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Detecting local topology via the spectral localizer

Chern numbers in d =2

Short-range Hamiltonian H on ¢2(Z? Cl), Fermi P = x(H < E)

For periodic system: Bloch-Floquet theory

dk
Ch(P) = 2
(") =201 [ ey
Noncommutative analog for random H = ( w)weQ using positions
Ch(P) = 2miE Tr({0|P [[X1, P], [X2, P]]|0)) = 2mi T (PdPdP)
= 271 E Tr((0|[PX1P, PXaP]|0))  (averaged local marker)

Tr(Pk[é?kl Py, Ok, Pk] /Tr PdPdP) €

Index theorem (Connes, Bellissard 1980's, et al. early 1990's)

E € A C R Anderson localized. Then almost surely

and p € A — Ch(P) constant
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Numerical computation of Chern number

Periodic system: implementation of k-integral, twisted BC
disordered system: compute P from H (costly), then above formula
Topological photonic crystals: 100's of bands, not feasible
Spectral localizer: (Loring 2015) gap at E = 0, (dual) Dirac trap

= (oo 0™)

Selfadjoint L, = (Lx)* with compact resolvent. Fact: gap at 0

Ly, finite volume restriction to [—p, p]?. For k small and p large:

1.
Ch(P) = ESlg(L,@p)

Computation: only LDL necessary for Sig! No spectral calculus!
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Implementation for dirty p + ip superconductor

Density of states (DOS) of the localizer for kK = 0.1 and p = 20

DOS of Spectral Localizer
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20 B

-4 -2 0 2 4

Looks harmless, however, note gap at 0

Spectral asymmetry = —2 = # positive — # negative eigenvalues
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Finite volume computation of Chern numbers

Theorem (with Loring 2017, 2020)
Let g = ||(H — p) 71|~ be gap of homogeneous H. Suppose

2g g
— < K < .
p 12 ||H|[ |[[X2 + iX2, H]|

Then L, , has (topological protection) gap px,, > § at 0 and

1.
Ch(P) = §Slg(L,€7p)

v

If H "differentiable”, conditions always OK for x small and p large
Homogeneous model: typically k =~ 0.1, p ~ 20 sufficient

Proof: K-theory of fuzzy spheres or spectral flow

Also: other dimensions, strong & weak, Z,'s, & other things
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Intuition: H topological mass term added to Dirac

—\H k(X1 — iX2)> 2> 0

Le(A) = (H(Xl—i—ng) AH

Spectrum for A = 0 symmetric and with space quanta «

Spectrum for A = 1: less regular, central gap open and asymmetry

N

7

— l H—H—— o(L(1)

0

Spectral asymmetry determined by low-lying spectrum (finite vol!)
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Spectral flow proof (for odd index pairings)

Using Sf = Ind for phase U = A|A|~! and M = x(D > 0) Hardy:

Chg(A) = Ind(MAN+1—M) = Ind(MUN +1 —N)
— Sf(U*DU, D) = Sf(r U*DU, k D)

(69 (7 o) (0 2)-(7 o))
-5:((0 1) (7 2) (0 D)-(7 1))
_ <<KJU*DU _ﬁD> </<0D _,SD>>
=5(( o) (6 o))

Now localize and use Sf = %Sig-DifF on paths of s.-a. matrices O
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Local nature of L, in space and in energy

Shift localizer to energy E  (e.g. through mobility gap or band)
and in space to x = (x1,x2) (e.g. through interface)

_ —(H, - E) R((X = x1) = i(Xe — x2))
Ln’p(E’X) - </€((X1 — X1)p+ i(X2 — Xz)) Hp — E )

Here H, either Dirichlet or periodic boundary condition
N.B.: for large Xj, H, and its edge states dominated
Intuition: low lying spectrum depends on phase space point (x, E)
But: bound on topological protection depends on global quantities
(global gap g and operator norms ||H|| and [|[X, H]||)
So: no stability of p under large perturbations far out
Three crucial improvements of stability criterion:

local energy gap, relative operator norms, optimized constants
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Preparations: local gap and tapering estimate

Local gap of H
p-local gap g,(H, x) is largest g such that

(H)g,x) > &°1,(x)

N.B.: (H?)g,(x) # (Hg,(x))?, so no edge states
Obvious: locality, g,(H, x) decreasing in p, global gap criterion

Tapering Function F : R — [0, 1]

Even, C1, with F(y) =0 for [y| > 1 and F(y) =1 for |y| < 1

Given p > 0, set F,(y) = F(%)

4

Tapering estimate with constant Cg

IF(X = x), H]|| < CPFII[X,H]II

N
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Numerical

(a) and (b): Haldane model on 80 x 80 sites, x center of sample

(c) and (d): massive graphene/Haldane heterostructure, p = 12
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Constant in tapering estimate

Bratteli-Robinson: Cr = HI?’HLl Construction:
F(x) = p(2x +2) — p(2x — 1) with ¢(x) = T o) dy¢>(y Jo dy o(y

Optimizing ¢k (x) = exp(—2kﬁ) for x € [0,1] gives Cr =2

(a) Haldane model (b) SSH model
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Improved local criterion for topological protection

Theorem (with Cerjan, arbitrary even dimension d)

Let a,b > 0 with 1 —a— b > 0 and set ¢® =

T2z as well as

d
. o -1
Re = (i1+<5D(x)™" . D)= 3 (X —x)
j=1
Suppose finite volume criterion ’
2& < Kk < gg
p T 1w (CFIHR + g)llID(x), HIR.|

Then for p' > p signature constant & localizer gap satisfies

M&P'(Hﬂx) > bgP(H?X)

Before: a=0, b= % with g < gy, still better constant %C;: R~ %
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Improvement for perturbation H = H,, + W

Support of large perturbation W centered at xg; dashed without

.04 g3
ko] I P C2 _ a -
: ——(Cr|HR| + g,)|[D(z), H]R| frah
003
o — R=(1+%DE)" a=4 b=1i
¢ ST o) a=y 0=9
02 _
S Y —R:(zl+2—;D(z))l a:% bZ%
X
01 M M M M M M M R = —l]_ G/ZO b:%

0123
Defect distance, X = X|/p

Upper bound on x much weaker. Improved locality property!

With x4 small or without perturbation better to use a =10
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Stability of spectral flow for H = H,

+ \W

etero

Now W placed on interface of heterostructure as before

Local gaps change when x crosses support of W. However:

Proposition

Spectral flow of x — Ly ,(E, x) is stable

(a)
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Local gap, &, (f)
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Technical elements of proof

Let x=0, E=0and set F, = F,(|D|) and R = Ry.:

(Lwp)? = 7, (kD + Ho3)1, (kD + Hos) U

K2 7TpD27T; + mpH1,Hr, + ko[ D, Hlosm,

K2 1, D1 + m,HF 2 Hrrs + K o[ D, Hlos)

K2 1, D15 + m,FyH? Fps + m, ([H, FlFoH + hoc. + £ [D, Hlos) 7
(1—a)x?m,D(1 F2)D7T +ak 7TpD27T* —i—gp F2 + 7, B,

v

(1- a)gp 1- F2)+a/<a 7rpD27r* +gp F2 + m, B,
(1-2a) plp—i—a/@ 7TpD27T;+7TpB7T
b1, +(1—a—b%) g mp(R) (1 + 1 § R*BR)R o

AVAR ANV

Hypothesis readily implies following bound, assuring the claim:

IR*BRIl < (1-a—b%)g,
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Spectral localizer in mobility gap regime

Add Anderson-type disorder to topological model (Haldane)

Search for good choice of x, p. Due to Poisson statistics

#{Ej € (=0,6) : localization center € B,(0)} ~ § p? dN(O)

dN()

where is DOS at energy E = 0 (choice of reference here)

Expected value of gap is roughly smallest § for which r.h.s. is 1:

1
E(gy) ~ —av—
7 p? 4E(0)
By the deterministic criterion, gap hence "often” open for choice
E(g,) T
e =S p < (CRIHNID, M ©) T

Useful only for small DOS, but numerics show wider applicability:
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Numerics for disordered Haldane (50 realizations)

H(A) = Huu(t) + A cr valn)(n|  with (vo)ner id.d. in [—3, 3]
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Modifications and extensions

Locality criteria and locality properties transpose to:

e odd Chern (winding) numbers with odd spectral localizer
e 7 via skew localizer (skew-symmetric) (with Doll, 2021)
e spin Chern number via twisted localizer (with Doll, 2020)
e non-hermitian localizer (with Cerjan, Koekenbier, 2023)
e higher order topology ? (with Cerjan, Loring, 2024)

e fragile topology ? (Lee, Wong, et. al. 2025)

Further modifications of the spectral localizer:

e weak winding numbers ¢ Z in semimetals (with Stoiber, 2021)

e Weyl/Dirac point count with low-lying spec. (with Stoiber, 2022)
e length of Fermi surface in metals (Franca, Grushin, 2023)

e topology in non-linear regime (Wong et al., 2024)

e periodic spectral localizer (with Doll, Loring, 2025) eoo
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Modification: odd spectral localizer for odd d

Chiral Hamiltonian with (mobility) gap at 0

0 A* 1 0
e (04 o (10

Also approximate chirality |H + JHJ|| < 2g is actually sufficient
Odd Chern numbers (higher winding numbers)

(i )% d

i(im - 1.
Chay(A) = S5 >~ (17 ETe((0] [[(A Xy, ADIOY)

oESy j=1

Build odd spectral localizer from (dual) Dirac D = 27:1 Y X;,

then under same condition on x and p with bounded [A, D]:

kD A T
Le = <A I€D> = |Chg,. q1(A) = ESIg(Lw)
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Zo-invariants via skew localizer

Works for all 16 AZ-classes with strong Z, index

Focus: d =2 and odd TRS /*HI = H with | = io (QSHE)

Fredholm T = PFP satisfies /* Tt/ = T and thus well-defined
Inda(T) = dim(Ker(T))mod 2 € Zp

Real skew localizer from R(H) = 3(H + H) and S(H) = 3:(H — H)

L (SH)+RXal RH) 48X\ _
* T URH) = kXe S(H)—kXal) —

Theorem (with Doll, under same local criteria)

Indy(PFP) = sgn(Pf(Ls,))

For 8 of 16 cases, skew localizer is off-diagonal & only det needed
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Local local gaps in heterostructure (as above)

Fixed x center of topological phase; at p = 33 touching of interface
Plot of local gap g, (green) and localizer gap p,, for various
k= 0.005, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2 (cyan to magenta)

Optimal (minimal) choice of p for given x: when flat attained
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Theoretical bound Ii—"p <1 =2 (not covered by older result)



