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Motivations

We are interested in studying how symmetries can be used to study the

strong coupling regime of certain theories.

− e.g. symmetries can distinguish higgsing and confining phase.

In recent years the newly discovered “non-invertible symmetries” added a

new tool to the symmetry arsenal for attacking non-perturbative regimes.

How can we use them? We are going to explore the example of 4d

Adjoint QCD with 2 flavors.
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Introduction



A new take on symmetries

In recent years, the concept of symmetries was extended via the new

paradigm [Gaiotto, Kapustin, Seiberg, Willet ’14]:

Symmetries↔ Topological Operators

This novel approach to symmetries allowed the definition of more general

“kinds” of symmetries, now dubbed categorical symmetries.
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A regular symmetry acting on particles (0-dimensional objects) is called a

0-form symmetry.

Noether theorem associate to each symmetry a conserved current Jµ.

In a D-dimensional QFT we define the symmetry operators via

U(MD−1)g := e
ig

∫
MD−1

?J

What if the current has more indices, Jµν...?
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We can define n-form symmetry!

An n-form symmetry is an operator that acts on n-dimensional objects.

Given an (n+1)-form conserved current Jµ1...µn+1 , we define the operators

U(MD−n−1)g := e
ig

∫
MD−n−1

?J

As long as the current is conserved, dJ = 0, these operators are

topological.
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Example: Maxwell theory

As an example, let us consider 4d Maxwell theory without sources.

We can define two conserved currents, dJe = d ? F = 0 Jm = dF = 0.

The operators U(M2) = e i
∫
F and V (M2) = e i

∫
?F are 2d topological

operators measuring the charge of Wilson and ’t Hooft lines respectively.

Figure 1: 3d section of the linking operation.
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Example: QED

Let us now turn to 4d QED.

Here we have a U(1)m 1-form associated to dF = 0, while electrons

break the the U(1)e since d ? F = ?Je .

This theory as also an anomalous U(1)a 0-form axial dJa = F ∧ F .

We can still define a topological operator since d(Ja − A ∧ F ) = 0 is a

conserved current, but it is not gauge invariant.

U(M) = e ig
∫
M
Ja−A∧F A→A+dλ−−−−−−→ e ig

∫
M
Ja−A∧F e ig

∫
dλ∧F

The extra phase disappears only if g ∈ 2πZ.
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However, one can make sense of the above operator for any choice of

g ∈ Q/Z.

The “bad” gauge transformation can be canceled by stacking a 3d theory

with an anomaly on the defect.

These are the so called AN,p theories [Hsin, Lam, Seiberg ’18].

The price to pay is that now the defects fuse in a non-invertible way.

UŪ = C (1)

Where C is a condensate.

See [Choi, Lam, Shao ’22 ;Copetti, Del Zotto, Ohmori, Wang ’23] for

details.
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Applications to AdjQCD



From N = 2 to N = 0

We want to apply the previous techniques to the study of AdjQCD.

We start by considering the UV theory to be N = 2 pure SU(n) and we

add a small mass deformation for the adjoint scalars.

This triggers a flow that we can follow [Cordova, Dumitrescu ’18;

D’Hocker, Dumitrescu, Nardoni, Gerchkoviz ’20 ].
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Figure 2: Different flows for N = 2 with mass deformation.
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Matching symmetries

In the CP1 sigma model we have:

A 1-form symmetry acting on vortices, π2(CP1) = Z, a Zn subgroup can

be matched with the 1-form symmetry of the abelian model.

A 0-form symmetry acting on Hopfions, π3(CP1) = Z, which is

non-invertible and can match the anomalous 0-form symmetry of the

abelian model [Hsin ’22; Chen, Tanizaki ’22].
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Conclusions



Conclusions

We discussed generalized symmetries and how they work.

We applied these tools to a concrete example: AdjQCD.

What we learned is that non-invertible symmetries provides extra checks

for dynamical abelianization.

These techniques are generale and can be applied to other flows.
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Thank you for the attention!
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