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Strings near black holes?

Two a priori unrelated questions:

Q1: How do strings behave near the horizon of a black hole?

Q2: What is Carrollian string theory?



A taste of Carrollian symmetry & geometry
• Physically c → 0; hence “ultra-local”
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c = 1 c ≪ 1 c = 0

• Carroll boosts transformation act as
t → t′ = t + bix i , ~x → ~x ′ = ~x

• Arises at the infinities of asymptotically flat spacetime; also
related to the geometry on null hypersurfaces and therefore
black hole horizons; obtained as the c → 0 limit of Lorentzian
geometry
Metric gµν replaced by (vµ, hµν) satisfying vµhµν = 0

[Duval, Gibbons, Horvathy, ’14; Hartong, ’15; Figueroa-O’Farrill, EH, Prohazka, Salzer, ’21; Hansen, Obers, Oling, Søgaard, ’21]



Plan

1 The string Carroll expansion
for non-extremal black holes

2 Near-horizon strings are Carrollian

3 Magnetic and electric
Carroll strings



The near-horizon geometry of a Schwarzschild black hole

• The four-dimensional Schwarzschild metric is

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2

with dΩ2 = dθ2 + sin2 θ dφ2

• Want to zoom into the near-horizon region r ∼ 2GM =: rh, so
define a new radial coordinate r via

r = rh +
1

rh
εr2

Positive dim’less pa-
rameter that goes to
zero as we approach
the horizon• This leads to

ds2 = r2h dΩ2+ε

[
−

r2

r2h
(dt)2 + 4dr2 + 2r2dΩ2

]
+ε2

[
r4

r2h
(dt)2 +

4r2

r2h
dr2 +

r4

r2h
dΩ2

]
+O(ε3)

• This has the form of a string Carroll expansion



The string Carroll expansion
• Consider a vielbein decomposition of a metric g

g(c2) = −c2E0(c2)E0(c2) + c2E1(c2)E1(c2) + E i(c2)E i(c2)

• Expand vielbeine in powers of c2 as E(c2) = e + c2e(1) + · · · :

g(c2) = e ie i+c2(−e0e0+e1e1)+2c2e ie i
(1)+· · · = h+c2τ+c2Φ+· · ·

where h = e ie i , τ = −e0e0 + e1e1 and Φ = 2e ie i
(1)

• To match with the near-horizon expansion, we identify

ε ≡ c2

• Comparing with our near-horizon expansion, we find

hµνdxµdxν = r2h dΩ2 , τµνdxµdxν = − r2

r2h
dt2 + 4dr2︸ ︷︷ ︸

2d Rindler spacetime

, Φµνdxµdxν = 2r2dΩ2

• This is a generic feature: the near-horizon region of any
non-extremal black hole looks like a string Carroll expansion



(Non-)extremal black holes and Rindler spacetime

Figure 1. Schematic picture of a classical black hole (left) and a microstate geometry (right).
From the asymptotic observer’s point of view, instead of the event horizon lying at the bottom of
a throat of infinite length, a microstate geometry would replace it with a smooth cap lying at the
bottom of a throat of finite length. In the scaling limit, its throat length increases to infinity while
the cap’s geometry stays constant. The figures are from [6].

In many classes of microstate geometries, the infinitely-long throat of an extremal black
hole is replaced by a cap at the end of a long, but finite throat [7–9] (See Fig. 1). The
procedure to construct a large number of Supergravity microstates is the following: Take a
black hole with given charges and angular momenta. Supergravity admits a large number
of solutions with finite throat length, with charges and angular momenta equal to those of
the black hole. In the moduli space (of a particular superselection sector, if any),1 each of
these solutions admits a limit — called the scaling limit — where, from the perspective of
an observer at infinity, they become more and more similar to the black hole; in particular,
their throat length increases to infinity in the scaling limit, while the size of the cap remains
fixed.2

In the moduli space of solutions, the scaling limit point plays a particular role, for the
following reasons:
(1) The scaling limit lies at the boundary of moduli space where the throat length increases
to infinity.
(2) As we approach the scaling limit, global symmetries of the black hole, which obeys
the no-hair theorem, are restored. For instance, microstate geometries do not generically

1In some models of microstate geometries, as in Multi-centered bubbling models, there are families of
solutions labeled by the fluxes �i wrapping the bubbles (see Section 2). Inside each of these families, or
superselection sectors [10], there are still real parameters left to characterize the solutions, defining a moduli
space. There are restrictions on the bubble fluxes (and on the superselection sectors) to admit a scaling
limit; but here, we consider one superselection sector which does.

2Infinitely-long throats arise in extremal black holes, but not in non-extremal ones, so this procedure
to construct microstate geometries a priori applies only for extremal black holes. Although in this paper
we will only consider a class of extremal BPS black holes and their microstate geometries, scaling solutions
can arise in similar non-BPS extremal black holes as well [11–13].

– 2 –

[Li, ’21]

• Extremal black holes generically have
a Lorentzian near-horizon structure
with an AdS2 throat [Kunduri, Lucietti, Reall, ’07]

• Non-extremal black holes admit a string
Carroll expansion which contain a
2d Rindler space fibered over a 2d base

A Rindler reminder:
• Worldline of body with const. acceleration in X -direction as

function of proper time t and rapidity αt

T = x sinh(αt) , X = x cosh(αt) , x = const.

with ranges 0 < X < ∞ , − X < T < X
• Leads to ds2 = −dT 2 + dX2 = −(αx)2dt2 + dx2



Warmup: magnetic and electric Carroll scalars
The simplest Carroll-invariant field theories are obtained by taking
the c → 0 limit of a (free) relativistic scalar field theory

L̂ =
1

2c2
(∂tφ)

2 − 1

2
(∂iφ)

2

This limit can be taken in two ways:
• The “electric” Carroll scalar: as c → 0, the first term above

dominates

L̂ =
1

c2Le +O(1) , Le =
1

2
(∂tφ)

2

• The “magnetic” Carroll scalar: perform a HS transformation to
obtain

L̂ = −c2χ2

2
+ χ∂tφ− 1

2
(∂iφ)

2
c→0
−−→ χ∂tφ− 1

2
(∂iφ)

2 =: Lm

[de Boer, Hartong, Obers, Sybesma, Vandoren, ’21]



The relativistic string and its Carrollian expansion

The phase space Lagrangian for string theory is

L = ẊµPµ − 1

2
e
(
gµν(X)PµPν + T 2gµν(X)X ′µX ′ν)− uX ′µPµ

where Xµ = xµ + εyµ + zµ +O(ε3) and u = u(0) +O(ε).

Two choices for the ε-scaling of e:

Mag.: e = O(1) ⇒ P = O(1), leading to

L = ε−1Lm,LO + Lm,NLO + εLm,NNLO +O(ε2)

Elec.: e = O(
√
ε) ⇒ P = O(

√
ε), leading to

L =
√
εLe,LO +O(ε3/2)



The magnetic Carrollian string
The magnetic Carrollian string has a “traditional” Polyakov
formulation and may also be obtained by expanding the Polyakov
Lagrangian

LP = −T
2

√
−γγαβ∂αXµ∂βXνgµν(X)

with γαβ = γ(0)αβ + εγ(2)αβ +O(ε2)

• ε-expanded metric gαβ(X) = ∂αXµ∂βXνgµν(X) includes “Taylor
terms”

gαβ(X) = hαβ(x) + εΦ̂(x , y) +O(ε2)
where
hαβ(x) = ∂αxµ∂βxνhµν(x) ,

Φ̂(x , y) = ταβ(x) + Φαβ(x) + 2hµν(x)∂(αxµ∂β)yν + ∂αxµ∂βxνyρ∂ρhµν(x)

• This implies that NB: Lorentzian WS
LP = LP-LO+εLP-NLO+O(ε2) , LP-LO = −T

2

√
−γ(0)γ

αβ
(0)hαβ(x)

cf. NR strings [Hartong, EH, ’21; ’22; ’24]



The electric Carroll string
• In contrast to the magnetic Carrollian string, the electric string

cannot be obtained from the Polyakov string since it is not
quadratic in transverse momenta as ε → 0

⇒ The closest we can get to a Polyakov-like formulation is

Le = −T 2E
(
−vα∂αXµP̃µ + hµνe

α
e
β∂αXµ∂βXν

)
+
E
2
τµνv

α
v
β∂αXµ∂βXν

• This theory has a Carrollian WS with frame (vα, eα); E is
the measure

• This theory is a combination of electric Carrollian scalars in the
longitudinal directions and magnetic Carrollian scalars in the
transverse directions

See also [Gomis, Yan, ’23; Blair, Lahnsteiner, Obers, Yan, ’23 & ’24]
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Take home messages

1 The near-horizon geometry of 4d
non-extremal black holes takes the
form of a string Carroll expansion

2 Near-horizon strings are Carrollian

3 There are two types of Carrollian
strings: magnetic and electric,
which have, respectively,
Lorentzian and Carrollian worldsheets



Thank you for your attention


