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What is the role of scalars?
Who ordered them?

Standard model Scalars High energy/Strings



Problems, puzzles and potential



Problems

Aizenman and Duminil-Copin, ’21
Frohlich '82

* Proper (not EFT) scalar A4 theory has been proven to be trivial in D = 4.

» The coupling A diverges in the UV (Landau pole).

e Scalar theories are UV sensitive in EFT — effective field theory.



Problems

* Proper (not EFT) scalar A4 theory has been proven to be trivial in D = 4.

» The coupling 4 diverges in the UV (Landau pole).
e Scalar theories are UV sensitive in EFT — effective field theory.

Yet, scalars are essential in the Standard Model and in string theory.



Puzzles

 Renormalisation group (RG) flow appears to be a gradient flow.
e This seem to hold up to 6 IOOpS. Pannell and Stergiou 24

 Nobody seems to know why.

|t has recently been claimed (again) that for many, N, scalars, /lgb4 theory Is

not trivial.
Romatschke 23



Puzzles

 Renormalisation group (RG) flow appears to be a gradient flow.
e This seem to hold up to 6 IOOpS. Pannell and Stergiou 24

 Nobody seems to know why.

|t has recently been claimed (again) that for many, N, scalars, /lgb4 theory Is

not trivial.
Romatschke 23

We are missing something about scalars or about QFT.



Potential

* A non-perturbative RG may address triviality (and UV Landau poles).

* |s large N (humber of scalars) limits the right path??

e Does QFT in D = 4 — ¢ indicate a difference between small N and large N?

» Complex CFTs may evade UV sensitivity.

 RG flow geometry may explain the gradient flow.



Potential

* A non-perturbative RG may address triviality (and UV Landau poles).

* |s large N (humber of scalars) limits the right path??

e Does QFT in D = 4 — ¢ indicate a difference between small N and large N?
» Complex CFTs may evade UV sensitivity.
 RG flow geometry may explain the gradient flow.

We can learn something.



RG flows and scalars



Technical note:

* For simplicity, | will focus on
classically scale invariant theories.

* This involves fine tuning, or fitting
iInto a bigger framework with
conformal invariance, for example.



Renormalisation overview

Action 5(4;) = 5(4/(u)) Perturbative sums diverge
A; are couplings. due to integrals over scale.

The definition of the

theory without A
For example, A(A\,) = c. was too naive.

Typically u is replaced with a dynamical scale A.

Technical challenge:
Introduce a scale without
ruining Poincaré and gauge
symmetries...

Integrals over scales are
not a problem if we
study scale dependence



Renormalisation: physical scale dependence

Scale invariant theories Non-scale invariant theories
The scale u is introduced for technical The scale p still drops out of
reasons, but drops out in observables. observables, but other scales

A . characterise the theory.

A () are not directly observable.

Correlators or amplitudes which

depend on A/(y), can probe its
scale dependence indirectly.



The number of fields is Important



Multi-scalar A¢p* theory




Multi-scalar Ad* theoryinD =4 -¢

_a ¢am¢__ﬂl]kl¢¢¢k¢l i=1,....n D=4—-¢
By = d — A = ( el ) +B (/1 A+ 2 permutations ) One loop
ikl At ikl 1kl ymn’‘mnkl beta function

D=4—-¢
Mainly for d = 3 phase transitions and general QFT...

Rychkov and Stergiou ’19 Osborn and Stergiou ’18 Brézin, Le Guillou and Zinn-Justin ’74
Osborn and Stergiou ’21 Wallace and Zia ’74
Herzog, Jepsen, Osborn, Oz ’24 Michel 84



Multi-scalar Ad* theoryinD =4 -¢

_a ¢am¢__ﬂl]kl¢¢¢k¢l i=1,....n D=4—-¢
By = d — A = ( el ) +B (/1 A+ 2 permutations ) One loop
ikl At ikl 1kl ymn’‘mnkl beta function

t = In(u/py) is the “renormalisation time”. ¢ decreases from UV to IR.

u is the RG scale and ¢, a reference scale.
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Multi-scalar Ad* theoryinD =4 -¢

¢0m¢__/ll]kl¢¢¢k¢l i=1,...,n D=4—¢
By = d — A = ( el ) +B (/1 A+ 2 permutations ) One loop
1kl At ikl 1kl ymn’‘mnkl beta function

t = In(u/py) is the “renormalisation time”. ¢ decreases from UV to IR.

u is the RG scale and ¢, a reference scale.
1

1672 — 1.

We will take B =




Multi-scalar Ad* theoryinD =4 -¢

¢0m¢__/ll]kl¢¢¢k¢l i=1,...,n D=4—¢
I d — A = (—e/l-- ) (/1 A+ 2 permutations ) One loop
1kl At ikl 1kl ymn’‘mnkl beta function

t = In(u/py) is the “renormalisation time”. ¢ decreases from UV to IR.

u is the RG scale and ¢, a reference scale.



Interactions generate one loop Feynman diagrams

% = 20,00 b dybdhh,  i=1..n D=d4—¢
B = i/l-- = (—e/l-- ) + (/1-- A+ 2 permutations ) One loop
1kl At ikl ikl ymn’*mnkl beta function

i N |

Classical scale dependencein D =4 — ¢



Single-scalar intermission



One field intermission, n = 1

Example: scale symmetry breaking

L = >0,,p0"p——-Ap* D=4
dA
_ 392 One loop
b dt beta function

t = In(u/py) is the “renormalisation time”. ¢ decreases from UV to IR.

u is the RG scale and 4, a reference scale.



One field intermission, n = 1

Example: Landau pole

0, 90" =+ /1(/54 D=4
di
_ 32 One loop
b= dt beta function

t = In(u/py) is the “renormalisation time”. ¢ decreases from UV to IR.

u is the RG scale and 4, a reference scale.

A Landau pole A(u) = 1ﬂ

3(to— 1) at 1 = t() — tLP 3ln7

| 1
—= =11 A=




One field intermission, n = 1

Dimensional transmutation and Landau poles

. The RG equation % = [(A).

M = —5
 Solved at one loop by A(u). 3In ==
A varies continuously from 0 to 0.

Define a physical scale A, by c = AA)

» /\ is the scale where 4 = 1, which is
a bit arbitrary but appears physical.



Dimensional transmutation and Landau poles
Summary

We used the one loop approximation $(1) and found

 Dimensional transmutation: A physical scale /A, in spite of scale invariance.

« Landau pole: a divergence of A at a slightly higher scale.
How to view this?
 Dimensional transmutation is under control in perturbation theory.

 The Landau pole signals divergent coupling and one loop is not enough...

 There are no signs of stable zeros of / which would stop the running to ...



Dimensional transmutation and Landau poles
Summary

We used the one loop approximation $(1) and found

 Dimensional transmutation: A physical scale /A, in spite of scale invariance.

« Landau pole: a divergence of A at a slightly higher scale.
How to view this?
 Dimensional transmutation is under control in perturbation theory.

 The Landau pole signals divergent coupling and one loop is not enough... WO

» There are no signs of stable zeros of / which would stop the runninfo@ R%0...
o



Multi-scalar Ap*# stability



There are two concepts of stabillity:

1. The stability of the critical point
¢; = 0 in the potential V,(¢).

2. The stability of the RG flow
determined by f(4) in the space of
couplings 4.

The different concepts are related by
values of 4.



Classical stability and the RG flow

Rychkov and Stergiou ’19
2
| o | Stability cone

Classical stability at 4, :

For a boundaryA/lAthere IS
@) = 4P) = 4o 2 0 5 fat direction ¢ with

For all ¢.. M) =0 0




Fluctuation driven first order phase transition

Rychkov and Stergiou ’19
2
| o | Stability cone

Classical stability at 4, : RG flow

For a boundaryA/IAthere IS
@) = 4P) = 4o 2 0 5 fat direction ¢ with

For all ¢.. AMp) =0 0
“Fluctuation driven first order
phase transition” if stabilised Coleman-Weinberg mechanism via

Gildener-Weinberg in D = 4.



RG flow does not enter stability cone
Rychkov and Stergiou ’19
A
| | | Stability cone
Z = 50,00"bi— AP i=1.....n in A, space

Classical stability at 4, : RG flow

For a boundaryA/IAthere IS
@) = 4P) = 4o 2 0 5 fat direction ¢ with

For all ¢.. AMp) =0 0

Fixed points are In
the stability cone or
Its boundary.

RG flow does not enter stability
cone. Proof for D < 4.



The RG flow equation

« Why the fixed point equations are differentin D =4 and D < 4 (¢ > 0):

d _ _
D) = D) = 3V,V, < )

Vij = /lljmnquqbn

» Dominated by A4(¢) for € > 0, and by V,(¢) for D = 4.



ComparingD=4andD=4-¢

Purely scalar A4 theories

 |n D =4 there is classical scale invariance, and  In D =4 - ¢ classical scale symmetry is broken
there is only a trivial fixed point in perturbation by € giving non-trivial fixed points. Fixed
theory. points bring back scale invariance.

* Dimensional transmutation yields non-trivial * Fluctuation driven first order phase transitions
vevs of scalars for RG trajectories reaching result from RG flows leaving the stability cone.

the boundary of the stability cone. Vevs in the
almost flat directions.

Coleman and Weinberg ’73 Gildener and Weinberg ’76 Rychkov and Stergiou ’19



The number of fields is Important



Symmetries in multi-scalar
theories



Hierarchies of symmetric flows

Rychkov and Stergiou ’19

1 my : Michel ’84
2 = Eamgbza ¢i_ 4_!/11'jkl¢i¢j¢k¢l i=1,...,n Iche

Consider O(n) transformations in a subgroup G C O(n).

Suppose G preserves 4,;,. Then G also preserves the beta function
at A;4, and the flow remains in the space of G invariant ;.

A hierarchy of subgroups G C O(n) yields a hierarchy of symmetric flows.
Transformations in O(n) not preserving 4;;; map it to an equivalent 4,

Fixed points are characterised by their symmetry groups G C O(n).



Symmetries of fixed points, invariants

Rychkov and Stergiou ’19

1 mgp _ 1 Michel ’84
2 = 20,00 P T AP 0P i=1,...,n e

Subgroups G C O(n) may be characterised by their invariants, eg
quadratic invariants A;¢;¢; and quartic invariants B, 0. ;-

The invariant tensors of a given rank form a linear space.

The number of independent four-tensors, 14, gives the dimension of
a G invariant RG flow.

The number of independent two-tensors, [,, measure the degree
of fine tuning required in the action.



Classes of symmetries of fixed points Rychkov and Stergiou ’19

The su bg roups of O (n) Table 1: Summary of examples of fully interacting fixed points given in text.
depend sensitively on n. g E . F
o O(N) N=>1 O(N) 1
Infinite classes have cubic N >3 (Zy)" % Sy 2
been Studied. tetrahedral N =4 SN+1 X Z2 2
bifundamental N = mn O(m)*x0(n)/Z, 2
(m,n=2,R,,, = 0)
“MN" N = mn O(m)" xS, 2 1
(m,n=2,m+#4)
tetragonal N=2n=4 (Dg)" % S, 3 1
Michel N=—1rp 1, G, KEL 1
biconical’ N =m;+my O(m;)x0O(my) 3 2

1, gives the dimension of a G invariant RG flow.

[, measures the fine tuning required in the action.



Classes of symmetries: universality Rychkov and Stergiou 19

The su bg roups of O (n) Table 1: Summary of examples of fully interacting fixed points given in text.
depend sensitively on n. o - . ¢
o O(N) N>1 O(N) 1 1
Infinite classes have cubic N>3 (Z)" % Sy s 1
' tetrahedral N = 4 Sni1 X Zo 2 1
been StUdled ' (bifundamental N = mn O(m)*x0(n)/Z, 2 1)
imn =2 R 0]
(“MN" N = mn O(m)" xS, s
(m,n=2,m+#4)
tetragonal N=2n=4 (Dg)" % S, 3 1
We can represent any Michel N=r -1 E k+1 1
Symmetry aCtlng llnearly (biconical7 N =mqy+m, O(m;)x0(my) 3 21
on real scalars in O(n).
Example: A subgroup of 1, gives the dimension of a G invariant RG flow.

O(m) X O(m) C O(m?)
2

transforms m* scalars as matrices. 12 measures the fine tuning required in the action.



Classes of symmetries: universality

The subgroups of O(n)
depend sensitively on n.

Infinite classes have
been studied.

The number of fields n is important

We can represent any
symmetry acting linearly

on real scalars in O(n).

Example: A subgroup of

O(m) X O(m) C O(m?)

transforms m2 scalars as matrices.

Rychkov and Stergiou ’19

Table 1: Summary of examples of fully interacting fixed points given in text.

Name N G I, I,
O(N) N=>=1 O(N) 1 |
cubic N >3 (7. ) 1S 2 1
tetrahedral N = 4 Sni1 X Zo 2 1
(bifundamental N = mn O(m)*x0(n)/Z, 2 1)
imn=2R,. U
(“MN" N = mn O(m)" xS, 2 1)
(m,n=2,m+#4)
tetragonal N=2n=4 (Dg)" % S, 3 1
Michel N=ry---r; G k+1 1
(biconical7 N =mq+my O(m;)x0O(my) 3 2)_

1, gives the dimension of a G invariant RG flow.

[, measures the fine tuning required in the action.



RS classes of symmetries: maximal symmetry Rychkov and Stergiou *19

The maximal su bgrOU p Table 1: Summary of examples of fully interacting fixed points given in text.
of O(n) is O(n).
Name N G I, I,
O(N) N =1 O(N) 1 1
| cubic N >3 (7. ) 1S 2 1
P = _a "D —V tetrahedral N =4 Sni1 X Zo 2 1
m¢ ¢ (¢) bifundamental N = mn O(m)*x0(n)/Z, 2 1
o) o) (m,n=2,R,,,, = 0)
V(¢) _m ¢ ¢ + }‘(¢ ¢ ) “MN" N = mn O(m)" xS, 2 1
(m,n=2,m+#4)
tetragonal N=2n=4 (Dg)" % S, 3 1
Michel N=—r 1y G, kKtl 1
biCOHical7 N =m;+my O(ml) X O(mz) 3 2

lijkl — %(51]51] + 5 51 + 511 k)}‘

I, = 1 gives a 1-dimensional G invariant RG flow.

I, = 1 requires fine tuning the coefficient of ¢,¢..



Summary, so far

 The RG flow encodes the change of the action with scale.

» The classically stable potentials V,(¢) lie in a “stability cone”.
* Couplings may flow out of the stability cone in the IR.
* In D < 4, no RG flows enter the stability cone.

» All fixed points are inside the stability cone, or on its boundary.

 The RG flow is organised hierarchically by symmetry subgroups.



Summary, so far

 The RG flow encodes the change of the action with scale.

» The classically stable potentials V,(¢) lie in a “stability cone”.

* Couplings may flow out of the stability cone in the IR.

» In D < 4, no RG flows enter the stability cone.
* All fixed points are inside the stability cone or its boundary.

 The RG flow is organised hierarchically by symmetry subgroups.



Fixed point structure
IN multi-scalar theories



Fixed points

* Real fixed points are scale invariants
* The corresponding theories are CFTs
 Complex conjugate pairs of fixed points represent complex CFTs

* Real couplings between the complex fixed points evolve slowly, “walking”
rather than running.

A large scale ratio corresponds to a 04 of order unity

« Complex fixed points come with hierarchies of scales!

Gorbenko, Rychkov and Zan ’18



Fixed points can collide

and move out into the complex plane

_dll__ 12 3
.ﬁ(/l)——dt_ y— A+ 0 (4°)
/65\0

* A natural large hierarchy is generated from a small y.



Bounds for real fixed points

Rychkov and Stergiou ’19

Fixed points A in D = 4 — ¢, governed by roots of second order polynomial:

2
€
. Fixed points A«*ijkl/l*ijkl < glfl
63
, Lowerbound A. > ——n
48

 Bounds are saturated when two fixed points coincide. There is then a marginal
operator.



Extremal CFTs

Rychkov and Stergiou ’19

Consider an extremal fixed point CFT saturating the bounds. Since A always
decreases towards the IR, no flow away from this fixed point reaches another
fixed point. Deformation by relevant operators makes no difference:

If any flow leaves, it goes outside the stability cone or to strong coupling.

Fixed points A in D = 4 — € are governed by roots of second order polynomial.
 The bound on the roots is saturated at an extremal location of the roots.
 How can roots of a second order polynomial be extreme? They coincide.

* Polynomial algebra yields a direction of coincidence and a marginal operator.



Extremal CFTs, n and D

Rychkov and Stergiou ’19

Consider an extremal fixed point CFT saturating the bounds. Since A always
decreases towards the IR, no flow away from this fixed point reaches another
fixed point. Deformation by relevant operators makes no difference:

If any flow leaves, it goes outside the stability cone or to strong coupling.

 Extremal fixed points are reasonable guesses for the vacuum of a theory, if the
vacuum is determined by one-loop effects.

« For n < 4 the general form of the bounds cannot be saturated. For n < 4, the
extremal CFTs are not maximally symmetric.

» Perhaps we can learn about D = 4 limit vacua by taking limits of extremal
fixed points? For n > 4, we would then expect non-trivially broken symmetry.



A potential for the flow

Gradient flow at one loop Rychkov and Stergiou 19
Wallace and Zia ’74,’75
» Beta function is gradient of A(4): 0A(A) = Biu(A)OAu

. Fixed points 4. with scale invariance: 0 = f;; /(1) = 0 A(A) |

OAjiki A=A

$

The existence of A(A) to this order,
demonstrates monotonicity of RG flow.
The RG flow is always in the gradient

direction. A decreases in the IR.

Ahiji - (1) = 0A
dr— PUKLT ™ 5




Pannell and Stergiou ’24

“The 4,100,919, RG flow seems to
be a gradient flow to six loops.”

It stops being a gradient

flow at 6 loops or L 10ops. It is a gradient flow to all orders.



RG flows and scalars comments

» The RG flow is a gradient flow: “potential” A changes monotonously.
* TJo finite loop order or all loops?
* Couplings may flow out of the stability cone in the IR.

* Radiative corrections, Coleman-Weinberg, Gildener-Weinberg

e InD =4 — ¢, no RG flows enter the stability cone.

 The RG flow is organised hierarchically by symmetry subgroups.



RevisitingD=4and D =4-¢

Purely scalar A4 theories

 |n D =4 there is classical scale invariance, and  In D =4 - ¢ classical scale symmetry is broken
there is only a trivial fixed point in perturbation by € giving non-trivial fixed points. Fixed
theory. points bring back scale invariance.

* Dimensional transmutation yields non-trivial * Fluctuation driven first order phase transitions
vevs of scalars for RG trajectories reaching result from RG flows leaving the stability cone.

the boundary of the stability cone. Vevs in the
almost flat directions.

 There may be symmetric vacua, eg in O(N) * Choosing explicitly symmetric RG flows is
model, with RG flow of couplings. consistent.

* Gildener-Weinberg vacua do not have maximal * Extremal fixed points do not have maximal
symmetry. symmetry.

Coleman and Weinberg ’73 Gildener and Weinberg ’76 Rychkov and Stergiou ’19



Large N and strong coupling



Large N methods are advertised as
non-perturbative.

 \WWhat does this mean?

. Is it relevant for scalar A¢* theory
and its Landau pole?

 |s strong coupling in the UV worse
than strong coupling in the IR?



Triviality at large N?

Are scalar Ad4 theories non-trivial for large enough nNn? Romatschke 23

 Romatschke questions the general triviality of A4 — proven only forn =1, 2.
* A lot at stake! Perhaps scalar QFT are well defined.
* We have seen that the properties of scalar QFT change with n.

* Jo deal with Landau pole non-perturbative methods are needed

* Jo avoid the triviality take n large.

 |Large n methods are claimed to be non-perturbative...



The symmetric O(N) model diagrams

» Consider the maximally symmetric O(n) model, the O(N) model, in D = 4.

B A
/ = [@¢ie SE gE — %0m¢lqul)l+ %mgql)lqbﬁ w0(¢i¢i)2
_ %
NN
X - O XX e
N + Q + % +
A 2
O -0 - B
ok 2
N N N X



The O(N) model Hubbard-Stratonovic

Romatschke 23

» Consider the maximally symmetric O(n) model, the O(N) model, in D = 4.

B A
/ = [@¢i€ SE gE — %am¢lqul)l+ %mgql)lqbﬁ WO(¢i¢i)2

g I o
e_fdx%o(qﬁiﬁbi)z — jDé’e—Idx _7§¢l¢i | 1%

4'2
162,

Do the Gaussian ¢ integral: Z = j@(je‘NA A = %Trln —0*+mg + il | + de

Vary { for saddle point of z* = i(: 0= %Jddk 02 1 B 5_:0




The O(N) model Hubbard-Stratonovic

Romatschke 23

» Consider the maximally symmetric O(n) model, the O(N) model, in D = 4.

B A
/ = J@¢ie SE gE — %am¢lqu/)l+ %mgql)lqbﬁ WO(¢i¢i)2

tdel iedd 4 LN . .
o~ ldx 2 pp)? _ j Dee J dx _25¢,¢, 16l The saddle picks out the leading large N result

2:2
162,

Do the Gaussian ¢ integral: Z = j@@e‘NA A = %Trln —0* +mg + il | + de

Vary { for saddle point of z* = i(: 0= %Jddk 2+ — - g_;

Note the ¢; propagator M 2 — mg + z*



The O(N) model cutoff regularisation

Romatschke 23

2 %
- l d 1 _i ﬁ o 1 o o) 2 mO +Z
0 = zjd kT = Agy + (mg +2*%) In vn
Using the physical ¢); mass combination M? = mg + 7
]713 + Z* 1 mg + % me 1

2
AUV

m? + z*) In

= +H—H
Ao (27)> (m Ay Ay Q)2



The O(N) model cutoff renormalisation

Romatschke 23
Abbott, Kang and Schnitzer ’76

. . 2 5 )
Using physical ¢); mass: M= _ 1 210 M n My n 1 A2
Ao (27)? A%V Ao (27)?
Defining renormalised ] ] M? 2 me ]
P J | M A— = 2Mz(ln—+1n s )+—O+ A%V
R>» mR /10 (271') 12 A%JV /1() (271')2
1 1 2 1 M2 2 2
M| — + In - — M2 +1nZ +%
r o Qa2 Ay ) @) w2 Ay ) A
M? 1 M?  mj;

Yielding the saddle condition — = M
AR (2m)? > AR



The O(N) model renormalisation cont’d

Romatschke 23
Abbott, Kang and Schnitzer ’76

2
The renormalisation conditions: i I I H

_I_
AO /1R (271')2 A%V

|
|
=)

2 2
m m 1
R -0 4 A%JV
g Ay (2n)?
For the critical theory with m, = 0 %2 _ I M21n %2
the saddle condition is A (2m)? ue

with solutions M? =0, M? = y2e@ "k



The O(N) model renormalisation cont’d

The renormalisation conditions:

For the critical theory with mp = 0
the saddle condition Is

with solutions

Romatschke 23

Abbott, Kang and Schnitzer ’76

1 1 ] 0’
— =—+ In
mp B mg 1

= — 4
;LR /10 (271')2

M? 1 M?
= M
/IR (27T)2 /42

M? =0, M? = ;i° o (272

Truly non-perturbative.



Defining a cut-off iIndependent
theory




The O(N) model removing cutoff?

Are scalar Ad4 theories non-trivial for large enough nNn? Romatschke 23
Abbott, Kang and Schnitzer ’76

The running coupling is similar to that of Do = I
simple A¢* theory, # = /11%/(272)2, but now L+l n i;v
the leading result is non-perturbative. SR A

RG theory does not tell us how to remove the cutoff. What is 4,?



The O(N) model removing cutoff?

Are scalar Ad4 theories non-trivial for large enough nNn? Romatschke 23
Abbott, Kang and Schnitzer ’76

The running coupling is similar to that of i 1

simple /1¢4 theory, [ = /11%/(27[)2, but now 1,1 2 lnizv
the leading result is non-perturbative. b Qo2 s

RG theory does not tell us how to remove the cutoff.

S.u.ppose we fix the UV coupling to a Mg = Ayy) = Ao = Ay
finite 4,,-and then take Ay, — . 2e(it = Q) = 0
We seem to find Ax(Q) — 0 for any finite Q. This argument is non-

perturbative and consistent
with quantum triviality.



The O(N) model removing cutoff?

Are scalar Ad4 theories non-trivial for large enough nNn? Romatschke 23
Abbott, Kang and Schnitzer ’76

The running coupling is similar to that of Do = I
simple A¢* theory, # = /11%/(272)2, but now L+l n i;v
the leading result is non-perturbative. SR A

RG theory does not tell us how to remove the cutoff. What is 4,?

Suppose we ask that Ax(Q) is Ao(u = Q) is fixed
independent of large /Ay Then there ,
is a compensating term in A, 1 = (27)




The O(N) model removing cutoff?

Are scalar Ad4 theories non-trivial for large enough nNn? Romatschke 23
Abbott, Kang and Schnitzer ’76

The running coupling is similar to that of Do = I
simple A¢* theory, # = /11%/(272)2, but now L+l n i;v
the leading result is non-perturbative. SR A

RG theory does not tell us how to remove the cutoff. What is 4,?

Suppose we ask that Ax(Q) is Ao(u = Q) is fixed
independent of large /Ay Then there ,
is a compensating term in A, By = (27)
Azp
(27)* In—

We find a Landau pole: 1,(Q) =




Removing the cutoff we get a trivial theory OR
a Landau pole and A,(Q) < Ofor Q > Ay p.



The O(N) model summary

» The leading large N result sums diagrams of all orders in 4,,.

« The leading large N result is non-perturbative.

» Due to the simplicity of the O(/N) model the non-perturbative beta function has the
same form as the one loop beta function of simple /1¢4 model!

* One solution has a Landau pole (nhow to take seriously) and negative coupling in
the deep UV.

Romatschke '23, Abbott, Kang and Schnitzer ’76,...

e Another solution is trivial.



Challenges for the Landau pole O(N) model

* Negative coupling in the deep UV suggests instabillity.
* Does it really?

* |s negative coupling related to PT-symmetry replacing Hermiticity?? Is such a
framework required??

» Landau pole in non-perturbative A,(4) suggests divergence in observables.
* Does it really?

 There may be controlled phase transitions, or instabilities, in the finite
temperature O(/N) model...



MO CHNEIRELCEWEVS



Potential

* A non-perturbative RG may address triviality (and UV Landau poles).

* |s large N (humber of scalars) limits the right path??

e Does QFT in D = 4 — ¢ indicate a difference between small N and large N?
» Complex CFTs may evade UV sensitivity.
 RG flow geometry may explain the gradient flow.

We can learn something.



Potential

* A non-perturbative RG may address triviality (and UV Landau poles).

Flodgren ’24

* |s large N (humber of scalars) limits the right path??
Flodgren and Sundborg 23, 24

e Does QFT in D = 4 — ¢ indicate a difference between small N and large N?
» Complex CFTs may evade UV sensitivity.
 RG flow geometry may explain the gradient flow. Guan and Sundborg ’25?

We can learn something.



Thank you!



