 
at t = t0 = tLP

λ(μ) = 1

3 ln
μLP

μ

ℒ = 1
2 ∂mϕ∂mϕ− 1

4! λϕ4



One field intermission, n = 1
Dimensional transmutation and Landau poles

• The RG equation .


• Solved at one loop by .


•  varies continuously from  to . 
Define a physical scale  by


•  is the scale where , which is 
a bit arbitrary but appears physical.

dλ
dt = β(λ)

λ(μ)

λ 0 ∞
Λc

Λ1 λ = 1

λ(μ) = 1

3 ln
μLP

μ

c = λ(Λc) Λc = e−1/3cμLP



Dimensional transmutation and Landau poles
Summary

We used the one loop approximation  and found


• Dimensional transmutation: A physical scale  in spite of scale invariance.


• Landau pole: a divergence of  at a slightly higher scale.


How to view this? 


• Dimensional transmutation is under control in perturbation theory.


• The Landau pole signals divergent coupling and one loop is not enough…


• There are no signs of stable zeros of  which would stop the running to …

β(1)(λ)

Λ1

λ

β ∞



Dimensional transmutation and Landau poles
Summary

We used the one loop approximation  and found


• Dimensional transmutation: A physical scale  in spite of scale invariance.


• Landau pole: a divergence of  at a slightly higher scale.


How to view this? 


• Dimensional transmutation is under control in perturbation theory.


• The Landau pole signals divergent coupling and one loop is not enough…


• There are no signs of stable zeros of  which would stop the running to …

β(1)(λ)

Λ1

λ

β ∞
Beyond  pertu

rbation theory



Multi-scalar λφ4 stability



There are two concepts of stability:


1. The stability of the critical point 
 in the potential .


2. The stability of the RG flow 
determined by  in the space of 
couplings .


The different concepts are related by 
values of . 

ϕi = 0 Vλ(ϕ)

β(λ)
λijkl

λijkl



Classical stability and the RG flow

V(ϕ) = λ(ϕ) = λijklϕiϕjϕkϕl ≥ 0

Classical stability at  :λijkl

For all .ϕi

Rychkov and Stergiou ’19

Stability cone 
in  spaceλijkl λ

0

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl i = 1,…, n

For a boundary  there is 
a flat direction  with 

̂λ
̂ϕ

̂λ( ̂ϕ) = 0

̂λ1

̂λ2



Fluctuation driven first order phase transition
Rychkov and Stergiou ’19

λ

λ*1

0

RG flow

“Fluctuation driven first order 
phase transition” if stabilised

V(ϕ) = λ(ϕ) = λijklϕiϕjϕkϕl ≥ 0

Classical stability at  :λijkl

For all .ϕi

i = 1,…, n
Stability cone 
in  spaceλijkl

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl

For a boundary  there is 
a flat direction  with 

̂λ
̂ϕ

̂λ( ̂ϕ) = 0

̂λ1

̂λ2

Coleman-Weinberg mechanism via 
Gildener-Weinberg in D = 4.



RG flow does not enter stability cone

λ

λ*1

0

RG flow

RG flow does not enter stability 
cone. Proof for .D < 4

Fixed points are in 
the stability cone or 
its boundary.

V(ϕ) = λ(ϕ) = λijklϕiϕjϕkϕl ≥ 0

Classical stability at  :λijkl

For all .ϕi

i = 1,…, n

Rychkov and Stergiou ’19

Stability cone 
in  spaceλijkl

ℒ = 1
2 ∂mϕi∂mϕi−

1
4! λijklϕiϕjϕkϕl

For a boundary  there is 
a flat direction  with 

̂λ
̂ϕ

̂λ( ̂ϕ) = 0

̂λ1

̂λ2



The RG flow equation

• Why the fixed point equations are different in  and  ( ):


• Dominated by  for , and by  for .

D = 4 D < 4 ϵ > 0

λ(ϕ) ϵ > 0 Vij(ϕ) D = 4

d
d(−t)

λ(ϕ̄) = ελ(ϕ̄) − 3VijVij ⩽ ελ(ϕ̄)

Vij = λijmnϕ̄mϕ̄n



Comparing D = 4 and D = 4 - ε
Purely scalar λφ4 theories

• In D = 4 there is classical scale invariance, and 
there is only a trivial fixed point in perturbation 
theory.


• Dimensional transmutation yields non-trivial 
vevs of scalars for RG trajectories reaching 
the boundary of the stability cone. Vevs in the 
almost flat directions. 


• In D = 4 - ε classical scale symmetry is broken 
by ε giving non-trivial fixed points. Fixed 
points bring back scale invariance.


• Fluctuation driven first order phase transitions 
result from RG flows leaving the stability cone.


Coleman and Weinberg ’73 Gildener and Weinberg ’76 Rychkov and Stergiou ’19



The number of fields is important



Symmetries in multi-scalar 
theories



Hierarchies of symmetric flows
ℒ = 1

2 ∂mϕi∂mϕi−
1
4! λijklϕiϕjϕkϕl

Consider  transformations in a subgroup .  O(n) G ⊂ O(n)

i = 1,…, n

Suppose  preserves . Then  also preserves the beta function 
at  and the flow remains in the space of  invariant .

G λijkl G
λijkl G λijkl

A hierarchy of subgroups  yields a hierarchy of symmetric flows.G ⊂ O(n)
Transformations in  not preserving  map it to an equivalent .O(n) λijkl λ′￼ijkl

Fixed points are characterised by their symmetry groups . G ⊂ O(n)

Rychkov and Stergiou ’19
Michel ’84



Symmetries of fixed points, invariants

Subgroups  may be characterised by their invariants, eg 
quadratic invariants  and quartic invariants .   

G ⊂ O(n)
Aijϕiϕj Bijklϕiϕjϕkϕl

i = 1,…, n

The invariant tensors of a given rank form a linear space.

The number of independent two-tensors, , measure the degree 
of fine tuning required in the action. 

I2

The number of independent four-tensors, , gives the dimension of 
a  invariant RG flow.

I4
G

Rychkov and Stergiou ’19
Michel ’84ℒ = 1

2 ∂mϕi∂mϕi−
1
4! λijklϕiϕjϕkϕl



Classes of symmetries of fixed points Rychkov and Stergiou ’19

 measures the fine tuning required in the action. I2

 gives the dimension of a  invariant RG flow.I4 G

The subgroups of 
depend sensitively on .

O(n)
n

Infinite classes have 
been studied.



Classes of symmetries: universality Rychkov and Stergiou ’19

 measures the fine tuning required in the action. I2

 gives the dimension of a  invariant RG flow.I4 G

The subgroups of 
depend sensitively on .

O(n)
n

Infinite classes have 
been studied.

We can represent any 
symmetry acting linearly 
on real scalars in . O(n)

Example: A subgroup of 
 

transforms  scalars as matrices.
O(m) × O(m) ⊂ O(m2)

m2



Classes of symmetries: universality Rychkov and Stergiou ’19

 measures the fine tuning required in the action. I2

 gives the dimension of a  invariant RG flow.I4 G

The subgroups of 
depend sensitively on .

O(n)
n

Infinite classes have 
been studied.

We can represent any 
symmetry acting linearly 
on real scalars in . O(n)

Example: A subgroup of 
 

transforms  scalars as matrices.
O(m) × O(m) ⊂ O(m2)

m2

The number of fields n is important



RS classes of symmetries: maximal symmetry Rychkov and Stergiou ’19

 requires fine tuning the coefficient of . I2 = 1 ϕiϕi

 gives a 1-dimensional  invariant RG flow.I4 = 1 G

The maximal subgroup 
of  is .O(n) O(n)

ℒ = 1
2 ∂mϕi∂mϕi − V(ϕ)

V(ϕ) = 1
2 m2ϕiϕi+

1
4! λ(ϕiϕi)2

λijkl = 1
3 (δijδij + δikδjl + δilδjk)λ



Summary, so far

• The RG flow encodes the change of the action with scale.


• The classically stable potentials  lie in a “stability cone”.


• Couplings may flow out of the stability cone in the IR.


• In , no RG flows enter the stability cone. 


• All fixed points are inside the stability cone, or on its boundary.


• The RG flow is organised hierarchically by symmetry subgroups. 

Vλ(ϕ)

D < 4



Summary, so far

• The RG flow encodes the change of the action with scale.


• The classically stable potentials  lie in a “stability cone”.


• Couplings may flow out of the stability cone in the IR.


• In , no RG flows enter the stability cone. 


• All fixed points are inside the stability cone or its boundary.


• The RG flow is organised hierarchically by symmetry subgroups. 

Vλ(ϕ)

D < 4



Fixed point structure  
in multi-scalar theories



Fixed points

• Real fixed points are scale invariants


• The corresponding theories are CFTs


• Complex conjugate pairs of fixed points represent complex CFTs


• Real couplings between the complex fixed points evolve slowly, “walking” 
rather than running.


• A large scale ratio corresponds to a  of order unity


• Complex fixed points come with hierarchies of scales!

δλ

Gorbenko, Rychkov and Zan ’18



Fixed points can collide
and move out into the complex plane

• 


•  for 


• A natural large hierarchy is generated from a small .

β(λ) =
dλ
dt

= − y − λ2 + O (λ3)

ΛUV/ΛIR ∼ eΔt ∼ exp(π/ y) |λ | ∼ 1

y



Bounds for real fixed points
Rychkov and Stergiou ’19

Fixed points  in , governed by roots of second order polynomial:


• Fixed points  


• Lower bound   


• Bounds are saturated when two fixed points coincide. There is then a marginal 
operator.

λ* D = 4 − ϵ

λ*ijklλ*ijkl ≤
ϵ2

8
n

A* ≥ −
ϵ3

48
n



Extremal CFTs
Rychkov and Stergiou ’19

Consider an extremal fixed point CFT saturating the bounds. Since  always 
decreases towards the IR, no flow away from this fixed point reaches another 
fixed point. Deformation by relevant operators makes no difference: 


If any flow leaves, it goes outside the stability cone or to strong coupling. 


Fixed points  in  are governed by roots of second order polynomial.


• The bound on the roots is saturated at an extremal location of the roots.


• How can roots of a second order polynomial be extreme? They coincide.


• Polynomial algebra yields a direction of coincidence and a marginal operator.

A

λ* D = 4 − ϵ



Extremal CFTs, n and D
Rychkov and Stergiou ’19

Consider an extremal fixed point CFT saturating the bounds. Since  always 
decreases towards the IR, no flow away from this fixed point reaches another 
fixed point. Deformation by relevant operators makes no difference: 


If any flow leaves, it goes outside the stability cone or to strong coupling. 


• Extremal fixed points are reasonable guesses for the vacuum of a theory, if the 
vacuum is determined by one-loop effects.


• For  the general form of the bounds cannot be saturated. For , the 
extremal CFTs are not maximally symmetric.


• Perhaps we can learn about  limit vacua by taking limits of extremal 
fixed points? For , we would then expect non-trivially broken symmetry.

A

n < 4 n < 4

D = 4
n > 4



A potential for the flow
Gradient flow at one loop Rychkov and Stergiou ’19

• Beta function is gradient of :   


• Fixed points  with scale invariance:  

A(λ) δA(λ) = βijkl(λ)δλijkl

λ* 0 = βijkl(λ*) = δ
δλijkl

A(λ)
λ=λ*

dλijkl

dt = βijkl(λ) = δA
δλijkl

The existence of  to this order, 
demonstrates monotonicity of RG flow. 
The RG flow is always in the gradient 
direction.  decreases in the IR.

A(λ)

A

Wallace and Zia ’74,’75



Pannell and Stergiou ’24

“The  RG flow seems to 
be a gradient flow to six loops.”

λijklϕiϕjϕkϕl

It stops being a gradient 
flow at 6 loops or L loops. It is a gradient flow to all orders.



RG flows and scalars comments

• The RG flow is a gradient flow: “potential”  changes monotonously.


• To finite loop order or all loops?


• Couplings may flow out of the stability cone in the IR. 


• Radiative corrections, Coleman-Weinberg, Gildener-Weinberg


• In , no RG flows enter the stability cone. 


• The RG flow is organised hierarchically by symmetry subgroups. 

A

D = 4 − ϵ



Revisiting D = 4 and D = 4 - ε
Purely scalar λφ4 theories

• In D = 4 there is classical scale invariance, and 
there is only a trivial fixed point in perturbation 
theory.


• Dimensional transmutation yields non-trivial 
vevs of scalars for RG trajectories reaching 
the boundary of the stability cone. Vevs in the 
almost flat directions. 


• There may be symmetric vacua, eg in O(N) 
model, with RG flow of couplings.


• Gildener-Weinberg vacua do not have maximal 
symmetry.


• In D = 4 - ε classical scale symmetry is broken 
by ε giving non-trivial fixed points. Fixed 
points bring back scale invariance.


• Fluctuation driven first order phase transitions 
result from RG flows leaving the stability cone.


• Choosing explicitly symmetric RG flows is 
consistent.


• Extremal fixed points do not have maximal 
symmetry.

Coleman and Weinberg ’73 Gildener and Weinberg ’76 Rychkov and Stergiou ’19



Large N and strong coupling



Large N methods are advertised as 
non-perturbative. 


• What does this mean?


• Is it relevant for scalar  theory 
and its Landau pole?


• Is strong coupling in the UV worse 
than strong coupling in the IR?

λϕ4



Triviality at large N?
Are scalar λφ4 theories non-trivial for large enough n?

• Romatschke questions the general triviality of λφ4 — proven only for n = 1, 2.


• A lot at stake! Perhaps scalar QFT are well defined.


• We have seen that the properties of scalar QFT change with n.


• To deal with Landau pole non-perturbative methods are needed


• To avoid the triviality take n large.


• Large n methods are claimed to be non-perturbative…

Romatschke ’23



The symmetric O(N) model diagrams

• Consider the maximally symmetric O(n) model, the O(N) model, in .D = 4

ℒE = 1
2 ∂mϕi∂mϕi+

1
2 m2

0ϕiϕi+
λ0

N (ϕiϕi)2Z = ∫ 𝒟ϕie−SE

N

λ0

N
λ0

N
λ0

N

λ0 λ2
0

λ3
0

λ3
0



The O(N) model Hubbard-Stratonovic

• Consider the maximally symmetric O(n) model, the O(N) model, in .D = 4

e− ∫ dx λ0
N (ϕiϕi)2 = ∫ Dζe

− ∫ dx[ i
2 ζϕiϕi + ζ2N

16λ0 ]

Romatschke ’23

ℒE = 1
2 ∂mϕi∂mϕi+

1
2 m2

0ϕiϕi+
λ0

N (ϕiϕi)2Z = ∫ 𝒟ϕie−SE

Do the Gaussian  integral:ϕ Z = ∫ 𝒟ζe−NA A = 1
2 Tr ln [−∂2 + m2

0 + iζ ] + ∫ dx ζ2

16λ0

Vary  for saddle point of :ζ z* = iζ 0 = 1
2 ∫ ddk 1

k2 + m2
0 + z*

− z*
8λ0



The O(N) model Hubbard-Stratonovic

• Consider the maximally symmetric O(n) model, the O(N) model, in .D = 4

e− ∫ dx λ0
N (ϕiϕi)2 = ∫ Dζe

− ∫ dx[ i
2 ζϕiϕi + ζ2N

16λ0 ]

Romatschke ’23

ℒE = 1
2 ∂mϕi∂mϕi+

1
2 m2

0ϕiϕi+
λ0

N (ϕiϕi)2Z = ∫ 𝒟ϕie−SE

Do the Gaussian  integral:ϕ Z = ∫ 𝒟ζe−NA A = 1
2 Tr ln [−∂2 + m2

0 + iζ ] + ∫ dx ζ2

16λ0

Vary  for saddle point of :ζ z* = iζ 0 = 1
2 ∫ ddk 1

k2 + m2
0 + z*

− z*
8λ0

Note the  propagator ϕi M2 = m2
0 + z*

The saddle picks out the leading large N result



The O(N) model cutoff regularisation
Romatschke ’23

0 = 1
2 ∫ ddk 1

k2 + m2
0 + z*

− z*
8λ0

z*
λ0

=
1

(2π)2 [Λ2
UV + (m2

0 + z*) ln
m2

0 + z*
Λ2

UV ]
Using the physical  mass combination :ϕi M2 = m2

0 + z*

m2
0 + z*
λ0

=
1

(2π)2 (m2
0 + z*) ln

m2
0 + z*
Λ2

UV
+

m2
0

λ0
+

1
(2π)2

Λ2
UV

UV cutoff  in ΛUV D = 4



The O(N) model cutoff renormalisation
Romatschke ’23

Using physical  mass:ϕi
M2

λ0
=

1
(2π)2

M2 ln
M2

Λ2
UV

+
m2

0

λ0
+

1
(2π)2

Λ2
UV

M2 1
λ0

=
1

(2π)2
M2 (ln

M2

μ2
+ ln

μ2

Λ2
UV ) +

m2
0

λ0
+

1
(2π)2

Λ2
UV

M2 ( 1
λR

+
1

(2π)2
ln

μ2

Λ2
UV ) =

1
(2π)2

M2 (ln
M2

μ2
+ ln

μ2

Λ2
UV ) +

m2
R

λR

Defining renormalised 
λR, mR

= =

Yielding the saddle condition
M2

λR
=

1
(2π)2

M2 ln
M2

μ2
+

m2
R

λR

Abbott, Kang and Schnitzer ’76



The O(N) model renormalisation cont’d
Romatschke ’23

The renormalisation conditions: 1
λ0

=
1
λR

+
1

(2π)2
ln

μ2

Λ2
UV

For the critical theory with 
the saddle condition is

mR = 0 M2

λR
=

1
(2π)2

M2 ln
M2

μ2

m2
R

λR
=

m2
0

λ0
+

1
(2π)2

Λ2
UV

with solutions M2 = 0, M2 = μ2e(2π)2/λR

Abbott, Kang and Schnitzer ’76



The O(N) model renormalisation cont’d
Romatschke ’23

The renormalisation conditions: 1
λ0

=
1
λR

+
1

(2π)2
ln

μ2

Λ2
UV

For the critical theory with 
the saddle condition is

mR = 0 M2

λR
=

1
(2π)2

M2 ln
M2

μ2

m2
R

λR
=

m2
0

λ0
+

1
(2π)2

Λ2
UV

with solutions M2 = 0, M2 = μ2e(2π)2/λR

Truly non-perturbative.

Abbott, Kang and Schnitzer ’76



Defining a cut-off independent 
theory



The O(N) model removing cutoff?
Are scalar λφ4 theories non-trivial for large enough n? Romatschke ’23

The running coupling is similar to that of 
simple  theory, , but now 
the leading result is non-perturbative.

λϕ4 β = λ2
R/(2π)2

This argument is non-
perturbative and consistent 
with quantum triviality.

λR =
1

1
λ0

+ 1
(2π)2 ln

Λ2
UV

μ2

λR(μ = ΛUV) = λ0 = λrefSuppose we fi
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The O(N) model removing cutoff?
Are scalar λφ4 theories non-trivial for large enough n? Romatschke ’23

The running coupling is similar to that of 
simple  theory, , but now 
the leading result is non-perturbative.

λϕ4 β = λ2
R/(2π)2 λR =
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1
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Suppose we ask that  is 
independent of large . Then there 
is a compensating term in .

λR(Q)
ΛUV
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We find a Landau pole: λR(Q) =
(2π)2

ln
Λ2

LP

Q2

RG theory does not tell us how to remove the cutoff. What is ?λ0

 is fixedλR(μ = Q)
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Removing the cutoff we get a trivial theory OR 
a Landau pole and   for .λR(Q) < 0 Q > ΛLP



The O(N) model summary

• The leading large  result sums diagrams of all orders in .


• The leading large  result is non-perturbative.


• Due to the simplicity of the  model the non-perturbative beta function has the 
same form as the one loop beta function of simple  model!


• One solution has a Landau pole (now to take seriously) and negative coupling in 
the deep UV.


• Another solution is trivial.

N λ0

N

O(N)
λϕ4

Romatschke ’23, Abbott, Kang and Schnitzer ’76,…



Challenges for the Landau pole O(N) model

• Negative coupling in the deep UV suggests instability.


• Does it really?


• Is negative coupling related to PT-symmetry replacing Hermiticity?? Is such a 
framework required?


• Landau pole in non-perturbative  suggests divergence in observables.


• Does it really?


• There may be controlled phase transitions, or instabilities, in the finite 
temperature  model…

λR(μ)

O(N)



Potential takeaways



Potential

• A non-perturbative RG may address triviality (and UV Landau poles).


• Is large N (number of scalars) limits the right path?


• Does QFT in  indicate a difference between small N and large N?


• Complex CFTs may evade UV sensitivity.


• RG flow geometry may explain the gradient flow.


We can learn something.

D = 4 − ϵ
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We can learn something.

D = 4 − ϵ

Flodgren ’24
Flodgren and Sundborg ’23, ’24

Guan and Sundborg ’25?



Thank you!


