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Main idea is in the relation 

Observables in
SUSY QFTs

Integrable 
Models

In the spirit of BPS/CFT (Nekrasov-Shatashvili et al.)

1
General Setting

⇐⇒



2
Particular Setting

6d SCFT

Superconformal
index (SCI)

of

compactification
on the punctured
Riemann surface

Integrable analytic
finite-difference
operatorcodim.-2

defect in 4d
Introduce 

A∆O

⇓
=⇒

Allows one to write 
index for any, even 
non-Lagrangian 
compactification 
(index bootstrap)

6d (2,0) theory Ruijsenaars-Schneider model

4d IR theory

Gaiotto, Rastelli, Razamat 1207.3577; 
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closed giving VEV ⟨∂k
+∂

l
−Mi⟩ ̸= 0Punctures can be               partially or completely by      

operators

Global symmetry is broken to a subgroup

Generalities:  
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Spin(4)
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Gluing and closing punctures have simple interpretations in terms of operations on the index.
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Working assumptions: I 5d reduction of 6d SCFT has gauge theory description.

II 4d trinion is Lagrangian theory.

Integrable Operators from Indices

z

au

F

Main idea: closing puncture                       introduce defect into theory by                                   .

Index with (m,n) defect:

I(m,n)
IR ∼ Resz→pmqnUM̂z

I [Cu,z] (u, z) =⇒ I(m,n)
IR ∼ H(m,n)

u · I [Cg,s[u],F ]

H(m,n)
u - tower of finite difference operators (A∆Os)
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Properties of Operators

by construction 4d S-dualityTwo properties follow                                 from                        :

A∆Os =⇒I commute                            all                    with each other
�
Hα

u ,Hβ
u

�
= 0

α,β - labels of 
operators including integrability?

u a b

u ab

u

u

Hα
uHβ

u·

Hβ
uHα

u ·

close withb β

(m,n) and more (puncuture closure)

close with α

close with

βclose with

α

b

a

a

S-duality

6



Properties of Operators

by construction 4d S-dualityTwo properties follow                                 from                        :

II N = 1 Kernel FunctionsIndices of   4d                   theories obtained in certain compactifications are                                     of 
the corresponding operators: 

Hα
u · Ig,s[u, v, ...] = Hα

v · Ig,s[u, v, ...] = ...

u

u

u

close with αa

S-duality

a

a

u
v

v

v

v

close with αa

Hu
α·

Hv
α·

6



spectrumAssume                     of           is known:Hα
x

λ - eigenstate label. Depends on 
Hamiltonian (integer, partition etc.)

ψλEigenfunctions         are orthogonal w.r.t. gluing measure ∆(x) :

Hα
x · ψλ(x) = Eα,λψλ(x)

I
dx ∆(x)ψλ(x)ψλ′(x−1) = δλ,λ′
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I
dx ∆(x)ψλ(x)ψλ′(x−1) = δλ,λ′

Hα
x

Compactification on Riemmann surface with
s punctures of the same type.

ansatzNatural               for Kernel functions of 

I({xj}) =
X

λ

Cλ

sY

j=1

ψλ(xj)

natural orderingλAssume       have                                   so we can enumerate them: λ0 ≤ λ1 ≤ λ2 ≤ ...

Simplest example, two-punctured surface I(x,y) =
∞X

i=0

Cλiψλi(x)ψλi(y)

Cλi
 depends on details of compactification (fluxes, genus)
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Spectrum from Indices

two-punctured surface x1 x2Start with                                               with some  non-zero flux and/or non-zero genus

I1(x,y) =
∞X

i=0

Cλiψλi(x1)ψλi(x2)

Nazzal, AN, Razamat 2305.09718
 8



Spectrum from Indices

two-punctured surface x1 x2Start with                                               with some  non-zero flux and/or non-zero genus

Glue together n copies

I1(x,y) =
∞X

i=0

Cλiψλi(x1)ψλi(x2)

In(x1, x2) =
∞X

i=0

(Cλi)
n
ψλi

(x1)ψλi
(x2) x1

x2

Nazzal, AN, Razamat 2305.09718
 8



Spectrum from Indices

two-punctured surface x1 x2Start with                                               with some  non-zero flux and/or non-zero genus

Glue together n copies

I1(x,y) =
∞X

i=0

Cλiψλi(x1)ψλi(x2)

In(x1, x2) =
∞X

i=0

(Cλi)
n
ψλi

(x1)ψλi
(x2) x1

x2

 Consider series in                parametery = pq Cλi
orderedassuming         are                 :

Cλ0
= O(1), Cλ1

= O (yn1) , n1 > 0 Cλ2
= O (yn2) , n2 > n1 , ....

Nazzal, AN, Razamat 2305.09718
 8



Spectrum from Indices

two-punctured surface x1 x2Start with                                               with some  non-zero flux and/or non-zero genus

Glue together n copies

I1(x,y) =
∞X

i=0

Cλiψλi(x1)ψλi(x2)

In(x1, x2) =
∞X

i=0

(Cλi)
n
ψλi

(x1)ψλi
(x2) x1

x2

 Consider series in                parametery = pq Cλi
orderedassuming         are                 :

Cλ0
= O(1), Cλ1

= O (yn1) , n1 > 0 Cλ2
= O (yn2) , n2 > n1 , ....

Nazzal, AN, Razamat 2305.09718
 8

In practice:  take               , results are valid                   finite n y = pqup to a fixed order in

ψλ0
(x) = limn→∞ (Cλ0

)
−n In(x,1)

Cλ0
= limn→∞

In+1(x1,x2)

In(x1,x2)
 Now we can                  and                                                                      :ψλ0

(x)ground state wave funcitonCλ0fix



Spectrum from Indices

two-punctured surface x1 x2Start with                                               with some  non-zero flux and/or non-zero genus

Glue together n copies

I1(x,y) =
∞X

i=0

Cλiψλi(x1)ψλi(x2)

In(x1, x2) =
∞X

i=0

(Cλi)
n
ψλi

(x1)ψλi
(x2) x1

x2

 Consider series in                parametery = pq Cλi
orderedassuming         are                 :

Cλ0
= O(1), Cλ1

= O (yn1) , n1 > 0 Cλ2
= O (yn2) , n2 > n1 , ....

Nazzal, AN, Razamat 2305.09718
 8

In practice:  take               , results are valid                   finite n
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A1 RS Spectrum from Indices
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√
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�
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�
+
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�

(pq)
7
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3
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Thank you !

Conclusions and Outlook

A1 A2

    Many more things to be considered (see previous slide).

ground state    In all cases at least                          wavefunction and energy were derived. 

new method for deriving the perturbative spectrum    We proposed a                                                                                                     of a large class of relativistic
elliptic  integrable models. 

method has been tested    The                                                on various models: Rujsenaars-Schneider, van Diejen and some 
novel models derived in 6d compactifications.   

results were compared
ramified instantons claculations
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    For the cases of         and         Ruijsenaars-Schneider model                                               with the 
alternative approach of                                                              .  (not in this talk!) Kim, AN, Razamat  2407.08776;


