Local Topological Markers

Characterising topology of disordered Julia D.

with: Miguel F. Martínez, Jens H. Bardarson, and Thomas Klein Kvorning

UNIVERSITY OF CAMBRIDGE

- Characterising topology of disordered and interacting matter in odd dimensions
 - Julia D. Hannukainen

Phys. Rev. Lett. **129**, 277601 (2022) Phys. Rev. Research. **6**, L032045 (2024)

The local Chern marker and its odd dimensional analogues

 $\rho_{ij} = \langle \Phi | c_i^{\dagger} c_j | \Phi \rangle$ Key object:

Characterise states $|\Phi\rangle$

$$\nu(\mathbf{r}) = -\frac{8\pi i}{3} \sum_{\alpha} \varepsilon^{ijk} [\rho S X_i \rho X_j \rho X_k \rho]_{(\mathbf{r},\alpha),(\mathbf{r},\alpha)}$$

Amorphous materials are defined by their lack of long-range order

Zallen, (1998)

Why topological amorphous matter?

'Nearly all materials if cooled fast enough and far enough can be prepared amorphous'

Topological Amorphous matter

New properties?

Amorphous

M. G. Vergniory et al., Nature. 566(7745), 480–485 (2019) L. Elcoro, et al. Nat Commun 12, 5965 (2021) P, Corbae, JDH et al **142** EPL (2023)

Zallen, (1998)

Topologically equivalent insulators

 $\mathcal{H}_1(\mathbf{k}) \sim \mathcal{H}_2(\mathbf{k})$

Keep gap open Preserve symmetries $\mathcal{T}, \mathcal{P}, \mathcal{S}$

Momentum space invariants

Hasan, M. Z. and Kane, C. L. Rev. Mod. Phys. 82 (4) (2010)

Translation invariance is not a requirement for topology

Free fermion state

$$|\Phi
angle \sim |\Psi
angle$$

 $|\Phi\rangle = U|\Psi\rangle$ lf: [U, O] = 0 $O \in \{\mathcal{T}, \mathcal{P}, \mathcal{S}\}$

X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138 (2010)

Amorphous Chern insulator

$$\mathcal{C} = -\frac{1}{\pi} \sum_{n \in occ.} \int_{BZ} d\mathbf{k} \langle \partial_{k_x} u_{n\mathbf{k}} | \partial_{k_y} u_{n\mathbf{k}} \rangle$$

$$\mathcal{C}(\mathbf{r}) = 2\pi \operatorname{Im} \langle \mathbf{r} | [\hat{Q}\hat{x}, \hat{P}\hat{y}] | \mathbf{r} \rangle$$

$$\hat{P} = \sum_{n \in occ.} |n\rangle \langle n| \qquad \qquad \hat{Q} = 1 - \hat{P}$$

R. Bianco, R. Resta Phys. Rev. B 84, 241106(R) (2011) Figure from: Q. Marsal, D.Varjas, A.G. Grushin Proc. Natl. Acad. Sci. U.S.A. 117, 30260 (2020)

Amorphous Chern insulator

Quantisation by averaging over the bulk

 -2π $0 \qquad 2\pi$ k_x

Quantised invariant:

In practice:

$$\mathcal{C} = \sum \frac{\mathcal{C}(\mathbf{r})}{\text{Area}}$$

 $\mathbf{r} \in \text{bulk}$

Philosophy:

Coarse grained translation invariant lattice

R. Bianco, R. Resta Phys. Rev. B 84, 241106(R) (2011) Figure from: Q. Marsal, D.Varjas, A.G. Grushin Proc. Natl. Acad. Sci. U.S.A. 117, 30260 (2020)

Chern markers are popular in the literature

N. P. Mitchell, et.al., Nat. Phys. 14 (2018)

Why can we not do the same in three dimensions?

 $\theta = -\frac{1}{4\pi} \int_{BZ} d^3k \ \varepsilon^{ijk} \operatorname{Tr} \left(\mathcal{A}_{i} \partial_{j} \mathcal{A}_{k} - \frac{2i}{3} \mathcal{A}_{i} \mathcal{A}_{j} \mathcal{A}_{k} \right)$

Need a bit more vocabulary: Vector bundles and bundle invariants.

Keep the coarse grained picture in mind!

X-L. Qi, T. L. Hughes, S. raghu, S-C. Zhang, Phys. Rev. Lett. **102**, 187001 (2009) A. M. Essin, J. E. Moore, D. Vanderbilt, Phys. Rev. Lett. 102, 146805 (2009)

Classification of vector bundles

Translation invariance

Smooth

- fiber = $\text{Im}[\rho(\mathbf{k})]$
- complex vector space

A. Kitaev, AIP Conf. Proc. 1134, 22 (2009)

The local Chern marker as the Fourier transform of the Chern character

 $\mathcal{C}_n = \int_{\mathrm{BZ}} ch_n$ Chern number:

Chern character:

$$ch_n = \frac{1}{(2\pi i)^n} \operatorname{Tr}(\mathcal{F} \wedge \cdots \wedge \mathcal{F})$$

$$ch_n = \frac{1}{(2\pi i)^n} \frac{1}{n!} \varepsilon^{i_1, \dots, i_{2n}} \operatorname{Tr} \left(\rho(\mathbf{k}) \partial_{k_{i_1}} \rho(\mathbf{k}) \dots \rho(\mathbf{k}) \partial_{k_{i_{2n}}} \rho(\mathbf{k}) \right)$$

$$D = 2n$$

$$\mathcal{F}_{\mu\nu} = -\rho[(\partial_{\mu}\rho), (\partial_{\nu}\rho)]\rho,$$

$$= \sum_{\alpha} \frac{\varepsilon^{i_1, \dots, i_D} [\rho X_{i_1} \rho X_{i_2} \cdots X_{i_D} \rho]_{(\mathbf{r}, \alpha), (\mathbf{r}, \alpha)}}{(D/2)!/(2\pi i)^{D/2}}$$

S. Ryu et al, New J. Phys. **12** 065010 (2010)

The single particle density matrix

$$|\Phi\rangle = \prod_{i} c_{i}^{\dagger} |0\rangle \qquad \qquad \rho_{ij} = \langle \Phi | c_{i}^{\dagger} c_{i}^{\dagger} |0\rangle$$

$$|\Phi\rangle \sim |\Psi\rangle$$

 $|\Phi\rangle = U|\Psi\rangle$ lf: [U, O] = 0 $O \in \{T, C, S\}$ $c_j |\Phi\rangle$

 ρ_{Φ} and ρ_{Ψ} adiabatically connected gapped

preserving symmetries

O. Penrose and L. Onsager, Physs. Rev. 104, 576 (1956) S. Bera et al, Phys. Rev. Lett. 115, 046603 (2015) X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138 (2010)

The Chern marker is easy to use

$$\mathcal{C}(\mathbf{r}) = 2\pi i \sum_{\alpha} \varepsilon^{1,2} [\rho X_1 \rho X_2 \rho]_{(\mathbf{r},\alpha),(\mathbf{r},\alpha)}$$
$$\rho = \langle \psi_0 | c_i^{\dagger} c_j | \psi_0 \rangle$$

Characterisation of state

Spectral gap not necessary

Task: Express odd dimensional invariant as a Chern character

Odd dimensions

Chern-Simons invariant:

$$\mathcal{CS}(B) = \int_{BZ} cs_n \mod (1)$$

In terms of the Chern character:

$$\mathcal{CS}(B) = \int_{\partial \Lambda} cs_n = \int_{\Lambda} ch_n$$

Chiral winding number

\mathbb{Z}_2 invariant

not a function of ρ alone

BZ not a boundary!

S. Ryu et al, New J. Phys. **12** 065010 (2010)

Introduce ϑ which acts as an additional dimension

Extend the base space: $BZ \to BZ \times \vartheta$

 $\int_0^{\pi/2} \mathrm{d}\vartheta \int_{\mathrm{BZ}} \mathrm{d}^{\mathrm{D}} \mathrm{k} \, \mathrm{ch}_n = \mathcal{CS}(\mathrm{B}_{\vartheta=\pi/2}) - \mathcal{CS}(\mathrm{B}_{\vartheta=0})$

Family of projectors: P_{ϑ}

Choose your boundaries wisely

 $\int_{0}^{\pi/2} d\vartheta \int_{BZ} d^{D}k \ ch_{n} = \mathcal{CS}(B_{\rho}) - \underbrace{\mathcal{CS}(B_{\text{trivial}})}_{O}$

The Chern-Simons invariant gives rise to two types of invariants

 $\mathcal{CS}(B_{\rho})$

Chiral winding number

Chiral constraint

$$\nu = 2\mathcal{CS}(B_{\rho})$$

\mathbb{Z}_2 invariant No chiral constraint, but ${\mathcal T}$ or ${\mathcal P}$ $\nu_{\rm cs} = 2\mathcal{CS}(B_{\rho})$ $\mod 2$

S. Ryu et al, New J. Phys. **12** 065010 (2010)

The local chiral marker is the real space equivalent of the chiral winding number

$$\{\rho,S\}=S,\ S^2=1$$

$$ch_n=\frac{1}{(2\pi i)^{(D+1)/2}}\frac{1}{((D+1)/2)!}\varepsilon^{\vartheta,i_1}$$
 Fourier transform

Local chiral marker

$$\nu(\mathbf{r}) = 2i \sum_{\alpha} \int_0^{\pi/2} \mathrm{d}\vartheta \frac{\varepsilon^{i_0,\dots,i_D} [P_{\vartheta} X_{i_0} P_{\vartheta} \dots X_{i_D} P_{\vartheta}]_{(\mathbf{r},\alpha),(\mathbf{r},\alpha)}}{[(D+1)/2]!/(2\pi i)^{(D-1)/2}}$$

$^{1,\ldots,i_{D}}\operatorname{Tr}[\mathcal{P}(\mathbf{k})\partial_{\vartheta}\mathcal{P}(\mathbf{k})\partial_{k_{i_{1}}}\cdots\mathcal{P}(\mathbf{k})\partial_{k_{i_{D}}}\mathcal{P}(\mathbf{k})]$

where:
$$X_0 = i\partial_{\vartheta}$$

$$\{\rho, S\} = S, S^{2} = 1$$

$$P_{\vartheta} = \frac{1}{2} \left[1 - \sin(\vartheta) \left(1 - 2\rho \right) - \cos(\vartheta) S \right]$$

$$P_{\vartheta} = \frac{1}{2} \left[1 - \sin(\vartheta) \left(1 - 2\rho \right) - \cos(\vartheta) S \right]$$

$$P_{\vartheta = 0}$$

$$P_{\vartheta = 0}$$

$$P_{\vartheta = 0}$$

$$P_{\vartheta = 0}$$

$$F_{\vartheta = \frac{\pi}{2}}$$

$$F_{\vartheta = 0}$$

$$F_{\vartheta = \frac{\pi}{2}}$$

$$F_{\vartheta = 0}$$

$$F_{\vartheta = \frac{\pi}{2}}$$

$$\nu(\mathbf{r}) = -\frac{8\pi i}{3} \sum_{\alpha} \varepsilon^{ijk} [\rho S X_i \rho X_j \rho X_k \rho]_{(\mathbf{r},\alpha),(\mathbf{r},\alpha)}$$

An analytic expression for P_{ϑ}

The three dimensional amorphous topological superconductor

 $\mathcal{T}, \mathcal{P}, \mathcal{S}$

The \mathbb{Z}_2 invariant Chern-Simons marker for odd dimensions without chiral symmetry

The three dimensional amorphous topological insulator

Cartan label	\mathbf{T}	Ρ	S	d=1	d=2	d=3
A	0	0	0	0	Z	0
AIII	0	0	+1	Z	0	Z
AI	+1	0	0	0	0	0
BDI	+1	+1	+1	Z	0	0
D	0	+1	0	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	+1	+1	\mathbb{Z}_2	\mathbb{Z}_2	Z
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2
CII	-1	-1	+1	$2\mathbb{Z}$	0	\mathbb{Z}_2
\mathbf{C}	0	-1	0	0	$2\mathbb{Z}$	0
CI	+1	-1	0	0	0	2乙

The chiral and Chern-Simons markers characterise 4/5 classes in each odd dimension

Cartan, E., Bull. Soc. Math. France 54, 214 (1926), Altland, A., Zirnbauer, M.R., Phys. Rev. B 55, 1142 (1997).

Topological phases of interacting states

Interactions

$$|\Phi_{\rm int}\rangle \neq \prod_{\alpha} c_{\alpha}^{\dagger} |0\rangle$$

$$(\rho_{\rm int})_{ij} = \langle \Phi_{\rm int} \rangle$$

$$|\Phi_{\rm int}\rangle \sim |\Psi_{\rm slater}\rangle$$

If: $|\Phi_{\rm int}\rangle = U|\Psi_{\rm slater}\rangle$

[U, O] = 0

If: ρ_{int} gapped

$\rho_{\rm int}$ adiabatically connected to $\rho_{\rm slater}$

O. Penrose and L. Onsager, Physs. Rev. 104, 576 (1956) S. Bera et al, Phys. Rev. Lett. 115, 046603 (2015) X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 82, 155138 (2010)

The Ising Majorana model can host topological MBL phases

$$H = \sum_{j} \left(-it_j \gamma_j \gamma_{j+1} + g\gamma_j \gamma_{j+1} \gamma_{j+2} \gamma_j \right)$$

$$\gamma_{2j} = i(c_j - c_j^{\dagger}) \qquad \gamma_{2j-1} = c_j + c_j^{\dagger}$$

$$g = 0.5$$

 $t_{2j} \in [0, e^{\delta/2}]$
 $t_{2j-1} \in [0, e^{-\delta/2}]$

(+3)

JDH, M. Martinez, J.H. Bardarson, T. Klein Kvorning Phys. Rev. Research. 4, L032045 (2024)

Topology of random Circuit states

JDH, M. Martinez, J.H. Bardarson, T. Klein Kvorning Phys. Rev. Research. 4, L032045 (2024)

Summary

Dimensional reduction: Chern character \implies local chiral and Chern-Simons markers

Requirement: The single-particle density matrix is gapped

Phys. Rev. Lett. **129**, 277601 (2022)

Phys. Rev. Research. 6, L032045 (2024)