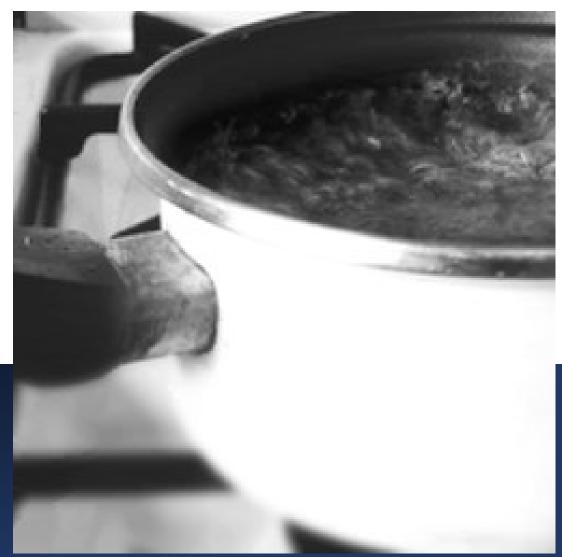


Dynamics of first-order phase transitions in holographic theories

Oscar Henriksson Åbo Akademi University & Helsinki Institute of Physics



First-order phase transitions

Rich physics!

• Bubble nucleation, spinodal decomposition, critical phenomena, ...

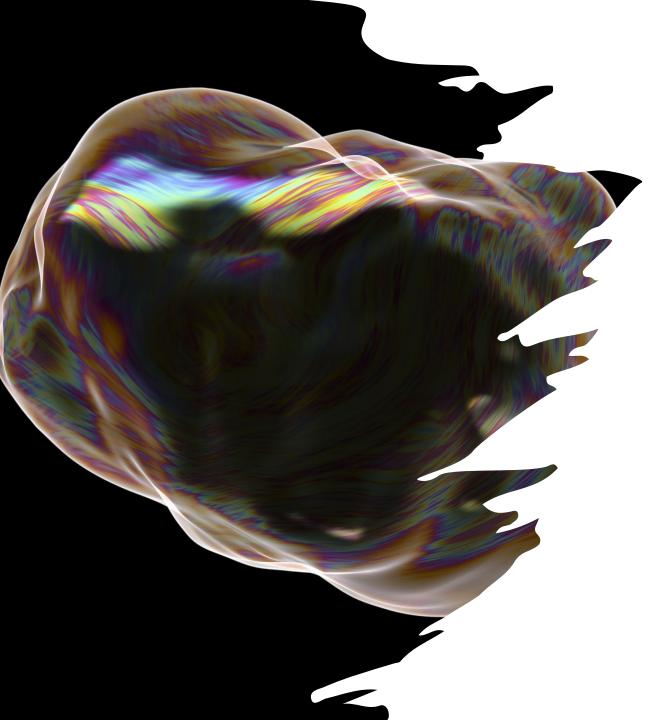
Important in all areas of physics! Example: **Cosmology**

 Occured in early universe?? → bubble collisions produce grav. waves → sign of BSM physics!!

Dynamics of transitions include complicated out-of-equilibrium behavior

- Difficult to study, even at weak coupling...
- Holographic duality → window into these processes at strong coupling!

Figure by David Weir



Outline

- 1. A **simple holographic model** for studying phase transitions
- 2. First order transitions and **bubble nucleation**
- 3. When nucleation is suppressed approaching the *spinodal*

Based on...

- <u>2109.13784</u> and <u>2110.14442</u> with Feanor Reuben Ares, Mark Hindmarsh, Carlos Hoyos & Niko Jokela.
- 2406.15297, with Alessio Caddeo, Carlos Hoyos & Mikel Sanchez-Garitaonandia.

A simple holographic toy model

Minimalistic bottom-up theory:

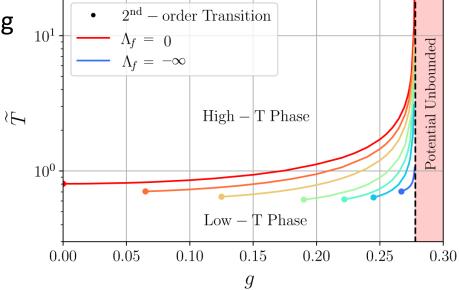
$$S \sim \int \mathrm{d}^{\mathrm{D}} x \sqrt{-g} \left\{ R - \Lambda - \left(\partial_{\mu} \phi\right)^{2} - m^{2} \phi^{2} \right\}$$

- ϕ dual to "order parameter" Ψ .
- Dimensionality Δ of Ψ determined by m^2 ; use **alternate quantization**.

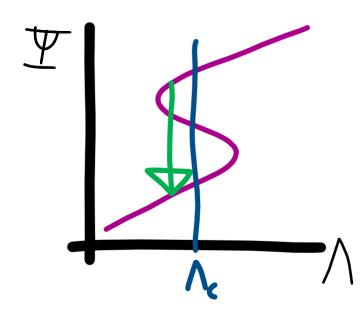
Deform dual CFT with **multi-trace operators** to create interesting phase structure:

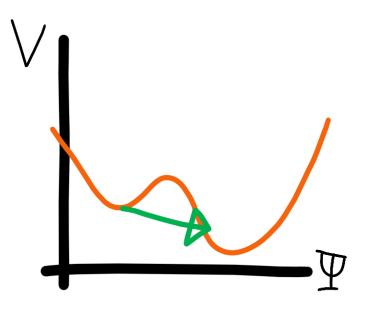
$$S_{CFT} \rightarrow S_{CFT} + \int d^{D-1}x \left\{ \Lambda \Psi + \frac{f}{2} \Psi^2 + \frac{g}{3} \Psi^3 + \cdots \right\}$$

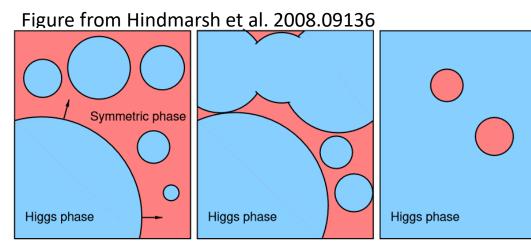
- Easy in holography: changing **boundary conditions** in AdS
- Can get 1st and 2nd order transitions, and crossovers! \rightarrow



First-order transitions & bubble nucleation

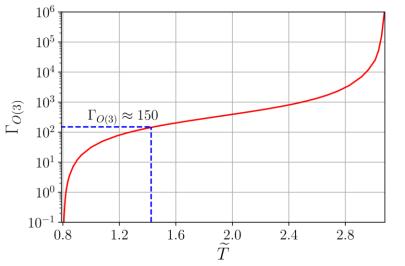






Callan, Coleman ('77); Linde ('81):

- 1. Find **critical bubble** from effective action
- Bubble action gives nucleation rate →



Bubbles in holographic theories

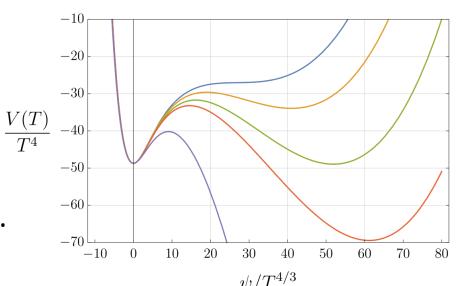
In <u>2109.13784</u> & <u>2110.14442</u>, we used **multi-trace model**

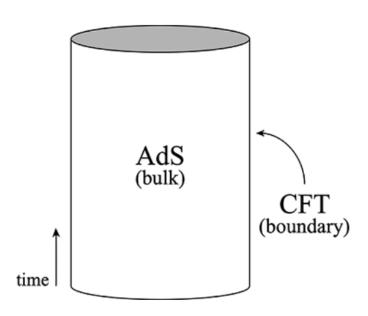
$$S \sim \int \mathrm{d}^5 x \sqrt{-g} \left\{ R - \Lambda - \left(\partial_\mu \phi\right)^2 - m^2 \phi^2 \right\}$$

We computed field theory **effective action** for operator Ψ , in a **derivative expansion**:

$$\Gamma[\Psi] = -N^2 \int d^4x \left\{ V(\Psi) + \frac{1}{2} Z(\Psi) (\nabla \Psi)^2 + \cdots \right\}$$

$$\rightarrow$$
Bubble solutions from $\frac{\delta\Gamma}{\delta\Psi} = 0$ (ODE – easy! \bigcirc)
 \rightarrow Nucleation rates, "quasi-equilibrium" parameters, etc.





What if bubble nucleation is suppressed?

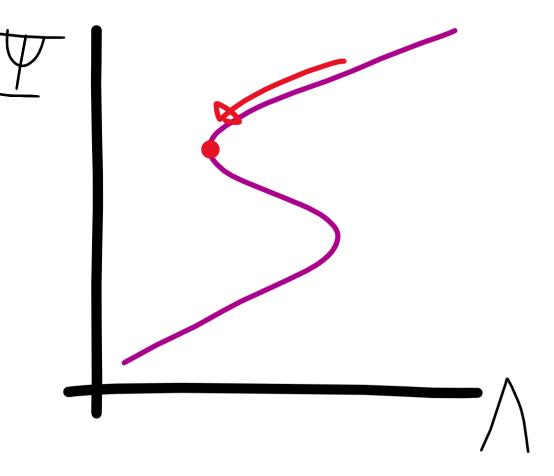
Spinodal approach

If nucleation suppressed (as is the case for $N \rightarrow \infty$, or generically in mean-field limit)

→ approach **spinodal point**

...then what?

(Here, we only discuss **approaching** the spinodal point along the metastable branch. Not **spinodal decomposition** which occurs when starting on unstable branch)



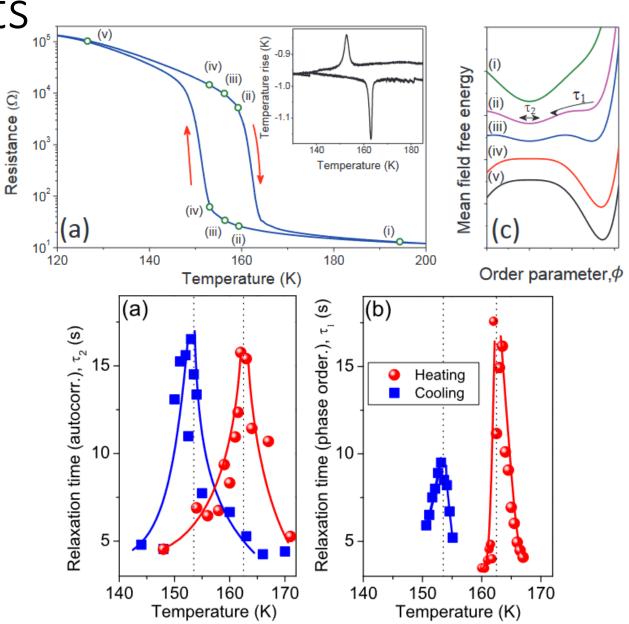
Spinodal & critical points

Spinodal points share similarities with **second order critical points**!

- Susceptibilities diverge
- Critical behavior, scaling

Effects of spinodals can be seen in cond-mat **experiments**!

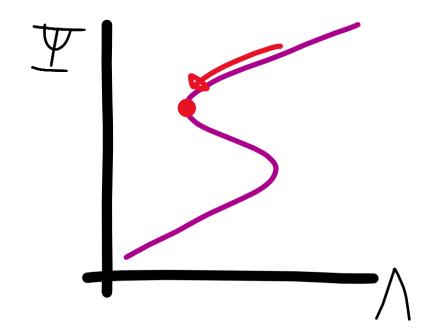
 \rightarrow e.g. <u>Kundu et al. 2023</u> on V₂O₃



Spinodal & critical points

When approaching critical/spinodal point...

...order parameter goes as $\Delta \Psi \sim |\Delta T|^{\beta}$...correlation length diverges as $\xi \sim |\Delta T|^{-\nu}$...relaxation time diverges as $\tau \sim |\Delta T|^{-z\nu}$



"Critical slowing down"

- →Equilibrium state changes fast, system **cannot keep up**!
- \rightarrow System thrown out of equilibrium, no matter how slow the cooling

Spinodal & critical points

Assume **cooling linearly in time** near critical/spinodal point:

Define t_* as time when Ψ departs from equilibrium by some (small) ϵ : System will deviate from equilibrium when $\partial_t \Delta \Psi \sim \tau^{-1} \rightarrow$

$$t_* \sim \tau_Q^{rac{z\nu-eta}{1+z\nu-eta}}$$
 , $\left|rac{T_c - T_*}{T_c}\right| \sim \tau_Q^{rac{1}{eta-z\nu-1}}$

Compare with **Kibble-Zurek-mechanism**, concerned with domain formation during a 2nd order transition; there, the *"freeze-out time"* \hat{t} scales as

$$\hat{t} \sim \tau(\hat{t}) \rightarrow \hat{t} \sim \tau_Q^{\frac{2\nu}{1+2\nu}}$$

 $\frac{T_c - T}{T_c} = \frac{t}{\tau_o}$

<u>ΔΨ</u>

 $< \epsilon$

Approaching spinodal/critical point

Order	z	β	ν
1st	2	1/2	1/4
2nd	2	1/3	1/3

Our **multi-trace model** lets us study 1st and 2nd order transitions.

 \rightarrow For **numerical simplicity**, take scalar field to be homogeneous **probe** on top of AdS-Schwarzschild. \rightarrow Work in **4D gravity** with dual operator $\Delta = 3/4$

$$S \sim \int \mathrm{d}^4 x \sqrt{-g} \left\{ R - \Lambda - \frac{1}{N} \left[\left(\partial_\mu \phi \right)^2 - m^2 \phi^2 \right] \right\}$$

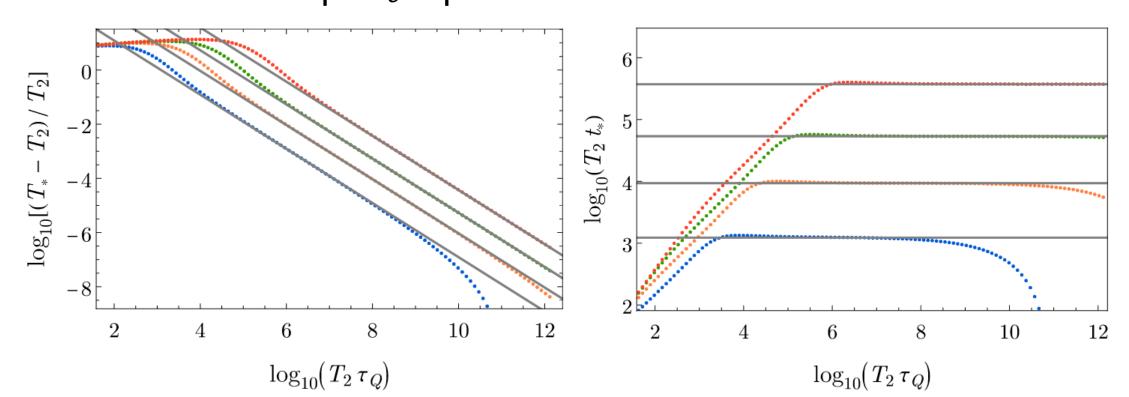
Make BCs time-dependent \rightarrow approach spinodal by changing multi-trace couplings. \rightarrow For *slow* time-dependence this can be equivalent to cooling/heating system.

In <u>2406.15297</u> we...

- assume homogeneous scalar field \rightarrow PDE in time and holographic radial direction
- simulate approaches to spinodal and critical points
- study resulting scaling behavior

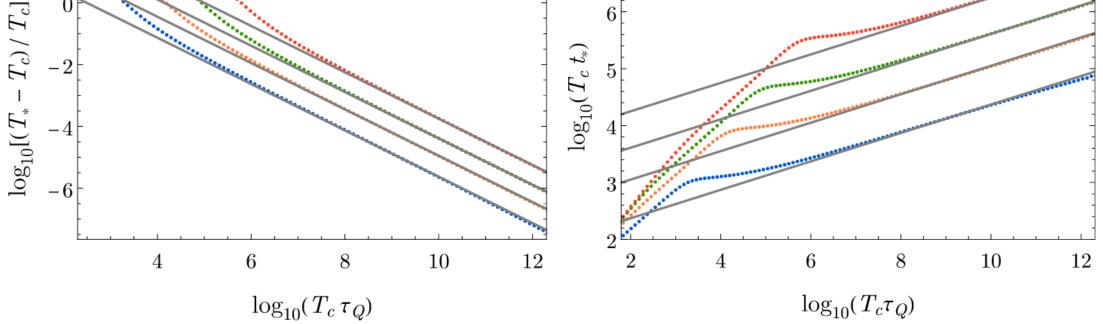
Numerical results – first-order transition

→We find good agreement with predicted dynamic critical exponents! $\left|\frac{T_c - T_*}{T_c}\right| \sim \tau_Q^{-1} \quad , \quad t_* \sim \tau_Q^0$



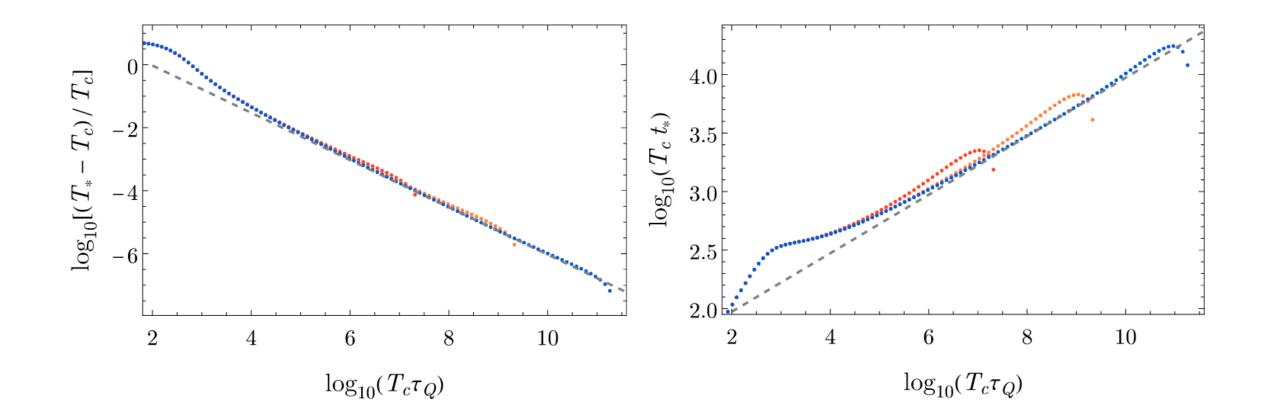
Numerical results – second-order transition

→We find good agreement with predicted dynamic critical exponents! $\left|\frac{T_c - T_*}{T_c}\right| \sim \tau_Q^{-3/4} , \quad t_* \sim \tau_Q^{1/4}$



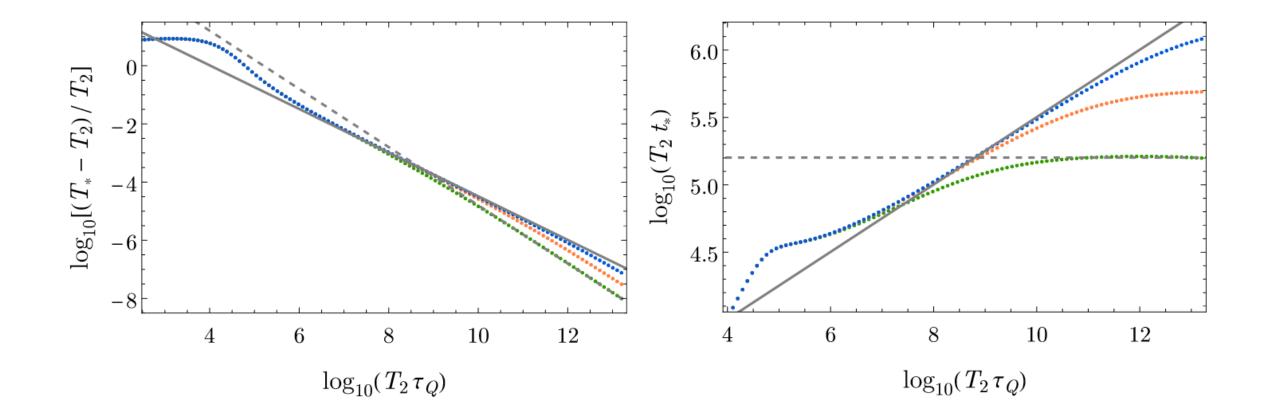
Strong crossover – traces of the critical point

At a <u>strong crossover</u> – close to a 2nd order critical point – we see **traces** of the critical exponents!



Weak first-order transitions

For weak first-order transitions – close to a 2nd order critical point – we see traces of **both critical and spinodal exponents**.



Summary

1st order PTs typically proceed through bubble nucleation

→Can treat in holography by computing QFT effective action in derivative expansion

- When nucleation is *supressed*, approach **spinodal point**
 →Critical phenomena similar to 2nd order transitions
 →System "thrown out of" equilibrium
 →We derived and numerically studied dynamic critical exponents
 - \rightarrow Also saw scaling for 2nd order transitions, crossovers
- All this within a **simple holographic model** where **multitrace deformations** tune phase structure
- Much left to do! One example: add spatial dependence to probe model
 - \rightarrow Study defect formation; compare with Kibble-Zurek
 - \rightarrow Real-time simulations of nucleation