Andrea Sangiovanni Centre for Geometry and Physics, Department of Mathematics, Uppsala University

33rd Nordic Network Meeting 30/10/24

5d Conformal Matter SCFTs across dimensions

Based on past and upcoming work in collaboration with:

Michele Del Zotto, Mario De Marco, Michele Graffeo, Julius Grimminger

JHEP 05 (2024) 306, arXiv 2411.....

Context: the landscape of QFTs

Motivation: chart the landscape of QFTs (incredibly hard problem!)

"Cheating":

- Focus on supersymmetric QFTs
- Fixed points of RG flows, i.e. superconformal field theories (SCFTs)

Context: the landscape of QFTs

Motivation: chart the landscape of **QFTs** (incredibly hard problem!)

"Cheating":

- Focus on supersymmetric QFTs
- Fixed points of RG flows, i.e. superconformal field theories (SCFTs)
- The last two decades have produced a deluge of results in several dimensions and with varying amount of supercharges, mostly employing the toolbox provided by **string theory/M-theory/F-theory**

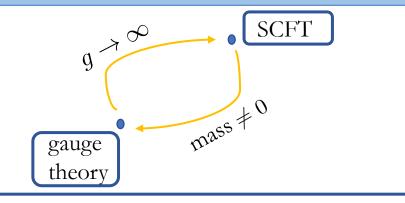
8 supercharges is the sweet spot: non-trivial dynamics, but sufficiently constrained to admit a (partial) classification

> • In this talk: $5d \mathcal{N} = 1$ SCFTs, and relations to $4d \mathcal{N} = 2$ and $3d \mathcal{N} = 4$

5d $\mathcal{N} = 1$ SCFTs

• Very difficult to treat from a gauge-theoretic perspective:

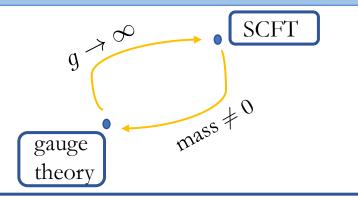
In 5d:
$$\left[\frac{1}{g^2}\right] = \text{mass}$$



5d $\mathcal{N} = 1$ SCFTs

• Very difficult to treat from a gauge-theoretic perspective:

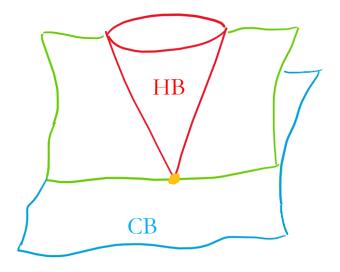
In 5d:
$$\left[\frac{1}{g^2}\right] = \text{mass}$$



Since the mid-ninenties, thriving effort in the study of the properties of 5d SCFTs.

Interesting aspects to investigate:

- Moduli spaces of vacua
- **RG** flows
- **Symmetries** (gauge, flavor, generalized symmetries...)



5d $\mathcal{N} = 1$ SCFTs

• Very difficult to treat from a gauge-theoretic perspective:

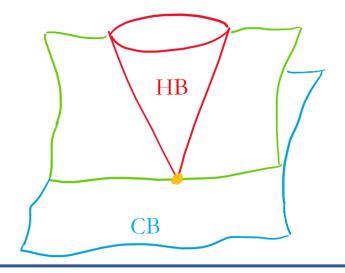
In 5d:
$$\left[\frac{1}{g^2}\right] = \text{mass}$$



Since the mid-ninenties, thriving effort in the study of the properties of 5d SCFTs.

Interesting aspects to investigate:

- Moduli spaces of vacua
- **RG** flows
- **Symmetries** (gauge, flavor, generalized symmetries...)



In recent years, huge investment in investigating 5d SCFTs:

- (p,q) 5-brane webs
- String dualities
- M-theory compactification on CY threefolds (geometric engineering)

Geometric engineering of 5d SCFTs

M-theory geometric engineering: study 5d SCFTs using M-theoretic setups involving only **geometry**

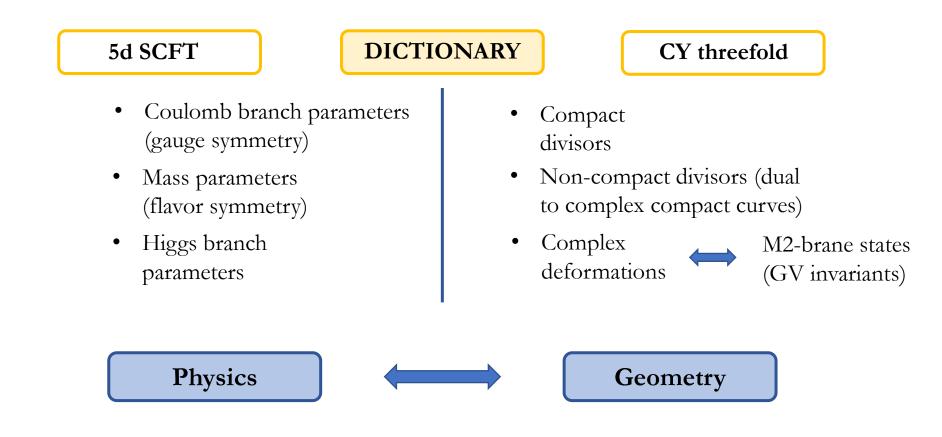
Geometric engineering of 5d SCFTs

M-theory geometric engineering: study 5d SCFTs using M-theoretic setups involving only **geometry** M-theory 11ddimensional reduction on singular non-compact CY 3-fold 5d SCFT (8 supercharges) Flat spacetime $\mathbb{R}^{4,1}$

Geometric engineering of 5d SCFTs

M-theory geometric engineering: study 5d SCFTs using M-theoretic setups involving only **geometry** M-theory 11ddimensional reduction on non-trivial dynamics at a point singular 🔶 non-compact decouple gravity CY 3-fold preserve 8 supercharges 5d SCFT (8 supercharges) Flat spacetime $\mathbb{R}^{4,1}$

M-theory/5d SCFTs dictionary



Atomic classification of 5d SCFTs

• Motivating question:

find analogue of 6d conformal matter (bifundamental matter with non-trivial gauge dynamics) in 5d setting

$$\mathfrak{g}$$
 $\mathfrak{g} \times \mathfrak{g}$ flavor group

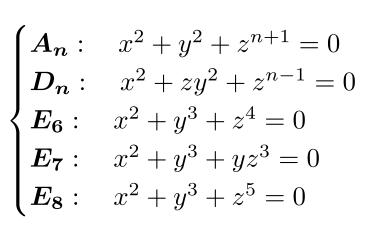
Atomic classification of 5d SCFTs

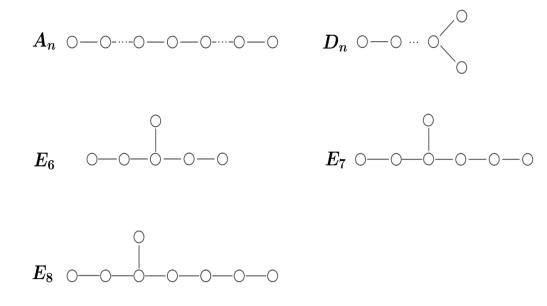
• Motivating question:

find analogue of 6d conformal matter (bifundamental matter with non-trivial gauge dynamics) in 5d setting

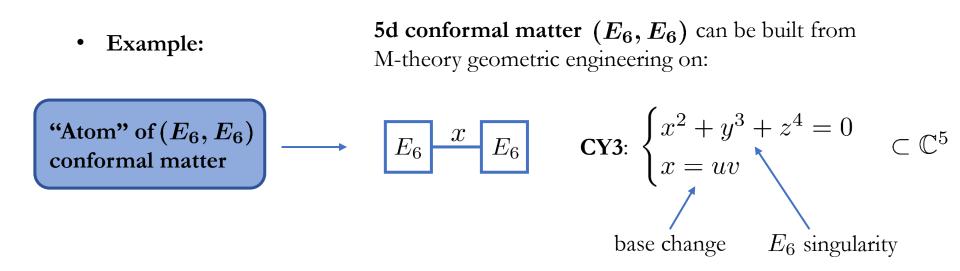
• Geometric answer:

5d conformal matter $(\mathfrak{g}, \mathfrak{g}), \mathfrak{g} \in ADE$ can be constructed from M-theory geometric engineering

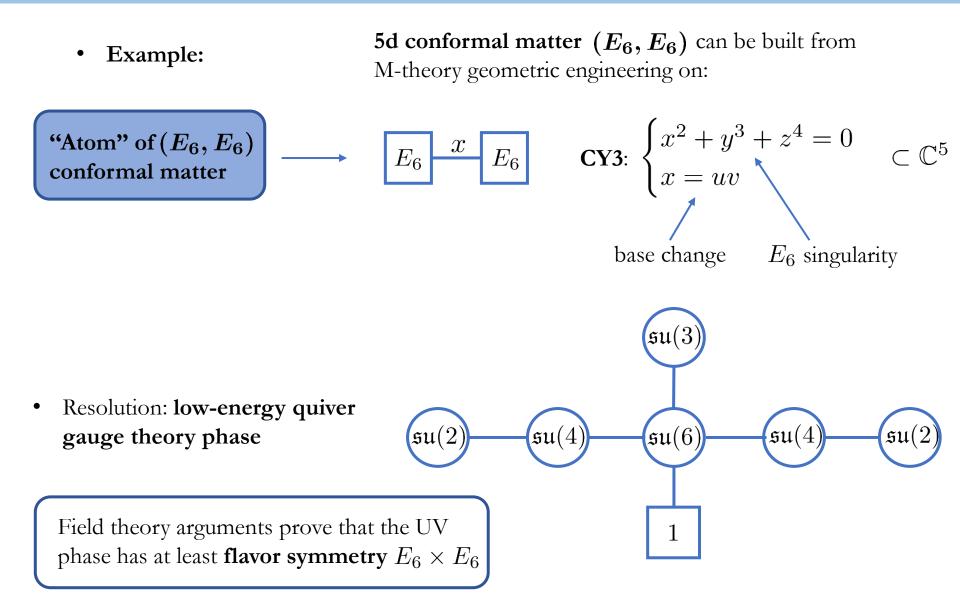




Atoms of 5d CM SCFTs



Atoms of 5d CM SCFTs



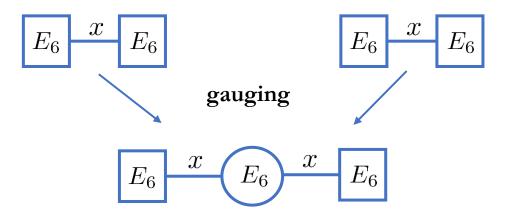
Atomic (partial) classification of 5d CM SCFTs

• Example:	5d conformal matter (E_6, E_6) can be built from M-theory geometric engineering on:		
"Atom" of (E_6, E_6) conformal matter	$E_6 \xrightarrow{x} E_6$	CY3: $\begin{cases} x^2 + y^3 + z^4 = 0\\ x = uv \end{cases}$	
"Atom" of (E_6, E_6) conformal matter	$E_6 $ $U $ E_6	CY3: $\begin{cases} x^2 + y^3 + z^4 = 0\\ y = uv \end{cases}$	
"Atom" of (E_6, E_6) conformal matter	$E_6 - E_6$	CY3: $\begin{cases} x^2 + y^3 + z^4 = 0\\ z = uv \end{cases}$	

All the "atoms" have at least flavor symmetry $E_6 \times E_6$

Molecules of 5d CM SCFTs

• **5d conformal matter atoms** can be used as fundamental blocks to construct more complicated SCFTs of conformal matter type

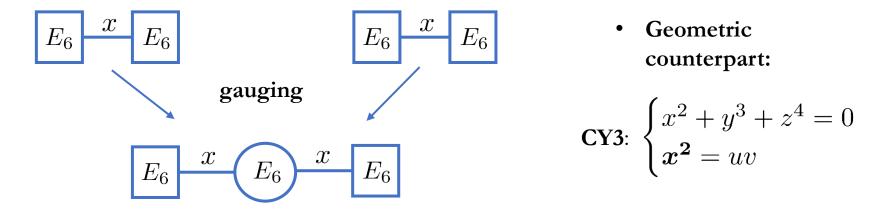


• Geometric counterpart:

CY3:
$$\begin{cases} x^2 + y^3 + z^4 = 0 \\ x^2 = uv \end{cases}$$

Molecules of 5d CM SCFTs

• **5d conformal matter atoms** can be used as fundamental blocks to construct more complicated SCFTs of conformal matter type



• Most general molecule:

CY3:
$$\begin{cases} x^2 + y^3 + z^4 = 0 \\ x^{n_1} y^{n_2} z^{n_3} = uv \end{cases} \xrightarrow{E_6} x E_6 \xrightarrow{E_6} z E_6$$

contracting all \mathbb{P}^1 's

We wish to investigate the 4d $\mathcal{N}=2\,$ theories obtained reducing 5d CM atoms on a circle

We wish to investigate the 4d $\mathcal{N}=2$ theories obtained reducing 5d CM atoms on a circle

• Non-trivially, the resulting 4d $\mathcal{N} = 2$ theory is a **SCFT**

- It is a class-S fixture:
 6d N = (2,0) theory of type g ∈ ADE on a sphere with three regular punctures
- Checks:

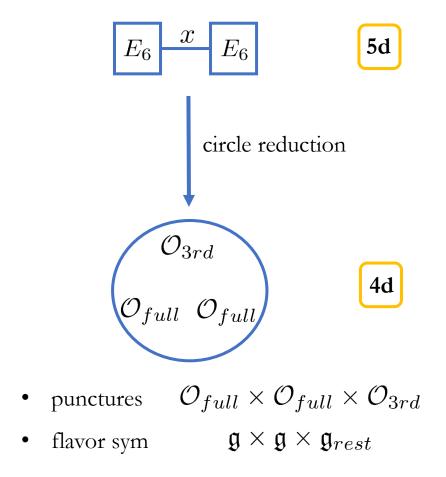
matching **CB dimension** matching **HB dimension** matching **flavor symmetry**

We wish to investigate the 4d $\mathcal{N} = 2$ theories obtained reducing 5d CM **atoms** on a circle

• Non-trivially, the resulting 4d $\mathcal{N} = 2$ theory is a **SCFT**

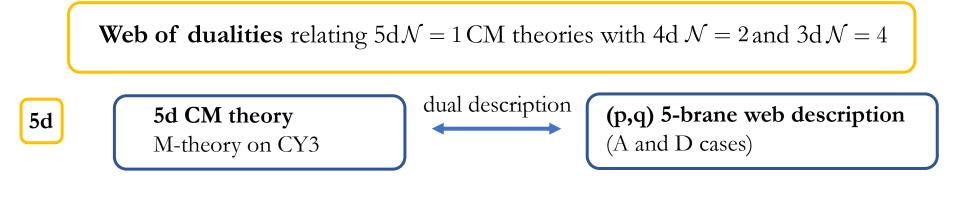
- It is a class-S fixture: $6d \mathcal{N} = (2,0)$ theory of type $\mathfrak{g} \in ADE$ on a sphere with three regular punctures
- Checks:

matching **CB dimension** matching **HB dimension** matching **flavor symmetry**



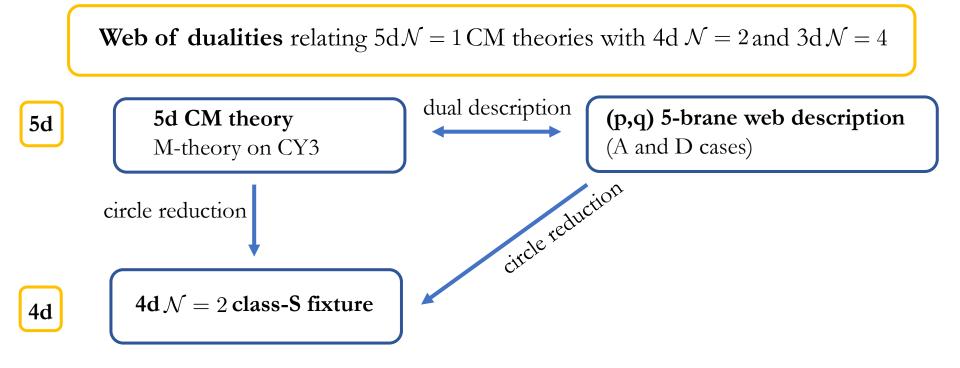
• The 4d $\mathcal{N} = 2$ SCFT descendants can be identified for all 5d CM atoms:
--

Atom	${\cal O}_{3rd}$	$\mathcal{O}_{\mathbf{3rd}}{}^L$	$\mathrm{rank}\mathrm{CB}_{\mathcal{T}_{4d}}$	flavor sym
$X^{(1)}_{A_{2j+1}}$	$[2^{j+1}]$	$[(j+1)^2]$	j^2	$A_{2j+1} \times A_{2j+1} \times \mathfrak{u}(1)$
$X_{A_{2i}}^{(1)}$	$[2^j,1]$	[j+1,j]	j(j-1)	$A_{2j} \times A_{2j} \times \mathfrak{u}(1)$
$X_{D_{2i+2}}^{(1)}$	$[3^2, 2^{2j-2}, 1^2]$	$[(2j+1)^2, 1^2]$	j(2j+3)	$D_{2j+2} imes D_{2j+2} imes \mathfrak{u}(1)^2$
$X_{D_{2}+2}^{(1)}$	$[3^2, 2^{2j-2}, 1^4]$	$[2j+3, 2j+1, 1^2]$	j(2j+5)+1	$D_{2j+3} \times D_{2j+3} \times \mathfrak{u}(1)$
$X_{D_{2j+2}}^{(2)}$	$[2^{2j}, 1^4]$	[2j+3, 2j+1]	$2j^2 + j - 2$	$D_{2j+2} \times D_{2j+2}$
$X_{D_{2j+3}}^{(2)}$	$[2^{2j+2}, 1^2]$	$[(2j+3)^2]$	j(2j+3)	$D_{2j+3} \times D_{2j+3} \times \mathfrak{u}(1)$
$X_{D_{i}}^{(3)}$	$[3, 1^{2j-3}]$	$[2j-3,1^3]$	j-2	$D_j imes D_j imes \mathfrak{su}(2)$
$X_{E_6}^{(1)}$	A_2	$E_{6}(a_{3})$	15	$E_6 \times E_6$
$X_{E_6}^{(2)}$	$2A_1$	D_5	10	$E_6 \times E_6 imes \mathfrak{u}(1)$
$X_{E_6}^{(3)}$	A_1	$E_6(a_1)$	5	$E_6 \times E_6$
$X_{E_7}^{(1)}$	$A_2 + A_1$	$E_6(a_1)$	31	$E_7 \times E_7 \times \mathfrak{u}(1)$
$X_{E_{7}}^{(2)}$	$(3A_1)''$	E_6	20	$E_7 \times E_7 \times \mathfrak{su}(2)$
$X_{E_7}^{(3)}$	A_1	$E_7(a_1)$	10	$E_7 \times E_7$
$X_{E_8}^{(1)}$	$A_2 + A_1$	$E_{8}(a_{4})$	60	$E_8 \times E_8$
$X_{E_8}^{(2)}$	$2A_1$	$E_{8}(a_{2})$	38	$E_8 \times E_8$
$X_{E_8}^{(3)}$	A_1	$E_{8}(a_{1})$	21	$E_8 \times E_8$

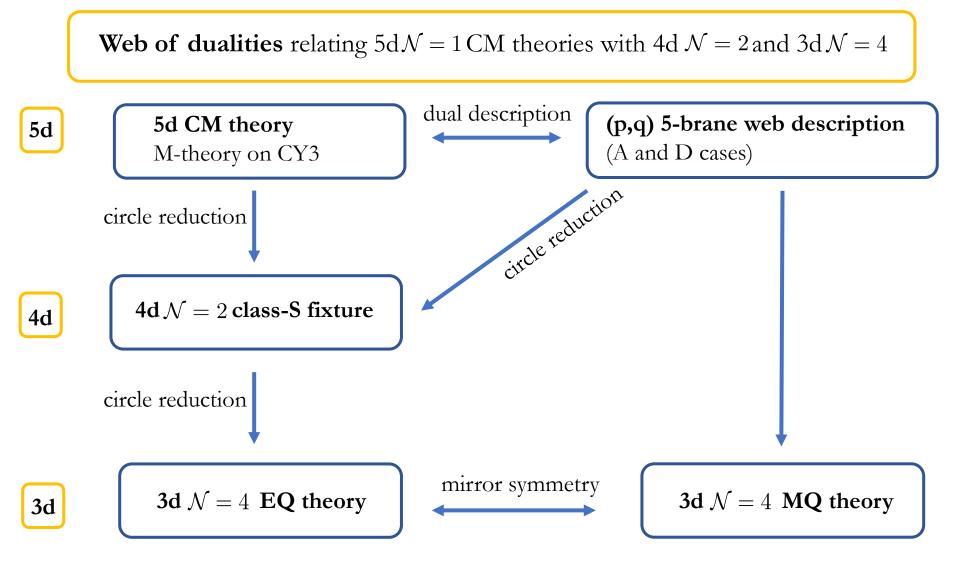


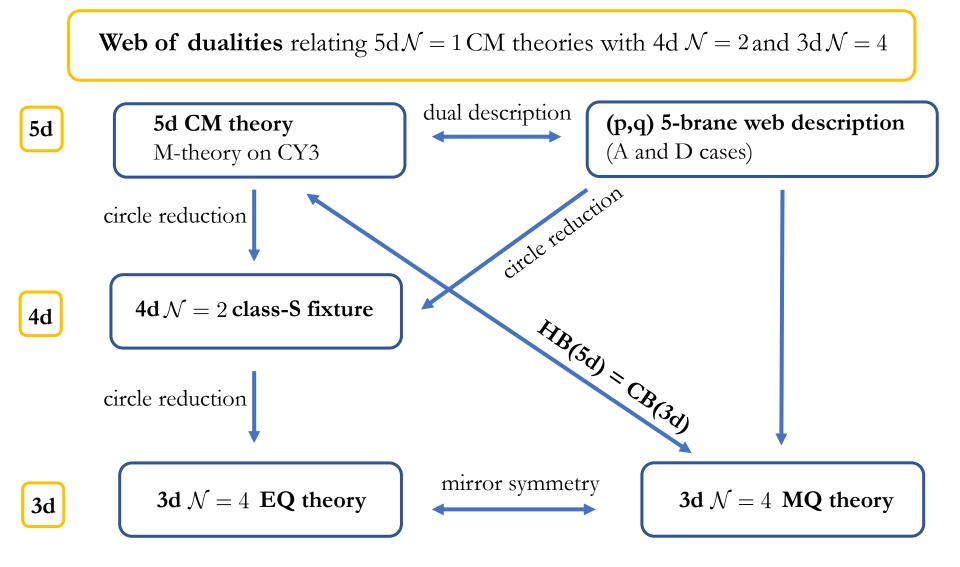
4d

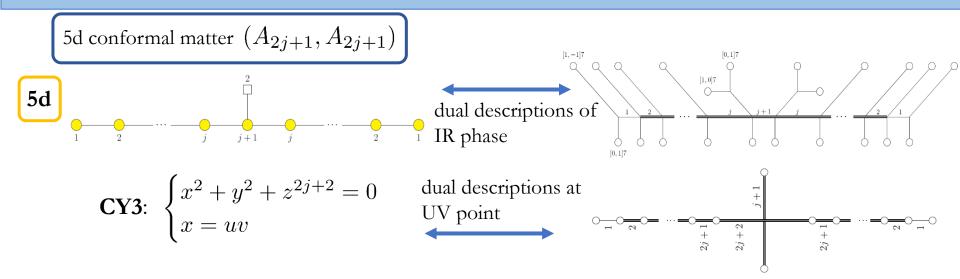
3d



3d

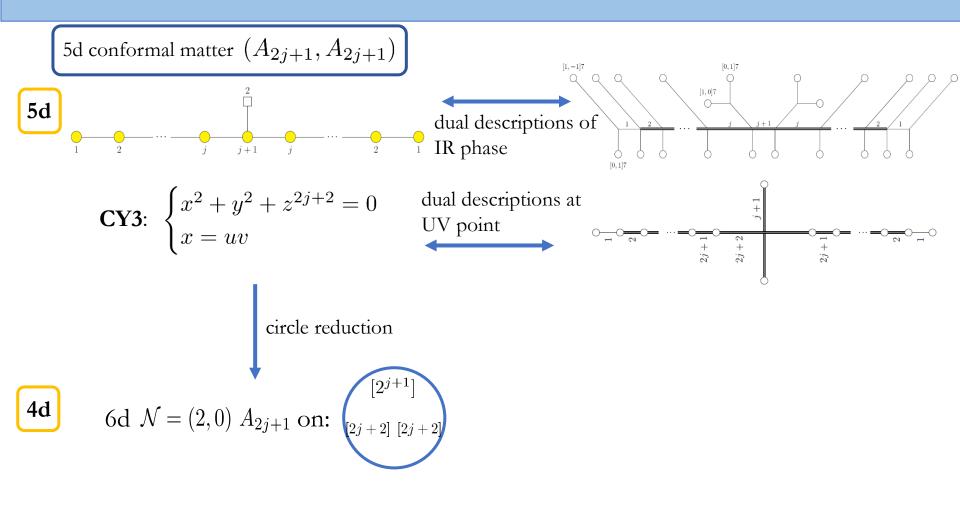




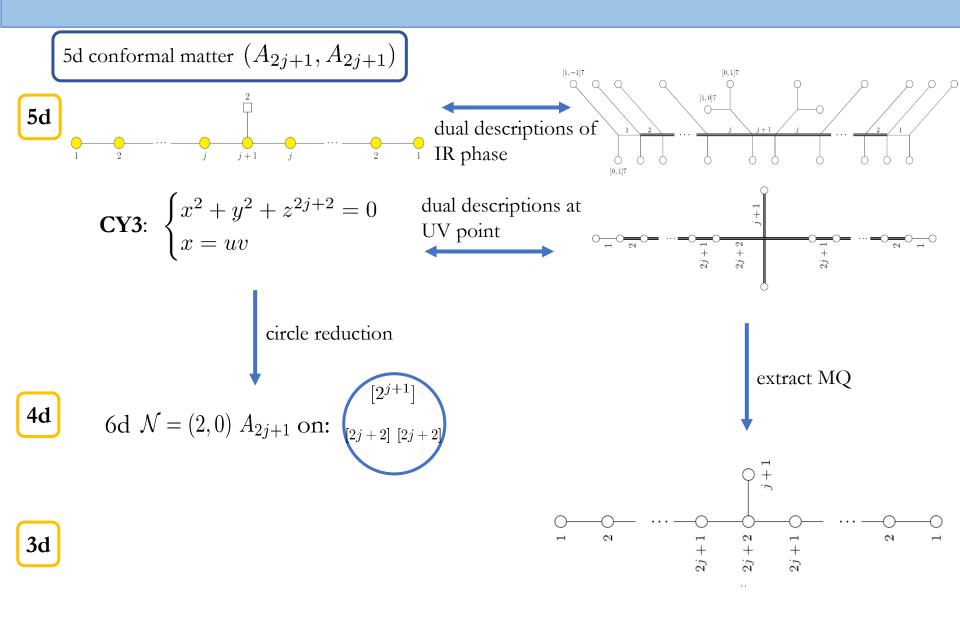


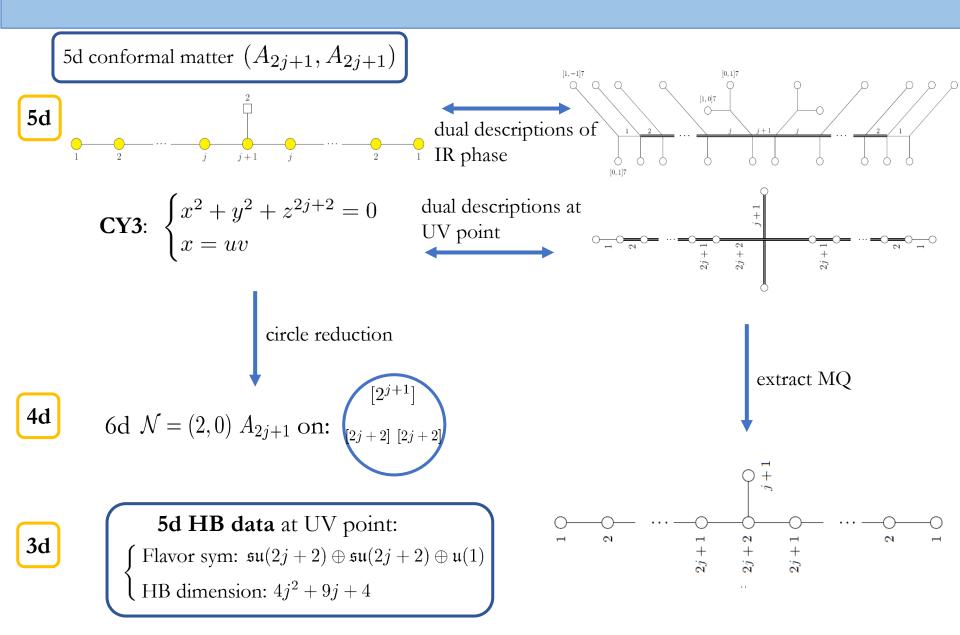
4d

3d



3d





Conclusions

Introduced new class of **5d SCFTs** with $\mathfrak{g} \times \mathfrak{g}$ flavor symmetry, $\mathfrak{g} \in ADE$:

• they can be constructed as gaugings of a finite set of **fundamental blocks** (atoms)

Exhibited their **circle reduction** and relation to **brane webs** and **magnetic quivers**:

• it allows to check the construction and extract information on the **Higgs branch**

Conclusions

Introduced new class of **5d SCFTs** with $\mathfrak{g} \times \mathfrak{g}$ flavor symmetry, $\mathfrak{g} \in ADE$:

• they can be constructed as gaugings of a finite set of **fundamental blocks** (atoms)

Exhibited their **circle reduction** and relation to **brane webs** and **magnetic quivers**:

it allows to check the construction and extract information on the Higgs branch

Future prospects:

- What about 5d SCFTs with \$\mathcal{g} \times \$\mathcal{g}\$ \times \$\mathcal{g}\$ (trinions) or \$\mathcal{g}\$ \times \$\mathcal{g}\$ \times \$\mathcal{g}\$ (tetraons) flavor symmetry?
- Have we exhausted all 5d SCFTs with g × g flavor symmetry? (answer: no, see e.g. T-branes)

Thank you for your attention!

Circle reduction of 5d CM molecules

What about the 4d $\mathcal{N} = 2$ theories obtained reducing 5d CM **molecules** on a circle?

• Molecules admit a 4d $\mathcal{N} = 2$ class-S description which is not a SCFT

• It corresponds to a low-energy quiver gauge theory phase of the 5d SCFT engineered by:

CY3:
$$\begin{cases} x^2 + y^3 + z^4 = 0 \\ x^{n_1} = uv \end{cases}$$

