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The problem



Background: protected transmission
Waves scatter, but sometimes transmission is protected.

▶ Quantum point contact: transmission
protected by smooth potential

▶ Quantum Hall effect: chiral
transmission protected by topology

van Wees et al., 1988
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The end.
Questions?



Testing the limits
Is it really protected?

Works if we:

▶ Make phase differences
unequal

▶ Make junction asymmetric

▶ Make dispersion anisotropic

▶ ¡Break particle-hole symmetry
Hee → 2× Hee !

Breaks if we:

▶ Make µ → µ(r)

▶ Make µ ∼ ∆

▶ Introduce sharp < 90◦ turns

What is going on?
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Foundation



Andreev states in a π-junction

▶ Claim: nonlocal Andreev conductance
in a π-junction counts Fermi surfaces

▶ Zero modes split near critical points
and acquire dispersion

▶ Adiabaticity prevents backscattering
and quantizes charge
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Generalizing to ϕ ̸= π
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▶ Positive energies have ⟨ky ⟩ > 0
▶ ⟨ky ⟩ → 0 ⇒ E → ∞

Dispersion forms an energy barrier for momenta!
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▶ When turns are < 90◦, transmission is not quantized

▶ The wave functions start overlapping in the phase space
▶ With smooth turns everything is protected

But what about more complex Fermi surfaces?
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Non-convex Fermi surfaces
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▶ Peanut-shaped Fermi surface

▶ Some transmission eigenvalues not quantized. . .

▶ However, at least one must stay quantized!

⇒ chiral transport counts Fermi surfaces!
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Outlook

▶ Momentum space separation protects chiral transmission

▶ Phenomenon generic to gapped multiband systems

▶ Observation in superconductors possible but hard

▶ Metamaterials an alternative plaform

▶ A lot of open question about the nature of protection and generality
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