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The problem




Background: protected transmission

Waves scatter, but sometimes transmission is protected.
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Background: protected transmission

Waves scatter, but sometimes transmission is protected.
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» Quantum point contact: transmission
protected by smooth potential

» Quantum Hall effect: chiral
transmission protected by topology

Klitzing et al., 1980



The solution

1. Take a short Josepshon junction
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1. Take a short Josepshon junction
2. Make 3 meet
3. Get chiral and quantized transmission



The end.
Questions?



Testing the limits

Is it really protected?

Works if we:

» Make phase differences
unequal
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Is it really protected?
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» Make phase differences
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» Make junction asymmetric
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Testing the limits

Is it really protected?

Works if we:

» Make phase differences N Y X q
unequal Y \' ’

» Make junction asymmetric cos 5911
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» Make dispersion anisotropic
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Testing the limits

Is it really protected?

Works if we:
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Testing the limits

Is it really protected?

Works if we:

» Make phase differences
unequal

» Make junction asymmetric
» Make dispersion anisotropic

» iBreak particle-hole symmetry
Hee — 2 X Hee!

Breaks if we:
» Make p — p(r)
» Make p~ A
» Introduce sharp < 90° turns
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What is going on?
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Probing Fermi Sea Topology by Andreev State Transport
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‘We show that the topology of the Fermi sea of a two-dimensional electron gas (2DEG) is reflected in the
ballistic Landauer transport along a long and narrow Josephson z junction that proximitizes the 2DEG.
The low-energy Andreev states bound to the junction are shown to exhibit a dispersion that is sensitive to
the Euler characteristic of the Fermi sea (yr). We highlight two important relations: one connects the
electron or hole nature of Andreev states to the convex or concave nature of Fermi surface critical points,
and one relates these critical points to yr. We then argue that the transport of Andreev states leads to a
quantized conductance that probes yr. An experiment is proposed to measure this effect, from which we
predict an /-V characteristic that not only captures the topology of the Fermi sea in metals, but also
resembles the rectification effect in diodes. Finally, we evaluate the feasibility of measuring this quantized
response in graphene, InAs and HgTe 2DEGs.

DOIL: 10.1103/PhysRevLett.130.096301



Andreev states in a m-junction

» Claim: nonlocal Andreev conductance
in a m-junction counts Fermi surfaces
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Andreev states in a m-junction

» Claim: nonlocal Andreev conductance
in a m-junction counts Fermi surfaces

» Zero modes split near critical points
and acquire dispersion

» Adiabaticity prevents backscattering
and quantizes charge
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Generalizing to ¢ # 7
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» Positive energies have (k,) > 0
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Generalizing to ¢ # 7
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Two states at (ky, +k,) couple due to dispersion nonlinearity ~ ky2
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» Positive energies have (k,) > 0
» (k) 0= E — 0
Dispersion forms an energy barrier for momenta!



Protection by energy barriers
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» Aligning momentum with the junction = highest energy
» = only chiral transmission is allowed!



Protection by energy barriers
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» Momentum evolves adiabatically = never reaches prohibited regions
» Aligning momentum with the junction = highest energy
» = only chiral transmission is allowed!

Can we break this pattern?
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» The wave functions start overlapping in the phase space
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» When turns are < 90°, transmission is not quantized
» The wave functions start overlapping in the phase space

» With smooth turns everything is protected



Sharp turns
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» When turns are < 90°, transmission is not quantized
» The wave functions start overlapping in the phase space

» With smooth turns everything is protected
But what about more complex Fermi surfaces?



Non-convex Fermi surfaces
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Non-convex Fermi surfaces
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» Peanut-shaped Fermi surface
» Some transmission eigenvalues not quantized. ..
» However, at least one must stay quantized!

= chiral transport counts Fermi surfaces!



Electrical conductance

What about electric charge?



Electrical conductance

What about electric charge?
» Electrical conductance protected by adiabatically = applies to any ¢
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Electrical conductance

What about electric charge?
» Electrical conductance protected by adiabatically = applies to any ¢

» Same protection applies to a vortex!
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Outlook

Momentum space separation protects chiral transmission

Phenomenon generic to gapped multiband systems

>
>
» Observation in superconductors possible but hard
» Metamaterials an alternative plaform

>

A lot of open question about the nature of protection and generality



The end.
Questions?
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