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The two-dimensional materials world
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The flexibility of two-dimensional materials

They can be stacked They can be rotated 

These are unique features of two-dimensional materials

Nature 499, 419–425 (2013) Science 361, 6403, 690-693 (2018)



  

The tunability of twisted van der Waals 
materials

Nature 556, 43–50 (2018)

SuperconductivityTwisted bilayer graphene Topological networks

Correlated insulators Quasicrystalline physics

Science 361, 782-786 (2018)

Twisted multilayers provide a powerful platform for emergent phenomena
Nature 556, 80–84 (2018)

Nano Lett. 18, 11,
6725-6730 (2018)

Chern insulators

Science 365, 605-608 (2019)

Proximal fractional
Chern insulators

Nature 600, 439–443 (2021)



  

Artificial quantum matter in moire
van der Waals heterostructures

Unconventional
magnets

Unconventional
superconductors

Heavy-fermion
quantum materials

Fractional
topological matter

Twisted MoTe2

Nature 622, 
63–68 (2023)

1H-1T TaS2
Twisted trilayer

graphene
Twisted CrBr3

Nature 599,
582–586 (2021)

Science, 374(6571),
1140-1144 (2021)

Nature 595,
526–531 (2021)



  

Super-moire materials
Moire-of-moire materials

Requires computing up to a billion sites (       )
Physics at several length scales (atomic, moire, and super-moire)
Experiments showing correlations and unconventional superconductivity 

How can we compute the electronic structure of exceptionally large systems?

Nature 620, 762–767 (2023)
Nature 625, 494–499 (2024)
Nature 641, 896–903 (2025)



  

Why super-moire materials are hard 
(for theorists)

Moire systems N=105 sites, calculations taking around 1 minute
Computational cost grows as N (best case) or N3 (worst case)
Super-moire N=109 sites, calculations taking 10 days – 1000000 years

Is there a way to solve exceptionally large electronic structure problems?
(even going beyond usual memory limitations of conventional methods)
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An exponential computational 
challenge: quantum many.body



  

The problem of dimensionality
In a many-body problem, the size of our vectors grows as

where L is the number of sites

For a single-particle tight binding problem, we can reach up to sites in a laptop

For a many-problem, we cannot even store states for systems bigger than                   sites



  

The quantum many-body problem
Let us take a simple many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For example, for L=2 sites the elements of the basis are

For L=3 sites the elements of the basis are



  

The quantum many-body problem

And let us imagine that we have L different sites on our system and S=1/2

For L=4 sites, the elements of the basis are

Let us take a simple many-body problem



  

The quantum many-body problem

A typical wavefunction is written as 

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?

Let us take a simple many-body problem



  

Dealing with exponentially large spaces: 
the quantum many-body problem

A many-body wavefunction a is a very high dimensional object  (       coefficients)

Tensor-networks allow “compressing” exponentially large information with linear resources

“True wavefunction” “Tensor-network wavefunction”



  

The matrix-product state ansatz
For this wavefunction

Let us imagine to propose a parametrization in this form

dimension
dimension

(m dimension of the matrix)



  

State compression with tensor-networks

Given a many-body wavefunction, we can parametrice the components as

The previous representation allows drastically reducing the memory required to store a state

Matrix product state

Annals of Physics 326, 96 (2011)



  

Dealing with exponentially large spaces: 
the quantum many-body problem

Typical many-body wavefunction

We need to determine in total coefficients

Is there an efficient way of storing so many coefficients?

Tensor networks allow parametrizing many-body wavefunctions as

Tensor networks allow to drastically reduce the memory required to store a many-body state

Matrix product state

Annals of Physics 326, 96 (2011)

parameters

Full wavefunction



  

Exponentially large algebra with 
tensor networks

Tensor network allow to (approximately) operate in exponentially large vector spaces

vector matrix



  

MPS as a parametrization of finite 
entanglement states

MPS have an entanglement entropy
bounded by the bond dimension



  

A controlled way of parametrizing 
the Hilbert space

Sketch of the space parametrized with bond dimension D



  

The matrix-product state ansatz
● This ansatz enforces a maximum amount of 

entanglement entropy in the state
● One-dimensional many-body problems have 

ground states that can be captured with this 
ansatz

This ansatz can be generalized for time-evolution, excited states, or typical thermal states



  

The Heisenberg model
with tensor-networks

Non-uniform Heisenberg model

Tensor networks allow solving a 200 many-body spin model in a few seconds in a laptop



  

Many-body dynamical correlators
One dimensional Heisenberg Hamiltonian

Tensor networks allow computing dynamical correlators



  

Dynamical structure factor
of a Heisenberg model

S=1/2 chain S=1 chain

Edge modes



  

Some paradigmatic problems
solved with matrix product states
Solving the 2D Hubbard
model at finite doping

Solving the 2D Heisenberg
model in frustrated lattices

Science, 365(6460), 1424-1428 (2019) Phys. Rev. Lett. 123, 207203 (2019)



  

Many-body state compression

Neural-network quantum states

Science 355.6325 (2017): 602-606.

Matrix-product states Projected entangled pair-states

Phys. Rev. Lett. 69, 2863 (1992)

Other compressed many-body states could be potentially
used for exponentially large problems

Annals of Physics 326, 96 (2011)



  

Tensor networks
for non quantum-many body



  

Machine learning tensor networks
How do we learn the tensor network representation of an 

exponentially large object?
With a cross interpolation algorithm with the tensor network

Quantum inspired active learning to learn exponentially large spaces
Phys. Rev. Lett. 132, 056501 (2024)                   SciPost Phys. 18, 104 (2025)



  

Learning exponentially large spaces 
with tensor networks

High dimensional integrals
for Feynman diagrams

Phys. Rev. X 12, 041018 (2022)

Probabilistic turbulence distributions

Science Advances, 11 (5) 2025



  

Tensor networks for interacting 
super-moire materials



  

The challenge of correlated
super-moire materials

Hamiltonian describing electrons in a super-moire material

Mean-field treatment of the interacting Hamiltonian

Solving the system requires dealing with matrices proportional to the system size

How could we solve a system whose Hamiltonian would be too large to store?

In a super-moire system, this requires solving a billion sites

(even before considering the time required to solve it)



  

Tensor network machine learning for 
single particle problems

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis

We can use a many-body method (tensor-networks) to solve an exponentially large problem 

How can we build this compressed representation for an exponentially large object?

With quantics tensor-cross interpolation: a quantum-inspired active learning algorithm
Phys. Rev. Lett. 132, 056501 (2024)                   SciPost Phys. 18, 104 (2025)

2D Materials 12 (1), 015018 (2025)                       arXiv:2503.04373 (2025)



  

Self-consistent electronic 
interactions with tensor networks

We represent the super-moire electronic Hamiltonian as a tensor-network

The mean-field problem can be reformulated purely with tensor networks 

arXiv:2503.04373 (2025)



  

Self-consistent electronic 
interactions with tensor networks

Super-moire interacting Hamiltonian

Mean-field decoupled Hamiltonian

Chebyshev expansion of the correlators

Rev. Mod. Phys. 78, 275 (2006)
arXiv:2503.04373 (2025)



  

Spectral functions with tensor 
networks

Local spectral function of the mean-field Hamiltonian

Rev. Mod. Phys. 78, 275 (2006)

With a tensor network Chebyshev algorithm

arXiv:2503.04373 (2025)



  

Tensor network representation of a 
super-morie Hamiltonian

In the tight binding basis uniform hopping takes the form

In the tensor-network pseudospin basis, uniform hopping takes the form

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis



  

Tensor network representation of a 
super-morie Hamiltonian

The tensor-network moire hopping can be built as 

We can identify a many-body space with a very large single particle one

Many-body basis

Single particle basis

Find the MPS representation fo the modulation and store in a diagonal MPO 

Quantics tensor
cross interpolation

Modulated super-moire by constraction



  

Solving billion-size
super-moire materials

Without interactions With interactions

Tensor networks allow to solve selfconsistently a super-moire with one billion sites
arXiv:2503.04373 (2025)



  

Solving billion-size
super-moire materials

With interactions (large scale)With interactions (short scale)

arXiv:2503.04373 (2025)
Tensor networks allow to solve selfconsistently a super-moire with one billion sites



  

Two-dimensional billion size 
interacting super-moire

Modulation fo the Hamiltonian

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Selfconsistent symmetry broken order (magnetization)

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Spectral function with and without interactions

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Modulation fo the Hamiltonian

arXiv:2503.04373 (2025)



  

Two-dimensional billion size 
interacting super-moire

Selfconsistent symmetry broken order (magnetization)

arXiv:2503.04373 (2025)



  

Computational performance of tight 
binding tensor networks

Time VS system size Accuracy VS bond dimension

arXiv:2503.04373 (2025)



  

Topological invariants in real-space

With a kernel polynomial tensor network algorithm

The density matrix of a super-moire system can be expressed as a tensor network

 arXiv:2506.05230 (2025)



  

Computing Chern numbers with 
tensor networks

Density matrix as tensor network

Topological marker as tensor network

Chern number from tensor network contraction

 arXiv:2506.05230 (2025)



  

Tensor network topological marker
Real-space Chern number (Chern marker)

Tensor-network Chern marker

 arXiv:2506.05230 (2025)



  

Topological domain with tensor 
networks

Chern number
Topological marker

In a spatially modulated
topological Hamiltonian

 arXiv:2506.05230 (2025)



  

Super-moire topological matter with 
tensor networks

Chern number
0 max

Tensor networks allow computing topology in exceptionally large super-moire systems

Topological modes arXiv:2506.05230 (2025)



  

Open-source software for 
artificial quantum materials



  

Open-source software for many-body 
quantum magnets

Python library for tensor-network kernel polynomial algorithms for spins, fermions, 
parafermions, with static solvers for Hermitian and non-Hermitian modes

https://github.com/joselado/dmrgpydmrgpy



  

Open-source software for many-body 
quantum magnets

The spin spectral function of the S=1 Heisenberg model (L=40 sites)

Edge mode Edge mode



  

Quantum Lattice: A user interface to
compute electronic properties

https://github.com/joselado/quantum-lattice
Quantum Lattice: open source interactive interface for tight binding modeling



  

Take home

Tensor network machine learning allows solving exponentially 
large electronic structure problems, reaching the regime 

required for super-moire materials

2D Materials 12 (1), 015018 (2025)
arXiv:2503.04373 (2025) 
arXiv:2506.05230 (2025)
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