Symmetries from Geometry

Max Hübner

2408.12600, 2406.08485, 2404.17639, 2401.09538, 2310.12980, 2307.13027, 2305.09665, 2304.03300, 2212.09743, 2209.03343 and WIP

> with B. Acharya, F. Baume, N. Braeger, V. Chakrabhavi, M. Cvetič, M. Del Zotto, R. Donagi, J. J. Heckman, C. Murdia, E. Torres, A. Turner, X. Yu, H. Y. Zhang

33rd Nordic Network Meeting

Tuesday October 29th, 2024

Motivation

 \bullet String/M-/F-theory:

SUGRA Singularity \rightarrow QFT

Examples:

6d $\mathcal{N} = (2, 0)$ SCFTs, 6d $\mathcal{N} = (1, 0)$ SCFTs, 5d $\mathcal{N} = 1$ SCFTs, 4d Class S Theories, SUSY Gauge Theories, . . . , YM Theory (?)

• However, there is No Free Lunch:

The above mapping is at least as complicated as the QFT.

Motivation

Advantages of Characterizing QFTs via Singularities:

1 Non-Lagrangian

E.g.: Higgs Bundles, Orbifolds, Brane Systems, . . .

2 Efficient Parametrization

E.g.: Phases (Confining Transition w/G_2 Bryant-Salamon) ...

³ Versatile

E.g.: Duality Relations, UV completions, . . .

• Singularity data is filtered:

Topology, Differential Data, Special Structures, Metric Data, . . .

Motivation

• Simplification: Focus on Topological Features of the QFT SUGRA Singularity \rightarrow QFT $|_{\text{top}}$

E.g., Topological Operators, Anomalies, . . .

• Noether's Theorem: [Noether, 1918]

Symmetry \rightarrow Topological Operator

• Modern Perspective: [Gaiotto, Kapustin, Seiberg, Willett; 2014]

Symmetry ← Topological Operator

- Q: Given a QFT_d constructed via a singular M-/F-/IIA/IIB background what are its topological operators (i.e., symmetries) and what are their properties (anomalies, fusions, associators, gauging relations, ...)?
- A: Topological operators are constructed from branes and organized by a TFT_D in higher dimension $D > d$.

Remark: In this talk, the background will always take the form

$$
\mathbb{R}^{\#}\times X
$$

with internal dimensions X and flat spacetime $\mathbb{R}^\#$.

An Example

SCFT_D in dimension $D = 5, 6$ are strongly coupled and non-Lagrangian, easily constructed in string theory, and progenitor theories for many lower-dimensional QFTs

[Heckman, Morrison, Vafa; 2014], [Heckman, Morrison, Rudelius, Vafa; 2015], [Apruzzi, Lawrie, Lin, Schäfer-Nameki, Wang; 2019], [Closset, Del Zotto; 2020], ...

E.G.: M-theory on $\mathbb{C}^3/\mathbb{Z}_N = \mathsf{Cone}(S^5/\mathbb{Z}_N)$ with isolated singularity \rightarrow 5D SCFT which is an edge mode to

$$
\mathsf{TFT}_6 = \int_{\mathsf{Spacetime} \times I} \frac{N}{2\pi} B_2 \wedge dB_3 + \eta_{S^5/\mathbb{Z}_N} B_2 \wedge B_2 \wedge B_2 + \dots
$$

where B_2, B_3 are 1-,2-form \mathbb{Z}_N symmetry background fields respectively and anomaly $\eta_{S^5/\mathbb{Z}_N} \in \mathbb{Q}$.

Sketch of Geometry:

Isolated Singularity Localized Degrees of Freedom

Example: $X = \mathbb{C}^3/\mathbb{Z}_N$

Example in M-theory: $QFT_X = 5D$ SCFT Example in IIB: $QFT_X = 4D$ SCFT

Geometry \rightarrow Symmetries

- 1) Compactify on const. radius slices [Apruzzi, Bonetti, García Etxebarria, Hosseini, Schäfer-Nameki; 2021]
- 2) Restrict to Topological Sector
- 3) Localized modes \rightarrow $\mathcal{B}_5^{\text{(phys)}} = \text{SCFT}_5$
- 4) Supergravity BCs \rightarrow $\mathcal{B}_5^{\text{(top)}}$

Geometry \rightarrow Symmetry and Defect Operators

Using Branes: [Del Zotto, Heckman, Park, Rudelius; 2015], [Morrison, Schäfer-Nameki, Willett; 2020], [Lakshya Bhardwaj, MH, Schäfer-Nameki; 2021], ..., [García Etxebarria; 2022], [Apruzzi, Bah, Bonetti, Schäfer-Nameki; 2022], [Heckman, MH, Torres, Zhang; 2022], [Del Zotto, Heckman, Meynet, Moscrop, Zhang; 2022], . . . Build Defect Operators (eg. Wilson, 't Hooft lines) and Symmetry Operators (eg. Gukov-Witten operators)

Key Observation

We fibered the Geometry X

$$
\left.\partial X\right|_{r} \, \hookrightarrow \, X \, \to \, \text{Interval}_{r}
$$

and compactified on the fibers.

This was a local construction, i.e., we can apply it to any fibration

$$
F \, \hookrightarrow \, X \, \rightarrow \, B
$$

to produce a symmetry theory on the base B.

[Baume, Heckman, Hübner, Torres, Turner, Yu; 2023], [Cvetič, Donagi, Heckman, Hübner, Torres; 2024]

Generalizations: SymTrees

Limits decoupling modes \rightarrow QFT splits into multiple sectors

Each sector has its own symmetry theory, combining to the overall symmetry theory via junction associated with the decoupled data

[Baume, Heckman, Hübner, Torres, Turner, Yu; 2023]

Generalizations: Cheesesteaks

Field Theory Systems: $\mathsf{QFT}_d \subset \mathsf{QFT}_D$: [Cvetič, Donagi, Heckman, Hübner, Torres; 2024]

Geometry \rightarrow SymTrees and Cheesesteaks

Left: 2 disjoint isolated singularities, Right: Non-Isolated Singularities E.g.: Left: Higgsed Stack of Branes, Right: Intersecting Stacks of Branes

Geometry \rightarrow SymTrees and Cheesesteaks

Left: 2 disjoint isolated singularities, Right: Non-Isolated Singularities

Outlook

Applications to

- a) Decoupling limits in String Theory
- b) Symmetry Inheritance for defects QFT $d \subset QFT$
- c) No-Global-Symmetries Conjecture in QG
- d) Non-supersymmetric string constructions

Outlook

Applications to

- a) Decoupling limits in String Theory
- b) Symmetry Inheritance for defects QFT $d \subset QFT$
- c) No-Global-Symmetries Conjecture in QG
- d) Non-supersymmetric string constructions

Thank you for your time and attention!