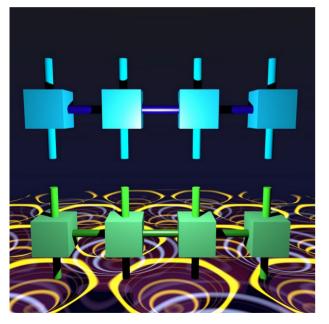
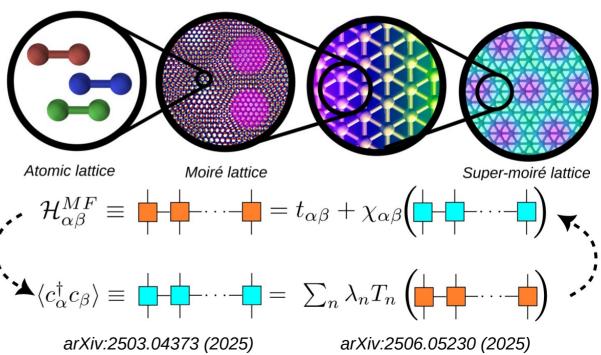
Solving correlated super-moire materials beyond one billion sites with tensor networks

Jose Lado

Department of Applied Physics, Aalto University, Finland



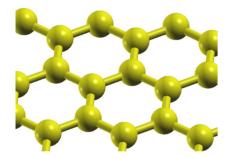
2D Materials 12 (1), 015018 (2025)



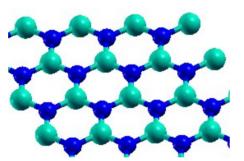
Topology and Geometry Beyond Perfect Crystals, Nordita, June 5th 2025

The two-dimensional materials world

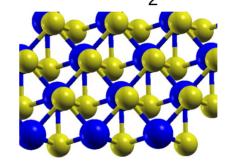
Semimetal Graphene



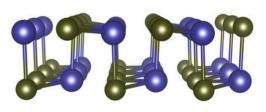
Insulator BN



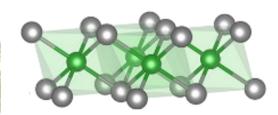
Superconductor NbSe₂

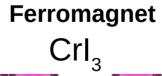


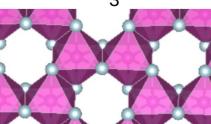
Ferroelectric SnTe

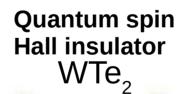


Multiferroic Nil₂









The flexibility of two-dimensional materials

They can be stacked They can be rotated

Nature 499, 419–425 (2013)

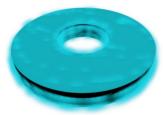
Science 361, 6403, 690-693 (2018)

These are unique features of two-dimensional materials

The tunability of twisted van der Waals materials

Twisted bilayer graphene

Superconductivity

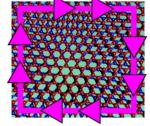


Nature 556, 43–50 (2018)

Nano Lett. 18, 11, 6725-6730 (2018)

Correlated insulators Quasicrystalline physics

Topological networks Chern insulators



Science 365, 605-608 (2019)

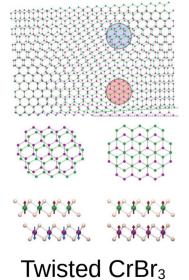
Proximal fractional Chern insulators

Nature 556, 80–84 (2018) Science 361, 782-786 (2018) Nature 600, 439–443 (2021)

Twisted multilayers provide a powerful platform for emergent phenomena

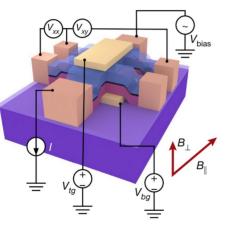
Artificial quantum matter in moire van der Waals heterostructures

Unconventional magnets



Science, 374(6571), 1140-1144 (2021)

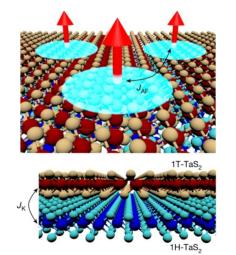
Unconventional superconductors



Twisted trilayer graphene

Nature 595, 526–531 (2021)

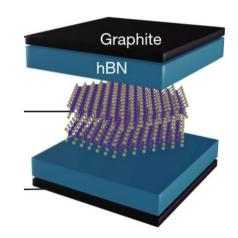
Heavy-fermion quantum materials



1H-1T TaS₂

Nature 599, 582–586 (2021)

Fractional topological matter

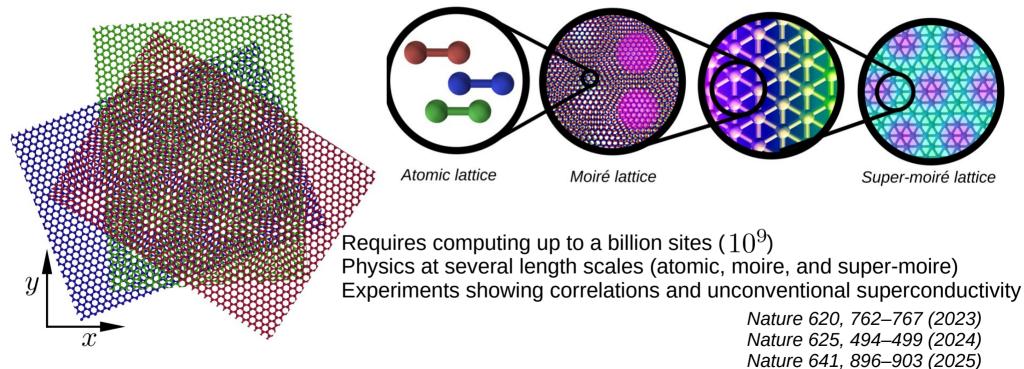


Twisted MoTe₂

Nature 622, 63–68 (2023)

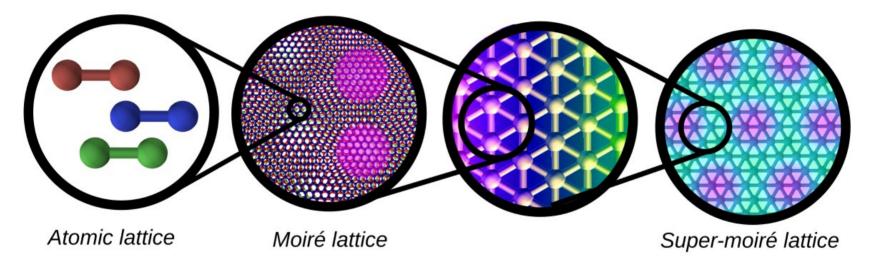
Super-moire materials

Moire-of-moire materials



How can we compute the electronic structure of exceptionally large systems?

Why super-moire materials are hard (for theorists)



Moire systems N=10⁵ sites, calculations taking around 1 minute Computational cost grows as N (best case) or N³ (worst case) Super-moire N=10⁹ sites, calculations taking 10 days – 1000000 years Is there a way to solve exceptionally large electronic structure problems? (even going beyond usual memory limitations of conventional methods)

Behind the scenes

Yitao Sun

Marcel Niedermeier

Adolfo Fumega

<u>Correlated states in super-moiré materials with a kernel polynomial quantics tensor cross interpolation</u> <u>algorithm</u>, AO Fumega, M Niedermeier, JL Lado, **2D Materials 12 (1), 015018 (2025)**

<u>Self-consistent tensor network method for correlated super-moire matter beyond one billion sites</u>, Y Sun, M Niedermeier, TVC Antão, AO Fumega, JL Lado, **arXiv:2503.04373 (2025)**

<u>Tensor network method for real-space topology in quasicrystal Chern mosaics</u>, TVC Antão, Y Sun, AO Fumega, JL Lado, **arXiv:2506.05230 (2025)**

An exponential computational challenge: quantum many.body

The problem of dimensionality

In a many-body problem, the size of our vectors grows as

For a single-particle tight binding problem, we can reach up to 10^8 sites in a laptop

For a many-problem, we cannot even store states for systems bigger than L=30 sites $2^{30}\sim 10^9$

The quantum many-body problem

Let us take a simple many-body problem

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

And let us imagine that we have L different sites on our system and S=1/2

For example, for L=2 sites the elements of the basis are

 $|\uparrow\uparrow\rangle \quad |\uparrow\downarrow\rangle \quad |\downarrow\uparrow\rangle \quad |\downarrow\downarrow\rangle$

For L=3 sites the elements of the basis are

The quantum many-body problem

Let us take a simple many-body problem

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

And let us imagine that we have L different sites on our system and S=1/2

For L=4 sites, the elements of the basis are

$$| \uparrow\uparrow\uparrow\uparrow\rangle \quad | \uparrow\uparrow\uparrow\downarrow\rangle \quad | \uparrow\uparrow\downarrow\downarrow\rangle \\ | \uparrow\downarrow\uparrow\uparrow\rangle \quad | \uparrow\downarrow\uparrow\downarrow\rangle \quad | \uparrow\downarrow\downarrow\downarrow\rangle \\ | \downarrow\uparrow\uparrow\uparrow\rangle \quad | \downarrow\uparrow\uparrow\downarrow\rangle \quad | \downarrow\uparrow\downarrow\downarrow\rangle \\ | \downarrow\uparrow\uparrow\uparrow\rangle \quad | \downarrow\uparrow\uparrow\downarrow\rangle \quad | \downarrow\uparrow\downarrow\downarrow\rangle \\ | \downarrow\downarrow\uparrow\uparrow\rangle \quad | \downarrow\downarrow\downarrow\downarrow\rangle \\ | \downarrow\downarrow\uparrow\uparrow\rangle \quad | \downarrow\downarrow\downarrow\downarrow\rangle \\ | \downarrow\downarrow\downarrow\downarrow\rangle$$

The quantum many-body problem

Let us take a simple many-body problem

$$\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

A typical wavefunction is written as

$$|\Psi\rangle = \sum c_{s_1,s_2,\ldots,s_L} |s_1,s_2,\ldots,s_L\rangle$$

We need to determine in total 2^L coefficients

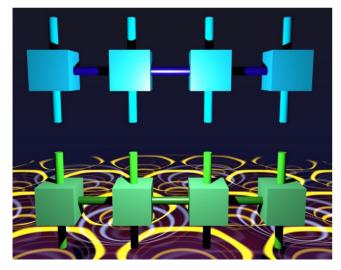
Is there an efficient way of storing so many coefficients?

Dealing with exponentially large spaces: the quantum many-body problem

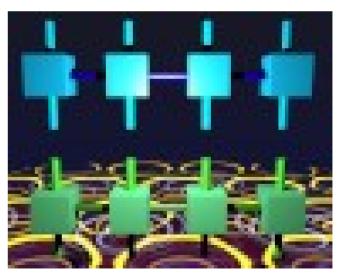
A many-body wavefunction a is a very high dimensional object (2^L coefficients)

$$|\Psi\rangle = \sum c_{s_1, s_2, \dots, s_L} |s_1, s_2, \dots, s_L\rangle$$

Tensor-networks allow "compressing" exponentially large information with linear resources



"True wavefunction"



"Tensor-network wavefunction"

The matrix-product state ansatz

For this wavefunction
$$\ket{\Psi} = \sum c_{s_1,s_2,...,s_L} \ket{s_1,s_2,...s_L}$$

Let us imagine to propose a parametrization in this form

$$c_{s_1,s_2,...,s_L} = M_1^{s_1}M_2^{s_2}....M_L^{s_3}$$
 dimension 2^L dimension $\sim Lm^2$

(m dimension of the matrix)

State compression with tensor-networks

Given a many-body wavefunction, we can parametrice the components as

$$|\Psi\rangle = \sum_{\{s\}} \operatorname{Tr} \left[M_1^{(s_1)} M_2^{(s_2)} \cdots M_N^{(s_N)} \right] |s_1 s_2 \dots s_N\rangle$$

Matrix product state

The previous representation allows drastically reducing the memory required to store a state

Annals of Physics 326, 96 (2011)

Dealing with exponentially large spaces: the quantum many-body problem

Typical many-body wavefunction

$$|\Psi\rangle = \sum c_{s_1,s_2,\ldots,s_L} |s_1,s_2,\ldots,s_L\rangle$$

We need to determine in total 2^L coefficients

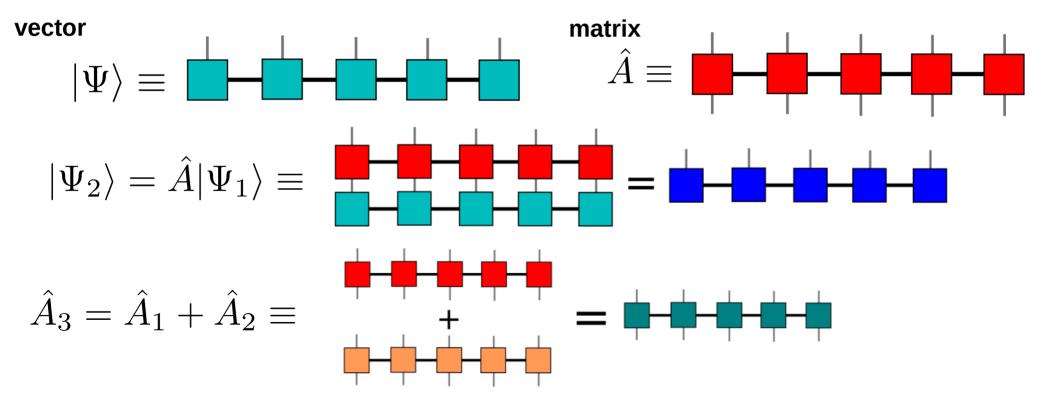
Is there an efficient way of storing so many coefficients?

Tensor networks allow parametrizing many-body wavefunctions as

Tensor networks allow to drastically reduce the memory required to store a many-body state Annals of Physics 326, 96 (2011)

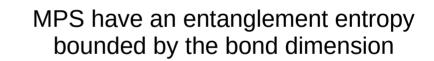
Exponentially large algebra with tensor networks

Tensor network allow to (approximately) operate in exponentially large vector spaces



MPS as a parametrization of finite entanglement states

Full Hilbert space

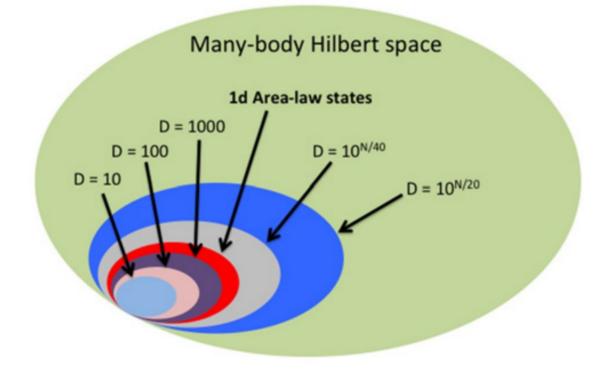


 $c_{s_1,s_2,\ldots,s_L} = M_1^{s_1} M_2^{s_2} \ldots M_L^{s_3}$

 $S \sim \log(m)$

A controlled way of parametrizing the Hilbert space

Sketch of the space parametrized with bond dimension D



The matrix-product state ansatz

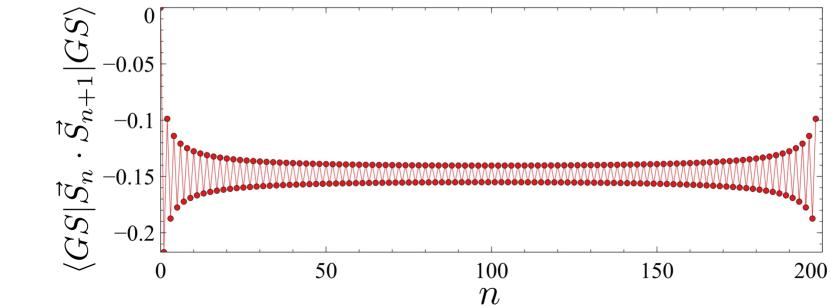
- This ansatz enforces a maximum amount of entanglement entropy in the state $S \sim \log m$
- One-dimensional many-body problems have ground states that can be captured with this ansatz

$$c_{s_1,s_2,\ldots,s_L} = M_1^{s_1} M_2^{s_2} \ldots M_L^{s_3}$$

This ansatz can be generalized for time-evolution, excited states, or typical thermal states

The Heisenberg model with tensor-networks

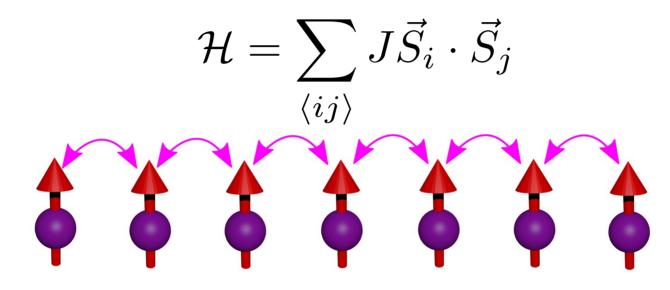
Non-uniform Heisenberg model $\mathcal{H} = \sum_{n} J(n) \vec{S}_{n} \cdot \vec{S}_{n+1}$ $J(n) \stackrel{n}{=} J_{0} + \delta \cos \Omega n$



Tensor networks allow solving a 200 many-body spin model in a few seconds in a laptop

Many-body dynamical correlators

One dimensional Heisenberg Hamiltonian



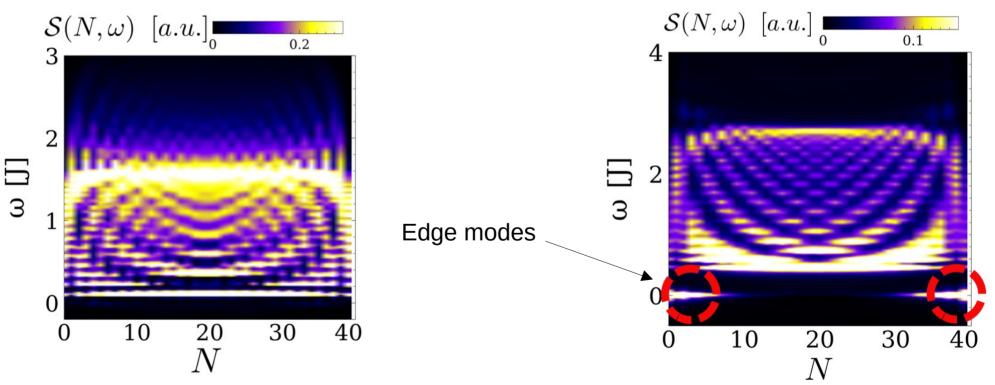
Tensor networks allow computing dynamical correlators

 $\mathcal{S}(N,\omega) = \langle GS | S_N^z \delta(\omega - \mathcal{H} + E_0) S_N^z | GS \rangle$

Dynamical structure factor of a Heisenberg model

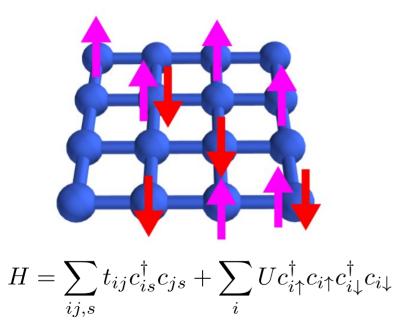
S=1/2 chain

S=1 chain



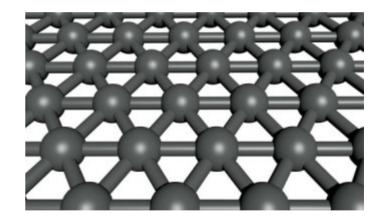
Some paradigmatic problems solved with matrix product states

Solving the 2D Hubbard model at finite doping



Science, 365(6460), 1424-1428 (2019)

Solving the 2D Heisenberg model in frustrated lattices



 $\mathcal{H} = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$

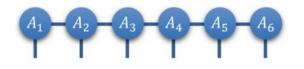
Phys. Rev. Lett. 123, 207203 (2019)

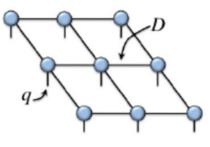
Many-body state compression

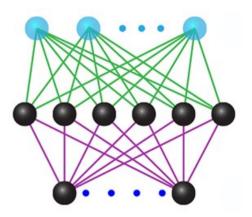
Matrix-product states

Projected entangled pair-states

Neural-network quantum states







Phys. Rev. Lett. 69, 2863 (1992)

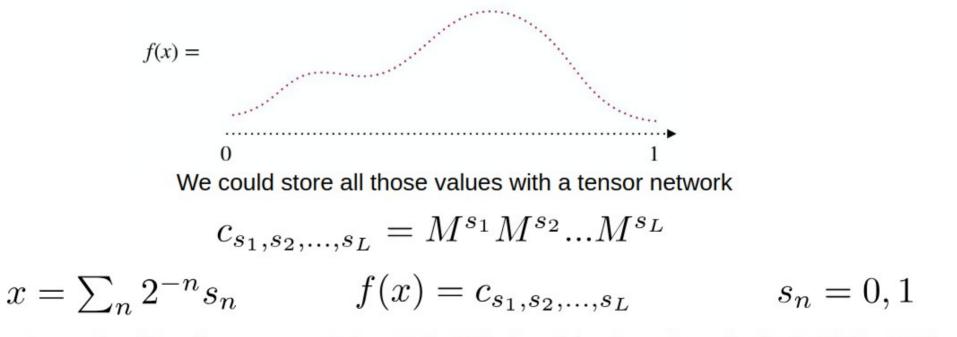
Annals of Physics 326, 96 (2011)

Science 355.6325 (2017): 602-606.

Other compressed many-body states could be potentially used for exponentially large problems

Tensor networks for non quantum-many body

Imagine that you have a function with an exponentially large number of points

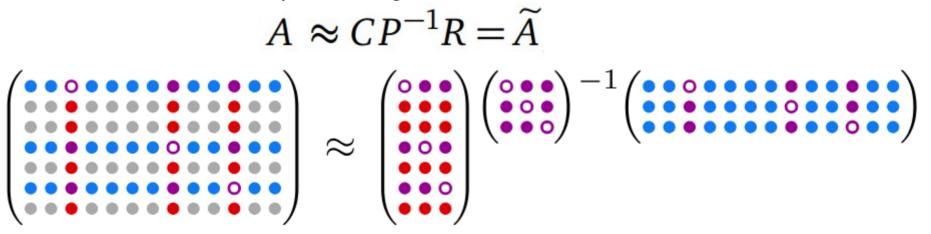


There is an algorithm (tensor cross interpolation) that enables to systematically build the MPS *Quantum-inspired active learning algorithm*

Machine learning tensor networks

How do we learn the tensor network representation of an exponentially large object?

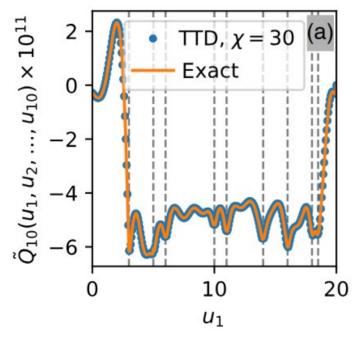
With a cross interpolation algorithm with the tensor network



Quantum inspired active learning to learn exponentially large spacesPhys. Rev. Lett. 132, 056501 (2024)SciPost Phys. 18, 104 (2025)

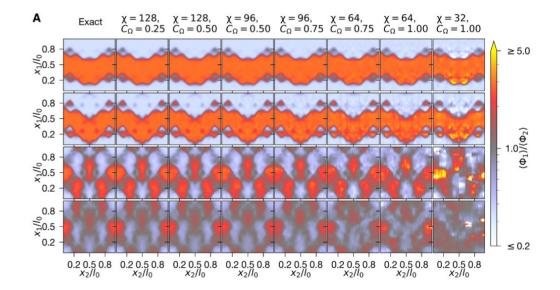
Learning exponentially large spaces with tensor networks

High dimensional integrals for Feynman diagrams



Phys. Rev. X 12, 041018 (2022)

Probabilistic turbulence distributions



Science Advances, 11 (5) 2025

Tensor networks for interacting super-moire materials

The challenge of correlated super-moire materials

Hamiltonian describing electrons in a super-moire material

$$H = H_0 + H_V = \sum_{\alpha\beta} t_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \sum_{\alpha\beta} V_{\alpha\beta} c^{\dagger}_{\alpha} c_{\alpha} c^{\dagger}_{\beta} c_{\beta}$$

Mean-field treatment of the interacting Hamiltonian

$$H^{MF} = \sum_{\alpha\beta} (t_{\alpha\beta} + \chi_{\alpha\beta}) c^{\dagger}_{\alpha} c_{\beta} = \sum_{\alpha\beta} H^{MF}_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta}$$

Solving the system requires dealing with matrices proportional to the system size

In a super-moire system, this requires solving a billion sites

How could we solve a system whose Hamiltonian would be too large to store?

(even before considering the time required to solve it)

Tensor network machine learning for single particle problems

We can identify a many-body space with a very large single particle one

 $\uparrow\uparrow\downarrow\rangle |\uparrow\downarrow\uparrow\rangle |\uparrow\downarrow\downarrow\rangle |\downarrow\uparrow\uparrow\rangle |\downarrow\uparrow\downarrow\rangle |\downarrow\uparrow\downarrow\rangle |\downarrow\downarrow\uparrow\rangle$

Many-body basis

Single particle basis $c_1^{\dagger} |\Omega\rangle c_2^{\dagger} |\Omega\rangle c_3^{\dagger} |\Omega\rangle c_4^{\dagger} |\Omega\rangle c_4^{\dagger} |\Omega\rangle c_5^{\dagger} |\Omega\rangle c_6^{\dagger} |\Omega\rangle c_7^{\dagger} |\Omega\rangle c_8^{\dagger} |\Omega\rangle$

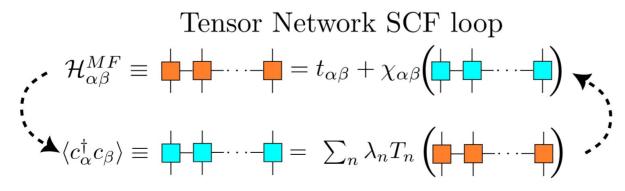
We can use a many-body method (tensor-networks) to solve an exponentially large problem 2D Materials 12 (1), 015018 (2025) arXiv:2503.04373 (2025)

How can we build this compressed representation for an exponentially large object? With quantics tensor-cross interpolation: a quantum-inspired active learning algorithm Phys. Rev. Lett. 132, 056501 (2024) SciPost Phys. 18, 104 (2025)

Self-consistent electronic interactions with tensor networks

We represent the super-moire electronic Hamiltonian as a tensor-network

The mean-field problem can be reformulated purely with tensor networks



arXiv:2503.04373 (2025)

Self-consistent electronic interactions with tensor networks

Super-moire interacting Hamiltonian

$$H = H_0 + H_V = \sum_{\alpha\beta} t_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \sum_{\alpha\beta} V_{\alpha\beta} c^{\dagger}_{\alpha} c_{\alpha} c^{\dagger}_{\beta} c_{\beta}$$

Mean-field decoupled Hamiltonian

$$H^{MF} = \sum_{\alpha\beta} (t_{\alpha\beta} + \chi_{\alpha\beta}) c^{\dagger}_{\alpha} c_{\beta} = \sum_{\alpha\beta} H^{MF}_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta}$$

Chebyshev expansion of the correlators

$$\langle c^{\dagger}_{\alpha}c_{\beta}\rangle = \langle \alpha | \Xi(\mathcal{H}^{MF}) | \beta \rangle \equiv \Box - \Box$$

$$\Xi(\mathcal{H}^{MF}) = \sum \lambda_n T_n(\mathcal{H}^{MF})$$
$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

Rev. Mod. Phys. 78, 275 (2006) arXiv:2503.04373 (2025)

Spectral functions with tensor networks

Local spectral function of the mean-field Hamiltonian

$$D(\omega, \alpha) = \langle \alpha | \left[\sum_{n} T_n(\mathcal{H}^{MF}) P_n(\omega) \right] | \alpha \rangle$$

With a tensor network Chebyshev algorithm

Rev. Mod. Phys. 78, 275 (2006)

arXiv:2503.04373 (2025)

Tensor network representation of a super-morie Hamiltonian

We can identify a many-body space with a very large single particle one

Many-body basis $|\uparrow\uparrow\uparrow\rangle$ $|\uparrow\uparrow\downarrow\rangle$ $|\uparrow\downarrow\uparrow\rangle$ $|\uparrow\downarrow\uparrow\rangle$ $|\downarrow\uparrow\uparrow\rangle$ $|\downarrow\uparrow\downarrow\rangle$ $|\downarrow\uparrow\downarrow\rangle$ $|\downarrow\uparrow\downarrow\rangle$ Single particle basis $c_1^{\dagger} |\Omega\rangle c_2^{\dagger} |\Omega\rangle c_3^{\dagger} |\Omega\rangle c_4^{\dagger} |\Omega\rangle c_5^{\dagger} |\Omega\rangle c_6^{\dagger} |\Omega\rangle c_6^{\dagger} |\Omega\rangle c_8^{\dagger} |\Omega\rangle$ In the tight binding basis uniform hopping takes the form $H_{0,NN} = \sum_{\alpha,s}^{N-1} t(c_{x_{\alpha+1},s}^{\dagger} c_{x_{\alpha},s} + h.c.)$ In the tensor-network pseudospin basis, uniform hopping takes the form

$$\mathcal{H}_{0,NN} = \sum_{l,s}^{L} t(\sigma_{l,s}^{+} \bigotimes_{m>l} \sigma_{m,s}^{-} + h.c.)$$

Tensor network representation of a super-morie Hamiltonian

We can identify a many-body space with a very large single particle one

 $|\uparrow\uparrow\downarrow\rangle |\uparrow\downarrow\uparrow\rangle |\uparrow\downarrow\downarrow\rangle |\downarrow\uparrow\uparrow\rangle |\downarrow\uparrow\downarrow\rangle |\downarrow\downarrow\uparrow\rangle |\downarrow\downarrow\uparrow\rangle$

Many-body basis $|\uparrow\uparrow\uparrow\rangle$

Single particle basis $c_1^{\dagger} |\Omega\rangle \ c_2^{\dagger} |\Omega\rangle \ c_3^{\dagger} |\Omega\rangle \ c_4^{\dagger} |\Omega\rangle \ c_5^{\dagger} |\Omega\rangle \ c_6^{\dagger} |\Omega\rangle \ c_7^{\dagger} |\Omega\rangle \ c_8^{\dagger} |\Omega\rangle$

The tensor-network moire hopping can be built as

Find the MPS representation fo the modulation and store in a diagonal MPO '

$$\tau \rangle = \sum M_{s_1}^{(1)} M_{s_2}^{(2)} M_{s_3}^{(3)} \dots M_{s_L}^{(L)} | s_1, s_2, \dots, s_L \rangle$$

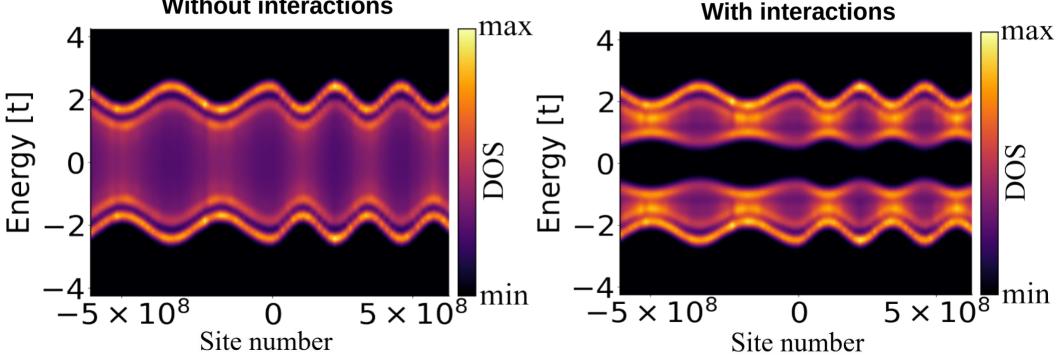
Quantics tensor cross interpolation

Modulated super-moire by constraction

$$\mathcal{H}_0 = \{ [\mathcal{T} \sum_{l,s}^L (\sigma_{l,s}^+ \bigotimes_{m>l} \sigma_{m,s}^-)] + h.c. \}$$

Solving billion-size super-moire materials

Without interactions



Tensor networks allow to solve selfconsistently a super-moire with one billion sites

arXiv:2503.04373 (2025)

Solving billion-size super-moire materials

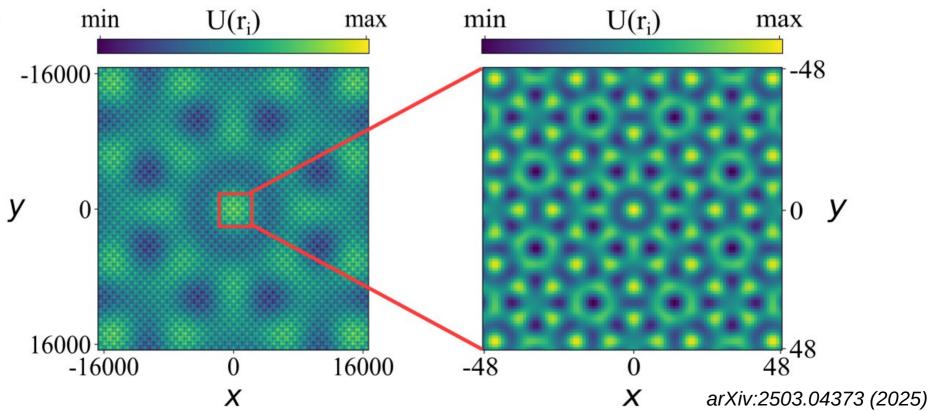
With interactions (short scale)

With interactions (large scale) max 4 4 Energy [t] Energy [t] DOS $\mathbf{0}$ $-4 - 5 \times 10^8$ 5 × 10⁸ min -40 - 2020 40 0 Site number Site number

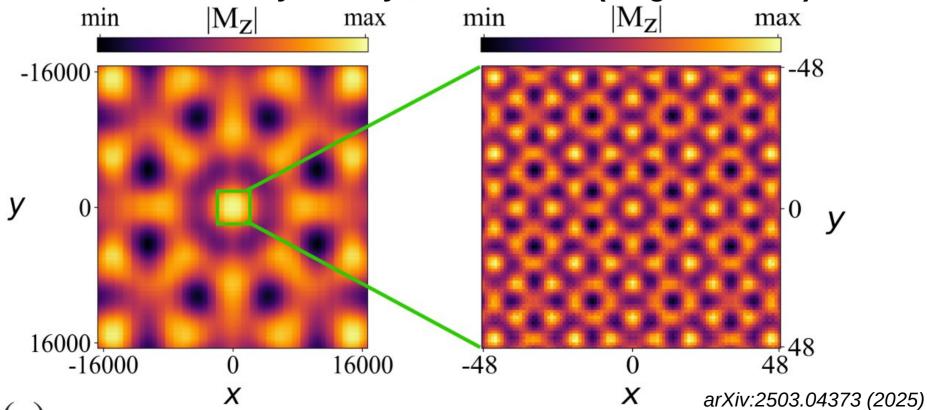
Tensor networks allow to solve selfconsistently a super-moire with one billion sites

arXiv:2503.04373 (2025)

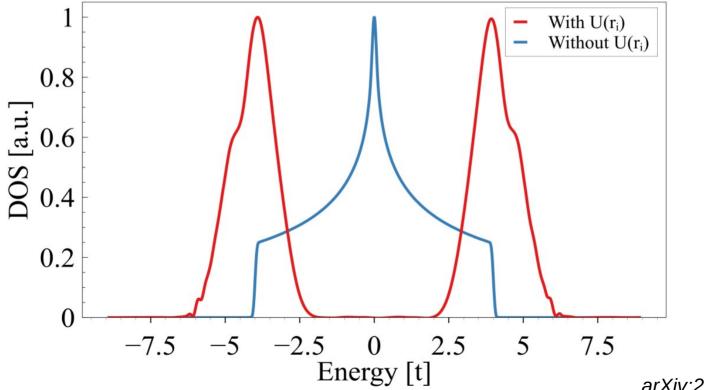
Modulation fo the Hamiltonian



Selfconsistent symmetry broken order (magnetization)

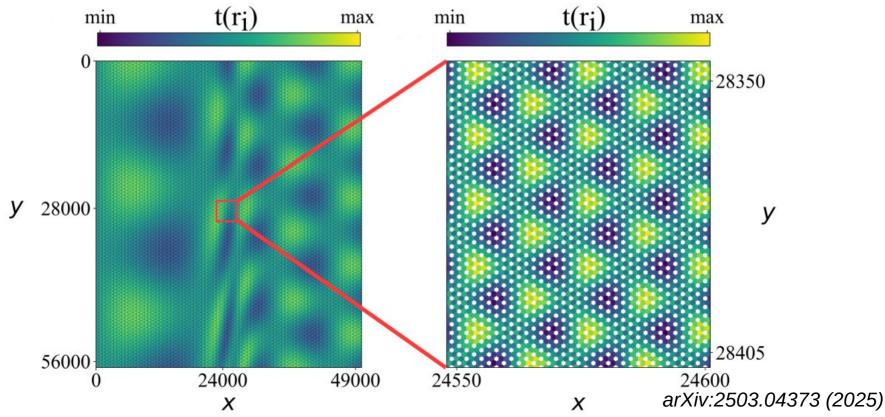


Spectral function with and without interactions

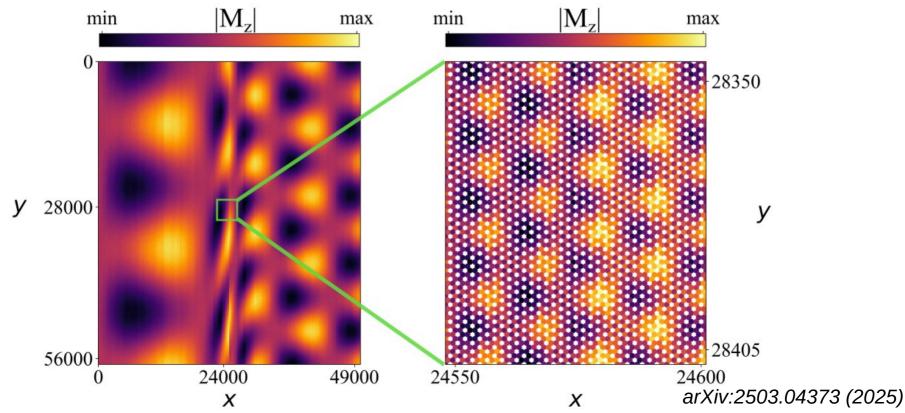


arXiv:2503.04373 (2025)

Modulation fo the Hamiltonian



Selfconsistent symmetry broken order (magnetization)



Computational performance of tight binding tensor networks

Time VS system size $.4 \times 10^{4}$ Fitting 1.2×10^{4} (here a start definition of the start definition of th 10^{4} T [s] 8×10^{3} 6×10^{3} 10^{-3} 4×10^{3} $1000 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9$ 20 80 40 60 100 Size χ arXiv:2503.04373 (2025)

Accuracy VS bond dimension

Topological invariants in real-space

The density matrix of a super-moire system can be expressed as a tensor network

$$\hat{\mathcal{P}} = \int_{-\infty}^{\varepsilon_F} \delta(\omega - \hat{H}) d\omega = \sum \Xi_{s_1, s_1'}^{(1)} \Xi_{s_2, s_2'}^{(2)} \cdots \Xi_{s_L, s_L'}^{(L)} |s\rangle \langle s'|$$

With a kernel polynomial tensor network algorithm

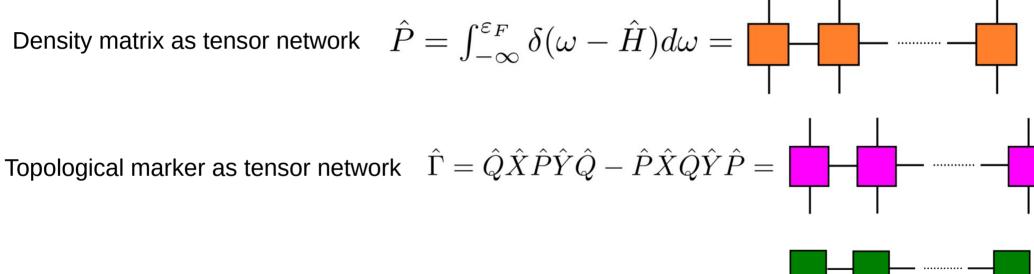
$$\hat{\mathcal{P}} = \sum_{n} T_n(\hat{\mathcal{H}}) \int_{-\infty}^{\varepsilon_F} d\omega \frac{T_n(\omega)}{\sqrt{1-\omega^2}},$$

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

 $T_0 = 1 \text{ and } T_1(x) = x$

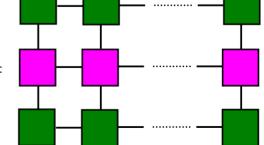
arXiv:2506.05230 (2025)

Computing Chern numbers with tensor networks



Chern number from tensor network contraction

$$C_{\alpha} = 2\pi i \langle \alpha | \hat{\Gamma} | \alpha \rangle =$$



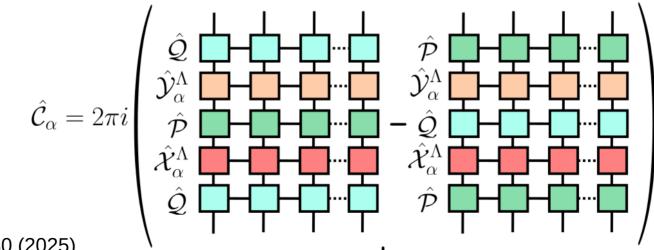
arXiv:2506.05230 (2025)

Tensor network topological marker

Real-space Chern number (Chern marker)

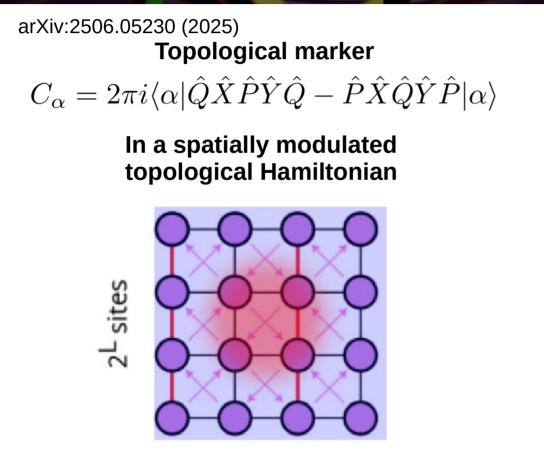
$$C_{\alpha} = 2\pi i \langle \alpha | \hat{Q} \hat{X} \hat{P} \hat{Y} \hat{Q} - \hat{P} \hat{X} \hat{Q} \hat{Y} \hat{P} | \alpha \rangle$$

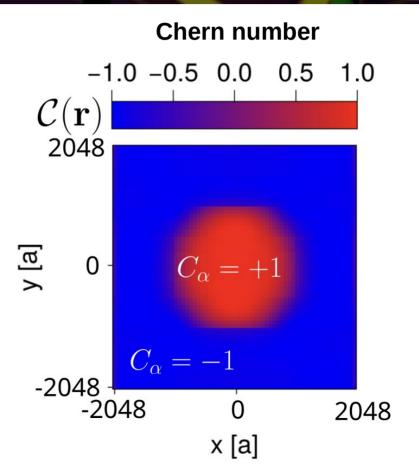
Tensor-network Chern marker



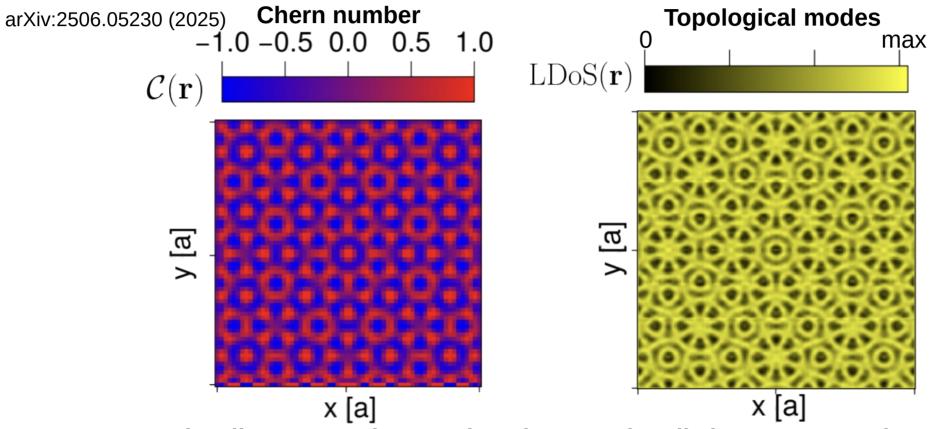
arXiv:2506.05230 (2025)

Topological domain with tensor networks





Super-moire topological matter with tensor networks



Tensor networks allow computing topology in exceptionally large super-moire systems

Open-source software for artificial quantum materials

Open-source software for many-body quantum magnets

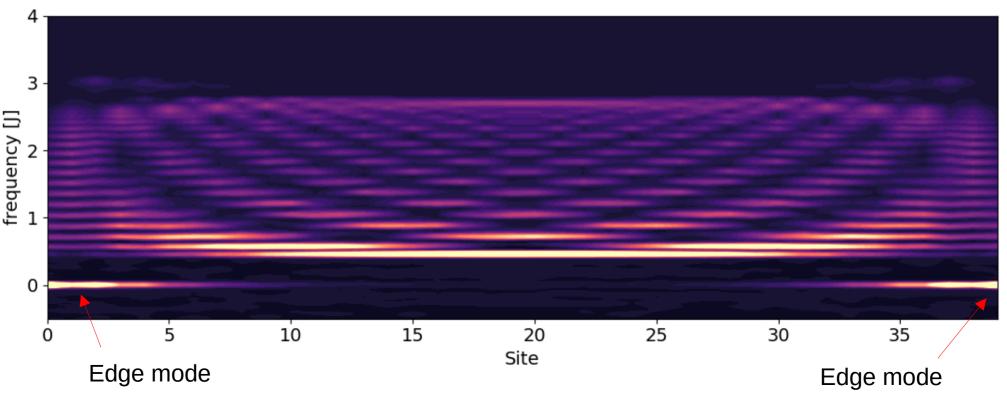
Python library for tensor-network kernel polynomial algorithms for spins, fermions, parafermions, with static solvers for Hermitian and non-Hermitian modes

from dmrgpy import spinchain
spins = ["S=1" for i in range(40)] # S=1 chain
sc = spinchain.Spin_Chain(spins) # create spin chain object
h = 0 # initialize Hamiltonian
for i in range(len(spins)-1):
 h = h + sc.Sx[i]*sc.Sx[i+1]
 h = h + sc.Sy[i]*sc.Sy[i+1]
 h = h + sc.Sz[i]*sc.Sz[i+1]
sc.set_hamiltonian(h)
sc.get_dynamical_correlator(name=(sc.Sz[0], sc.Sz[0]))

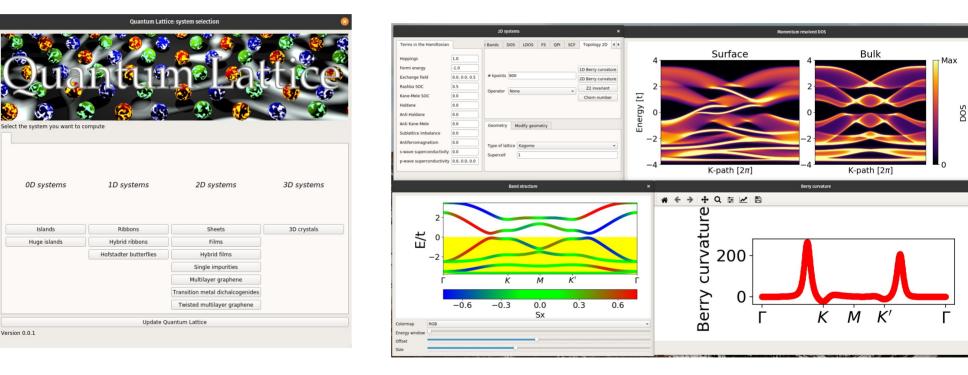
dmrgpy https://github.com/joselado/dmrgpy

Open-source software for many-body quantum magnets

The spin spectral function of the S=1 Heisenberg model (L=40 sites)



Quantum Lattice: A user interface to compute electronic properties



Quantum Lattice: open source interactive interface for tight binding modeling

https://github.com/joselado/quantum-lattice

Take home

Tensor network machine learning allows solving exponentially large electronic structure problems, reaching the regime required for super-moire materials

