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Outline

➡ Approximation theory (Chebyshev spectral expansions)

➡ Chebyshev methods in condensed matter physics

Part 1: Methodology

Part 2: Applications

➡ Disorder & Topology: from millions to billions of sites

➡ Open-source KITE initiative



Motivation

credit: isgs.illinois.edu

H = He +HI +He-I

Full many-body problem is far too complex 

Solution: 
Break the problem into smaller parts, 
construct effective theories, think differently!

aires.ferreira @ york.ac.uk09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

http://isgs.illinois.edu


Motivation

• Exact diagonalisation, many-body (diagrammatic) perturbation theory,  expansions, etc.1/N

• Specialised numerical / simulation tools: DFT, DMRG, QMC, …

 • General-purpose spectral methods

aires.ferreira @ york.ac.uk09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA



Motivation

DoS of twisted bilayer graphene

[(a) rigid non-relaxed lattice and (b) lattice relaxed by molecular dynamics] 

• unit cell with 11908 orbitals (Z~60)

•  640 x 512 u.c. ~ 4 billion orbitals

João et al., R. Soc. open sci. 7, 191809 (2020)

Vppp ¼ V0
pppe

"(d"a0)=d

and Vpps ¼ V0
ppse

"(d"d0)=d,
(4:3)

where V0
ppp ¼ "2:7 eV and V0

pps ¼ 0:48 eV are intralayer and interlayer hopping integrals, a0≈ 0.142 nm
and d0≈ 0.335 nm are carbon–carbon distance in graphene and interlayer distance in bilayer graphene,
respectively. dij is the vector connecting two sites, d=|dij| is the distance between them, and δ=
0.3187a0 is chosen in order to fit the next-nearest intra-layer hopping to 0:1V0

ppp. All neighbours
within the distance of 4a0 are being considered.

The numerical analysis of special features in the electronic structure of tBLG systems, such as gap-opening
and flat bands, require a small probing energywindow to be resolved, usually of the order of 1meV. To avoid
finite-size effects, this resolution has to be finer than the mean-level spacing which originates from the
discreteness of the simulated finite lattice. This brings, besides the intrinsic large unit cell of the twisted
structures, the requirement for a large system. Due to the implementation of ‘memory saving’ algorithms
explained in §3.2, KITE can handle such requirements. In this example, the simulated system contains
640× 512 unit cells, with 11 908 atomic sites within one unit cell, which leads to a total number of
orbitals N≃ 4× 109, the largest SETB simulation reported in the literature to our knowledge. In addition
to its giant dimension, the SETBmodel also has avery high coordination numberZ (around 60 neighbours).

Given the large size of the system, the STE can be safely undertaken using a single random vector for
resolutions down to 1meV. The DOS calculation can be requested with the following command

where a large number of moments (M= 12 000) are requested to allow post-processing of DOS data with
fine energy resolution (cf. figure 1d ). KITEx code returns the set of calculated CPGF moments and
KITE-tools reconstructs the DOS with the requested resolution.

Figure 4 shows the calculated DOS in two cases: a rigid, non-relaxed structure (a) and a lattice on
which a molecular dynamics relaxation was performed (b). The relaxation was performed externally
within the LAMMPS software package [77,78] by considering a combination of Brenner potentials for
in-plane interactions and a registry-dependent Kolmogorov–Crespi potential [79] with parameters
given in [80] for the out-of-plane van der Waals interaction. As suggested previously, refined features
are resolved only at high-energy resolution (≈1 meV). Notably, the DOS peak at E= 0 eV indicates the
presence of a flat band due to the specific twisting angle. Away from the flat band, the situation in
the two cases is quite different. Mini-gaps around the flat bands start appearing only after relaxing
the sample [81,82] and agree with recent experiments [83,84]. The P-complexity factor for this
calculation (equation (2.35)) is P=O(1015). Nevertheless, this calculation requires a modest 83 GB
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Figure 4. Comparison between the DOS of tBLG for (a) rigid non-relaxed lattice and (b) lattice relaxed by molecular dynamics, for
different values of η. The inset of panel (a) depicts the tBLG lattice structure. Simulation details: 640× 512 units cells, with 11 908
atomic sites per unit cell, M= 12 000 and R= 1. Total RAM required ≈83 GB (single real precision).

Listing 5. Code used for the DOS calculation.
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➡ Large-scale electronic structure in real space
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Approximation theory

Part 1a

“All science is dominated by the idea of approximation” (Bertrand Russel)
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Approximation theory

function of real variable (e.g., energy) defined on a finite interval, ε ∈ [εmin, εmax]

➡ Finding a suitable spectral approximation 

➡ Old problem in approximation theory (Chebyshev, 1854)

➡ Pragmatically, near-minimax approximations based on orthogonal polynomials are best

➡ There is an ideal polynomial interpolant, so-called ‘minimax polynomial’

John P. Boyd, Chebyshev & Fourier Spectral Methods (2001)



Approximation theory

➡ Choice of basis set 

PERIODIC

Fourier

NON-PERIODIC

Chebyshev

Boyd’s moral principle:  
“Unless you are really, really sure another set of basis functions is better, use Chebyshev polynomials” 

John P. Boyd, Chebyshev & Fourier Spectral Methods (2001)



Approximation theory

➡ Chebyshev polynomials of the first kind

A Fourier series in disguise, yet non-periodic and defined on a finite interval

…

Chebyshev recursion rule



Approximation theory

➡ Finding a suitable spectral approximation 

1st step:

efficient determination of  
expansion moments

2nd step:

Chebyshev polynomials: Tn(x)
N-order approximation

weight function associated to  {ϕn(x)}



Spectral expansions in condensed matter

Large-scale real-space Chebyshev expansions: key ideas & milestones

Part 1b
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Spectral expansions in condensed matter

First, rescale  so that (dimensionless) eigenvalues  fall into the canonical interval Ĥ E ε ∈ [−1 : 1]

The idea

δE± + = Emax ± Emin

2

Lattice Hamiltonian 

dim Ĥ = D

  are some reasonable 
upper/lower energy bounds

Emax/min



Spectral expansions in condensed matter

Reconstruct target function (e.g. LDoS) with spectral resolution:

The idea

resolution  η ≈ Λ/N

the CPGF asymptotically converges to the true (thermodynamic) value. We note in passing that in
spectral calculations of this type, η needs to be larger than the discrete energy-level separation of the
finite system to avoid spurious results. The thermodynamic DOS is obtained by letting N→∞ (and
thus Δε→ 0) prior to η→ 0 (figure 1c). For additional discussions, the reader is referred to
supplemental information in [43].

2.2. Linear and nonlinear conductivity tensors
In what follows, we present the scheme for calculation of electronic response functions. For an SETB
model subjected to an external electric field E(t) =−∂tA(t), the current operator is calculated directly
from the Hamiltonian using Ĵ

a ¼ "V"1@H=@Aa (Ω is the volume and α= x, y, z labels the spatial
direction),

Ĵ
a
(t) ¼ " e

V
ĥ
a
þ eĥ

ab
Ab(t)þ e2

2!
ĥ
abg

Ab(t)Ag(t)þ $ $ $
! "

, (2:21)

where we have defined

ĥ
a1$$$an ¼ 1

(ih" )n
[̂ra1 , [ $ $ $ [̂ran , Ĥ]]], (2:22)

with r̂ being the position operator. To first order, ĥ
a
is just the single-particle velocity operator, and the
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Figure 1. (a) Approximation to the Lorentzian curve fL(x) using the KPM with a Lorentz kernel [35] and the numerically exact CPGF
method [43] (A. Ferreira 2014, unpublished). (b) Spectral convergence of the Mth-order approximation to the target function. For
large M, KPM converges to fM/fL> 1 (overshooting), while the CPGF is asymptotically exact fM/fL→ 1. (c) Energy resolution
(broadening) η and energy-level separation Δε for simulations in a finite system. (d ) Convergence of Mth-order approximation
to the DOS at the band centre of a giant honeycomb lattice with 60 000× 60 000 sites and vacancy defect concentration of
0.4%. As a guide to the eye, the ratio of the DOS normalized to its converged value (to 0.1% accuracy) is plotted. The DOS
obtained from a KPM expansion with a Lorentz kernel is shown for η= 1 meV. Panel (d ) is adapted from Ferreira & Mucciolo [43].
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Mean level spacing   
Δε = Δε(L)

“Bandwidth” 
Λ = 2δE+



Spectral expansions in condensed matter

For 1-particle Green’s functions 
and related quantities (e.g. DoS)

Single expansion Double expansion

For 2-particle Green’s functions  
(e.g. optical conductivity)

➡ Types of Chebyshev moments

Spatially resolved quantities (e.g., local Chern marker): 



A. Weisse: Chebyshev expansion approach to the AC conductivity of the Anderson model 127

Fig. 1. The matrix element density j(x, y) for the Anderson
model at W/t = 2 and 12. Note the dip developing at x = y
which finally causes the vanishing DC conductivity.

The quantity j(x, y), however, is of the same struc-
ture as the density of states, except for being a func-
tion of two variables. As was shown by Wang [23]
some years ago, it can thus be expanded as a se-
ries of polynomials Tl(x)Tm(y) and the expansion coef-
ficients µlm are characterised by a similar trace, µlm =
Tr[Tl(H̃)JxTm(H̃)Jx]/Ld. Again the trace can be replaced
by an average over just a few random vectors |r⟩, and
the numerical effort for an expansion of order l, m <
M ≪ N ranges between 2RNM and RNM2, depend-
ing on whether memory is available for up to M vec-
tors of dimension N or not. Probably overlooking the
potential of the approach, so far only the zero temper-
ature response was studied and, in particular, the back
transformation of the expansion coefficients relied on pure
truncated Chebyshev series [23]. The latter, however, suf-
fer from unwanted high-frequency oscillations and the
positivity of j(x, y) is not ensured. We therefore gen-
eralised the Jackson kernel and the KPM to two di-
mensions. Combined with fast Fourier methods, which
are available for arbitrary dimension, this leads to an
easy and reliable method for the calculation of j(x, y)
and σ(ω).

Note the main advantage of this approach: Once we
know the coefficients µlm and the resulting j(x, y), we can
immediately calculate σ(ω) for all temperatures and all
chemical potentials, without repeating the most time con-
suming step of calculating µlm (and, for the present model,
averaging over several realisations of disorder). In addi-
tion, as was shown in a number of works, standard KPM is
numerically much more stable and allows much higher res-
olution than the popular Lanczos recursion approach [24].
We therefore believe that the new generalisation of KPM
will also outperform the finite-temperature Lanczos meth-
ods proposed recently [25,26]. The generalisation of the
approach to interacting systems is straightforward [27]. It
merely requires a substitution of the Fermi function by the
Boltzmann weight in equation (4), and a division of the
result by the partition function, which is readily obtained
from an expansion of the density of states.

Applying the approach to the Anderson model, we ob-
tain the matrix element density j(x, y) shown in Figure 1.
Starting from a “shark fin” at weak disorder, with in-
creasing W the density j(x, y) spreads in the entire energy
plane, simultaneously developing a sharp dip along x = y.
A comparison with equation (4) reveals, that it is this dip
which is responsible for the decreasing and finally vanish-
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Fig. 2. Optical conductivity of the 3D Anderson model
at T = 0 and µ = 0 (band centre) for increasing disorder W .
The thick red lines mark W/t = 16, which approximately cor-
responds to the critical disorder. Data denoted by solid lines
is based on N = 503 site clusters, expansion order M = 1024,
and S = 240 . . . 360 disordered samples, dashed lines in the
inset correspond to N = 1003, M = 2048 and S = 400 . . . 440.

ing DC conductivity. For µ = 0 (band centre) and T = 0
the corresponding optical conductivity σ(ω) is given in
Figure 2. Note, that the calculation is based on large fi-
nite clusters with up to N = L3 = 1003 sites and peri-
odic boundary conditions, the data is averaged over up
to S = 440 disordered samples, and the expansion or-
der M = 1024 (or M = 2048 for the dashed sets in
the inset). At weak disorder the conductivity is almost
Drude like with only a small dip at low frequency. With
increasing disorder this small-ω feature becomes more pro-
nounced and finally leads to insulating behaviour at strong
disorder. Beyond a sharpening maximum near ω ≈ t the
conductivity falls of almost with a power law and later
exponentially.

The high precision of the data allows for a detailed
comparison of the low frequency behaviour with the above
mentioned analytical results. In the inset of Figure 2 we
focus on the low frequency part and plot the conductiv-
ity data again on a double-logarithmic scale. Clearly, for
disorder W/t ≥ 16 the data follows a power law, whereas
for W/t < 16 the slight upturn at low frequencies accounts
for the finite DC conductivity. To substantiate these find-
ings, in Figure 3 we show fits of the low-frequency data
to σ(ω) = σ(0) + Cωα. Starting from the localised phase
at large W the DC conductivity σ(0) is zero and the expo-
nent α decreases continuously with W , reaching α = 1/3
near W/t ≈ 16. Below that value σ(0) increases continu-
ously with decreasing disorder W , and the same seems to
hold for α. Note that we slightly vary µ around zero to
expand the data basis and estimate the error of the fits.
Unfortunately, for W/t < 16 the three free parameters
lead to a sizeable uncertainty in particular for the expo-
nent α. Nevertheless, we can confirm the general trends,
namely an increase of the exponent α from 1/3 at the crit-
ical point to eventually a value of 2 at very large disorder,
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calculated using conventional k . p extrapolation meth-
ods [13] and a plane wave basis with an energy cutoff
of 4.5 Ry. The results are shown in Fig. 2(a) where they
are also compared with experiment [14]. While our re-
sult compares well with similar previous calculations [15],
they all lack the lower energy excitonic peak apparent in
the experimental spectrum. This excitonic peak cannot be
described by our single particle theory. The "f-sum rule"
[16] (mfa/277 e2) fo Ee2(E) dE = N, where N is the total
number of electrons inside volume A, is satisfied to within
0.1%. From Eq. (1)wefind Eb = 10.38forthebulk. This
can be compared with the experimental result [17]of 11.4,
the local density approximation result [2] 12.7, and the
early value of Walter and Cohen [1] of 11.3. Our 10%
underestimation of the experimental value probably stems
from the neglect of exciton effects as well as from possi-
ble imperfections in the pseudopotential. In what follows
[Fig. 1(a)],we will thus scale our calculated (e, —1) using
a factor of (11.4 —1) /(10.38 —1) = 1.109. The calcu-
lated total density of states (DOS) of the bulk Si is shown
in Fig. 3(a) along with the experimental x-ray photoemis-
sion spectrum (XPS) [18]. The overall agreement is good.
We conclude that we have a reasonable pseudopotential as
far as the quantities of interest here [e2(E), e„DOS] are
concerned.
We next consider spherical Si quantum structures. We

use interatomic distances taken from bulk since experimen-
tal Si-Si interatomic distances in quantum dots are within
0.25% of the bulk value [19]. All surface dangling bonds
are saturated in our calculation by hydrogen atoms. The
surface Si-Si bond relaxations and H atom positions are
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FIG. 3. Total and surface local density of states of Si systems
with different sizes. The XPS data in (a) is from Ref. [18].
The vertical arrows denote band edge positions (see Ref. [12]).
The zero of energy is the vacuum potential level.

e.(E) = dE17(E1, E~)

X 6 [E —(E~ —Ei)]

modeled after experimental data and ab initio calculations
of H-covered (100), (110),and (111)Si surfaces [12]. We
believe that the error on the dielectric constant due to a pos-
sible difference between the current surface model and the
real quantum dot should be small unless there are massive
atomic reconstructions on the surface, about which there is
currently no experimental information. The total potential
V(r) = Lfo~ ll 10/7/ (lr —R„,~ I) is given by a superposi-
tion of local atomic pseudopotentials of Si and H. The
hydrogen pseudopotential UH (r) is fitted [12] to the mea-
sured spectra of the above mentioned three H-covered Si
surfaces. In the calculation, the quantum dots are placed
in periodic unit cells with the closest distance between two
neighboring quantum dots as 9 A. The plane wave ba-
sis set energy cutoff is 4.5 Ry„corresponding to 10 ba-
sis functions for the largest system considered here. Such
huge basis sets cannot be handled by conventional elec-
tronic structure methods that seek all eigenstates. We use
instead a newly developed generalized moments method,
which is summarized in the following.
The calculation of the optical spectrum

A
X,

I

6
E (eV&

FIG. 2. Calculated optical absorption spectra e2(E) of Si
systems with different sizes. The experimental data in (a) are
from Ref. [14]. The joint density of states (JDOS) in (b) is
given in arbitrary units. The vertical arrows denote band gap
values (see Ref. [12]).

[where constant A is defined as in Eq. (2), fl = Ns;a-'/8
is the volume, Ns; is the number of Si atoms, and a is
the bulk Si lattice constant] requires the two-dimensional
spectral function

r(E&1 E ) = pl(f Ipli)l ~(E1 —E;)&(E= —Et)- (5)

E (eV)

Wang & Zunger, PRL 73 1039 (1994)

First large-scale calculations
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Anderson model with million sites

1000 x 1000 moments

tens of realisations hundreds of realisations

Si quantum dots with 1,000 atoms
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However … “Understanding grows only logarithmically with the number of floating point operations” (J.P. Boyd)



Part 2a

Bridging disorder and topology on the large scale

aires.ferreira @ york.ac.uk09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

From millions ( ) to billions ( ) atomic orbitalsD = 106 D = 109



Bridging disorder and topology on the large scale

➡ Chebyshev polynomial Green’s function (CPGF) method

z = ε + iη

➡ Control over energy resolution

 Exact decomposition of lattice Green’s functions

➡ CPGF coefficients have a simple closed-form solution

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)



Bridging disorder and topology on the large scale

Ostrovsky, Gornyi & Mirlin, PRB 74, 235443 (2006)

Graphene with dilute random vacancies

A numerically-exact real-space approach would be ideal!

Challenge: Mean free paths can easily reach hundreds nm! 

➡ Chiral disordered graphene (BDI class): super-metallic zero-energy modes

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)



Bridging disorder and topology on the large scale

‘single-shot’ algorithm
disorder average

➡ Chiral disordered graphene (BDI class): super-metallic zero-energy modes

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)



Bridging disorder and topology on the large scale
Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

L! ∓ 0.7 πm, corresponding to a broadening of only
2.5 meV. The state vectors in Eq. (5) were calculated with
N ¼ 12000 Chebyshev iterations. The ZEM conductivity
shows no sign of localization, being numerically very close
to ϕZEM ¼ 4e2=ðσhÞ through a parametrically wide range
of inelastic broadenings in the range [2.5,60] meV. This is
to be contrasted with the behavior of ϕðEÞ away from the
band center. For instance, at energies E ¼ f50; 100g meV
there is a strong suppression towards ϕ → 0 as L! increases.
The localization is stronger in the neighborhood of the
critical point at zero energy, with states with E ¼ 50 meV
localizing first than those having E ¼ 100 meV. This
behavior can also be inferred from Fig. 2, which shows
that the tendency as β → 0 (L! → ≈) is for states to
localize first in the vicinity of the ZEMs. In the inset to
Fig. 3 the behavior for an energy far away from the Dirac
point is shown. A transition from ballistic to localized
regime is observed as L! increases. Eventually, as L! → ≈,
all states with E − 0 become localized. The latter is
consistent with the behavior expected for random fermions
in the BDI class [1,4]. Crucially, however, our accurate
numerical treatment shows that the chiral symmetry at
E ¼ 0 protects ZEMs from localization up to L! ∈ 1 πm.
This exotic 2D metallic regime had been predicted by the
renormalization group (RG) analysis of the NLϕM for the
BDI class [24], although a fully nonperturbative calculation
of the microscopic conductivity able to capture strong
quantum interference effects at the Dirac point was lacking
until now.
Universal ZEM conductivity.—We finally investigate the

robustness of the ZEMs metallic conductivity against
changes in vacancy concentration. According to the per-
turbative RG analysis for white-noise disorder in the BDI
class, ϕð0Þ should depend weakly on the disorder strength

[24]. The actual picture for vacancies—being infinitely
strong scatterers—is difficult to predict based solely on
field-theoretical methods [12,35]. The little sensitivity of
ϕð0Þ to the effective length L! intuitively suggests a small
dependence with the defect concentration too. Interestingly,
numerical results for transport across narrow graphene
strips show ϕð0Þ ∈ ϕZEM with weak dependence on ni
[23], demonstrating that, although evanescent modes are
strongly affected by scattering from vacancy defects, the
large number of modes available (large DOS) counteracts
perfectly to restore graphene’s clean ballistic conductivity
[8]. To investigate the possibility of a disorder-induced
universal metallic regime in graphene, we perform accurate
Kubo calculations over 2 orders of magnitude in ni. We
take a fine broadening β ¼ 2.5 meV so as to guarantee that
L! is sufficiently large to capture any marked localization
trend near the Dirac point. Our results are summarized in
Fig. 4. Away from the band center the conductivity is
strongly decaying with ni as expected. For instance, at
E ¼ 0.1 eV—a typical Fermi energy in experiments—the
conductivity swiftly enters in the strong localized regime
already for dilute concentrations ni ∈ 0.2%. The depend-
ence of ϕðEÞ with L! is well fitted by an exponential law
ϕ ∶ e∞L!=η! ; see top panel. (The dependence of η! with the
defect concentration is shown in the inset to the bottom
panel.) However, at the band center ZEMs show no signs of
localization even beyond the very dilute limit up to
concentrations n ¼ 1%. For completeness we provide
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L! ∓ 0.7 πm, corresponding to a broadening of only
2.5 meV. The state vectors in Eq. (5) were calculated with
N ¼ 12000 Chebyshev iterations. The ZEM conductivity
shows no sign of localization, being numerically very close
to ϕZEM ¼ 4e2=ðσhÞ through a parametrically wide range
of inelastic broadenings in the range [2.5,60] meV. This is
to be contrasted with the behavior of ϕðEÞ away from the
band center. For instance, at energies E ¼ f50; 100g meV
there is a strong suppression towards ϕ → 0 as L! increases.
The localization is stronger in the neighborhood of the
critical point at zero energy, with states with E ¼ 50 meV
localizing first than those having E ¼ 100 meV. This
behavior can also be inferred from Fig. 2, which shows
that the tendency as β → 0 (L! → ≈) is for states to
localize first in the vicinity of the ZEMs. In the inset to
Fig. 3 the behavior for an energy far away from the Dirac
point is shown. A transition from ballistic to localized
regime is observed as L! increases. Eventually, as L! → ≈,
all states with E − 0 become localized. The latter is
consistent with the behavior expected for random fermions
in the BDI class [1,4]. Crucially, however, our accurate
numerical treatment shows that the chiral symmetry at
E ¼ 0 protects ZEMs from localization up to L! ∈ 1 πm.
This exotic 2D metallic regime had been predicted by the
renormalization group (RG) analysis of the NLϕM for the
BDI class [24], although a fully nonperturbative calculation
of the microscopic conductivity able to capture strong
quantum interference effects at the Dirac point was lacking
until now.
Universal ZEM conductivity.—We finally investigate the

robustness of the ZEMs metallic conductivity against
changes in vacancy concentration. According to the per-
turbative RG analysis for white-noise disorder in the BDI
class, ϕð0Þ should depend weakly on the disorder strength

[24]. The actual picture for vacancies—being infinitely
strong scatterers—is difficult to predict based solely on
field-theoretical methods [12,35]. The little sensitivity of
ϕð0Þ to the effective length L! intuitively suggests a small
dependence with the defect concentration too. Interestingly,
numerical results for transport across narrow graphene
strips show ϕð0Þ ∈ ϕZEM with weak dependence on ni
[23], demonstrating that, although evanescent modes are
strongly affected by scattering from vacancy defects, the
large number of modes available (large DOS) counteracts
perfectly to restore graphene’s clean ballistic conductivity
[8]. To investigate the possibility of a disorder-induced
universal metallic regime in graphene, we perform accurate
Kubo calculations over 2 orders of magnitude in ni. We
take a fine broadening β ¼ 2.5 meV so as to guarantee that
L! is sufficiently large to capture any marked localization
trend near the Dirac point. Our results are summarized in
Fig. 4. Away from the band center the conductivity is
strongly decaying with ni as expected. For instance, at
E ¼ 0.1 eV—a typical Fermi energy in experiments—the
conductivity swiftly enters in the strong localized regime
already for dilute concentrations ni ∈ 0.2%. The depend-
ence of ϕðEÞ with L! is well fitted by an exponential law
ϕ ∶ e∞L!=η! ; see top panel. (The dependence of η! with the
defect concentration is shown in the inset to the bottom
panel.) However, at the band center ZEMs show no signs of
localization even beyond the very dilute limit up to
concentrations n ¼ 1%. For completeness we provide

100 200 300
L imp

0.4

0.6

0.8

1

ZEM
E  = 0.05 eV
E  = 0.1 eV

100 200 300
1.2

1.3

1.4

1.5

1.6

E  = 0.2 eV

/ l

 η 
/ η

Z
E

M
  

0

FIG. 3 (color online). Fully converged Kubo dc conductivity
for a 0.4% vacancy concentration as a function of L!=limp at
selected energies. Here limp ∓ 2.24 nm is the average distance
between vacancies. A large honeycomb lattice with 3.6 × 109

sites was simulated to obtain good precision at large L!.
Statistical fluctuations of the data are within ∓1%.

0 0.2 0.4 0.6 0.8 1

ni (%)

1

10

ZEM E = 0.1 eV E  = 0.4 eV

0.2 0.4 0.6 0.8 1
ni (%)

0.5

1

2

νσ  (µ
m

)

150 200 250 300 (nm)

0.5

1 0.2%
0.4%
0.6%
0.8%
1%

L 

 η  
/ η

Z
E

M
 η 
/ η

Z
E

M

FIG. 4 (color online). Impact of vacancy concentration on bulk
transport. Top panel: localization of states with E ¼ 0.1 eV as a
function of L! at various vacancy concentrations. Bottom panel:
variation of ϕðEÞ with ni at selected energies.

PRL 115, 106601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

4 SEPTEMBER 2015

106601-4

Universal value within accuracy

➡ Chiral disordered graphene (BDI class): super-metallic zero-energy modes

• 3.6 billion sites

• N = 12000 (for each Green’s function in the 2-particle response function)



Bridging disorder and topology on the large scale

➡ Chern insulators: quantum anomalous Hall effect & magneto-optical response

Offidani & Ferreira, Phys. Rev. Lett. 121, 126802 (2018); João et al., R. Soc. open sci. 7, 191809 (2020)

RAM using single real precision vectors for the STE evaluation, which means that even larger systems
can be simulated if the calculations are run on special large memory nodes.

4.2. Topological materials
The scalability, accuracy and speed of KITE make it an ideal tool to simulate spectral properties and
response functions of materials with non-trivial band topology [53,67]. To illustrate this capability, we
consider the quantum anomalous Hall insulating regime of a magnetized graphene monolayer with
interfacial broken inversion symmetry. The minimal model, incorporating SOC, proximity-induced
magnetic exchange and scalar disorder [85,86], is given by

Ĥ ¼ "t
X

hiji,s
ĉyisĉ js þ

2i
3

X

,i,j.,s,s0
ĉyisĉ js0 [lR(ŝ$ dij)z]ss0 þ Dex

X

i,s
ĉyisŝzĉis þ Vdis: (4:4)

The first term describes nearest-neighbour hopping processes (̂cyis adds electrons with spin state s= ↑, ↓ to
site i). The second term is the Bychkov–Rashba interaction with coupling strength λR. dij is the unit vector
pointing from site j to i and ŝ is the vector of Pauli matrices. The third term describes a uniform exchange
field with strength Δex. The last term stands for the disorder potential (see below). The interplay of
Bychkov–Rashba spin-orbit coupling (BRSOC) and exchange field endows the electronic states of the clean
system with non-coplanar spin texture in momentum space [86] and opens a topologically non-trivial
insulating bulk gap [85]. The exchange field breaks time-reversal symmetry and the corresponding
insulating phase is characterized by a Chern number C ¼ 2 in the bulk, with spin-polarized states
protected against elastic backscattering at the edges (figure 5a). Consequently, the quantum anomalous
Hall insulator of the clean system has quantized Hall conductivity of σxy=2e2/h inside the gap.

Several types of disorder can be defined in the configuration file. Given its high efficiency, KITE allows to
assess the robustness of the topological phase directly from the behaviour of the Hall conductivity at a
modest computational cost. For illustration purposes, we model Vdis ¼

P
i,s Vi,sĉ

y
isĉis as a white-noise

random potential distributed on the box Vi,s∈ [−W/2, W/2]. To make the disorder spin-independent
and thus time-reversal symmetric, Vi,↑=Vi,↓, one separates A and B sublattices on kite.configuration, using
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Figure 5. (a) Spin-polarized edge states of a two-dimensional quantum anomalous Hall insulator, (b) calculated Fermi energy
dependence of the transverse charge conductivity for selected values of the disorder potential. The topological gap closes for
W≈ 2.0 eV indicating a quantum phase transition driven by disorder fluctuations. Parameters: λR= 0.3 t and Δex = 0.4 t.
Simulation details: 8192× 8192 unit cells and a total number of Chebyshev moments M×M with M= 2048. Results obtained
for single random vector and disorder realization (R, S= 1). Minimum RAM required ≈8 GB (double complex precision).

Listing 6. Specifying the spin-independent random disorder potential.
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ferromagnetic graphene
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‘full-spectral’ algorithm: optical conductivity tensor

From high-resolution traces of ŝ(v), it is possible to extract interesting properties, such as the Faraday
rotation angle [87–89], experimentally accessible in magneto-optical measurements [90]. The post-
processing with KITE-tools can be performed with a subset of the calculated Chebyshev moments.
With this feature, users can analyse the spectral convergence with a single KITEx simulation.
Similarly, it is possible to modify η with KITE-tools and quickly re-calculate the target functions for
different energy resolutions.

Figure 7a shows the yy optical conductivity for a clean monolayer graphene sample with mean level
spacing δε=5.3 meV at the Dirac (K ) point at selected values of the energy resolution parameter η. The
lower inset shows the convergence as a function of the number of polynomials for h!v ¼ 4:66 eV, a region
of rapidly changing conductivity. Clearly, calculations with higher energy resolution require
substantially more polynomials to converge (see equation (2.20). For meaningful resolutions h * de,
the optical conductivity curves with M≈ 10 000 are converged to accuracy of 1% or better. For
pedagogical reasons, we show a calculation with η=2.3meV< δε. In this case, the discreteness of the
spectrum becomes noticeable through spikes in the conductivity.
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Figure 6. (a) Linearly polarized beam reflected from a magnetic active material and respective Kerr effect. (b) σxx(ω) and σxy(ω) of
a quantum anomalous Hall insulator with Fermi energy inside the gap (E= 0 eV). The inset shows the DOS in a ±3 eV window
around the Dirac (K ) point. Simulation details: 8192× 8192 unit cells and a total number of Chebyshev moments M×M with M=
6000. Model parameters: W= 1.25 eV; other parameters as in figure 5. Minimum RAM required ≈8 GB (double complex precision).
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subsequent numerical studies [25–27] and it is now believed
to be the most general scenario [28].

In spite of these numerous theoretical studies regarding the
effects of random potential disorder, very little is known about
the role played by point defects and other common disorder
sources. Currently, time-reversal-symmetric Weyl fermions
can be realized as low-energy quasiparticles in a myriad of
materials, most notably within the TaAs cubic family (also
including NbAs, TaP, and NbP) [47], which can be grown
as single crystals using chemical vapor transport techniques
[48]. In the growth process, lattice defects are likely to
form [49,50] and, as demonstrated in previous experimental
studies based on transmission electron microscopy [51] and
Raman scattering [52], even high-quality samples generally
host a considerable density of defects, mostly vacancies and
stacking faults. Adding to their natural occurrence, vacancy
defects can also be artificially induced by means of particle
irradiation [53,54], a well-tested technique previously used
to generate defects in graphene [55] and two-dimensional
semiconductors [56,57]. Since point defects can significantly
change the electronic structure of materials, a study of their
impact as a source of disorder in WSMs opens up interesting
possibilities. Promising results were reported by Xing et al.
[58], where atomic vacancies hosted by the (magnetic) WSM
Co3Sn2S2 were linked to the presence of exotic localized
spin-orbit polaron states on its surface. In this paper, we
push this line forward by theoretically analyzing the elec-
tronic properties of Weyl fermions in the presence of point
defects. More specifically, we characterize the electronic wave
functions and corresponding density of states (DOS) of a
lattice T -symmetric Weyl semimetal with finite concentra-
tions of randomly distributed atomic-sized vacancies with one
(half-vacancy) or two (full-vacancy) orbitals missing from the
defect sites.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our working model and a projected
Green’s function formalism (PGF) that is used to calculate
the vacancy-induced DOS deformation and show that alge-
braically decaying nodal bound states appear for isolated
half and full vacancies. In Sec. III, the existence of nodal
bound states is further verified by Lanczos diagonalization
(LD) [59–61] of lattices containing an isolated vacancy. The
robustness of these states to an additional weakly disordered
environment is also discussed. In Sec. IV, we analyze the
averaged DOS of a WSM with a finite concentration of va-
cancies, employing a combination of LD and spectral methods
[62–64]. While confirming that localized eigenstates still ap-
pear and enhance the value of the DOS around the Weyl
node, our results further show that intervacancy hybridization
quickly broadens the nodal peak in the DOS, forming a comb
of symmetrically placed subsidiary sharp resonances for a
moderate concentration of defects. Finally, Sec. V summa-
rizes our key results and gives an outlook.

II. MODELING AN ISOLATED VACANCY
IN A WEYL SEMIMETAL

A lattice vacancy is a common crystalline defect [65].
When a crystal is formed some sites are not properly occupied
by the corresponding atoms, creating a proportion of vacant

FIG. 1. Band structure of the clean lattice WSM model along
the k-space path indicated in the inset. The locations of the eight
nonequivalent Weyl cones are represented as well.

sites [66,67] that act as a source of disorder. In the language of
tight-binding Hamiltonians, a vacancy can be modeled by re-
moving one or more Wannier orbitals from a randomly chosen
lattice site. We start by determining the effects of introducing
a single lattice half or full vacancy in a two-band model of
a WSM. We employ a particle-hole-symmetric model that
lives in a simple cubic lattice (L) and features a low-energy
dispersion relation with eight isotropic Weyl nodes pinned to
the time-reversal-invariant momenta of the cubic FBZ (see
Fig. 1). The lattice Hamiltonian [28] may be written as

H0 = h̄v

2ia

∑

R∈L

∑

j=x,y,z

[!†
R · σ j · !R+ax̂ j − H.c.], (1)

where a is the lattice parameter, v is the Fermi velocity,
x̂ j = (x̂, ŷ, ẑ) are Cartesian unit vectors, σ is the vector of
2 × 2 Pauli matrices, and !†

R = [c†
R,1, c†

R,2] is a local two-
orbital fermionic creation operator. Equipped with this lattice
description, the vacancy defects are implemented in two dis-
tinct ways. In our PGF calculations below, lattice vacancies
are created by canceling all hoppings at the defect site, which
leaves behind uncoupled zero-energy Wannier states. In con-
trast, when the system is analyzed using spectral methods
or LD (Secs. III and IV), the Hilbert space’s dimension is
effectively reduced by iterating with vectors orthogonal to the
removed orbitals.

A. Clean lattice Green’s function and nodal point symmetries

Before diving into the analysis of the electronic structure
of WSMs with vacancy defects, we first establish some basic
results. The Bloch Hamiltonian of the clean system admits the
simple representation

H0(k) = h̄vσ · sin ak, (2)

with sin ak ≡ (sin akx, sin aky, sin akz ), and which yields the
dispersion relation represented in Fig. 1. The clean re-
tarded lattice Green’s function (LGF), defined formally as
G0(E , R j − Ri ) = [E + i0+ − H0]−1

R j ,Ri
, can be written, in

terms of dimensionless quantities, as

G0(ε,"R) =
∫

[−π,π]3

d (3)k
8π3

ε + σ · sin k

ε2 − |sin k|2
e−ik·"R, (3)

where ε = Ea/h̄v + iη is the dimensionless energy (shifted
by an imaginary amount η), k is the crystal momentum (in

184201-2

2

ing their sensitivity to applied magnetic fields.
Electronic structure.—The WSM is described by a two-

orbital tight-binding model defined on a simple cubic lat-
tice (L),

H0=�
i~v
2a

X

R2L

X

i=x,y,z

⇥
 †

R ·�
i
· R+axi

�h.c.
⇤
, (1)

where a is the lattice parameter, v is the Fermi veloc-
ity, xi = (x̂, ŷ, ẑ) are the cartesian unit vectors, � is a
vector of 2⇥2 Pauli matrices, and  †

R = [c†R,1, c
†
R,2] is

a local two-orbital fermionic creation operator [31]. A
full-vacancy acts as a local perturbation that removes all
hoppings between orbitals at the defect site and its neigh-
bors. In a companion paper [41], we have shown that one
such point defect produces a bound state at the nodal
energy, whose real-space wavefunction decays asymptoti-
cally with an inverse-square law. In what follows, we em-
ploy large-scale Chebyshev expansions of lattice Green’s
functions [38, 42], as implemented in the KITE code [43],
to determine the impact of vacancy-induced nodal states
on several quantities of interest.

We start by calculating the change to the thermody-
namic DoS induced by a finite concentration of randomly
placed vacancies, nv. We recall that the clean DoS van-
ishes quadratically at the nodal energy and, therefore, a
pristine WSM realizes an incompressible electronic phase
in the absence of external fields. Unsurprisingly, symme-
try breaking due to disorder will change this picture by
transferring spectral weight across the energy spectrum,
with previous studies of white-noise scalar potentials and
extended impurities showing that the significant changes
in the DoS occur away from the nodal energy, owing to
the topological protection enjoyed by Weyl fermions [28–
32]. The situation with vacancies is strikingly different.
If random vacancies within a sample were taken in iso-
lation, the single-vacancy result of Ref. [41] would imply
that a spectral weight proportional to nv is drawn out of
the continuum and placed exactly at the nodal energy.
Generally, such situation cannot be maintained for suffi-
ciently large defect concentrations and, in fact, coherent
multiple-scattering may become important in the quan-
tum regime, even at low concentrations [38, 44].

To reliably capture quantum coherence effects, we con-
sider large cubic systems with linear size L. The DoS
is obtained by simulating a system with L=512a, using
an exact Chebyshev expansion of the resolvent operator
convoluted with a Jackson damping kernel [42]. Finite
size effects are eliminated by jointly averaging over defect
configurations and random twisted boundary conditions,
which yields virtually exact simulations within resolu-
tion. Our results, summarized in Fig. 1, disclose a strong
enhancement in and around the node for any nonzero
vacancy concentration. As anticipated, this sharply con-
trasts with the case of a random on-site potential disorder
where the nodal DoS change is exponentially small in the
inverse of the perturbation parameter. Furthermore, as
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Figure 1. Average DoS of a large WSM lattice, with linear size
L=512a, for several vacancy concentrations. An overview of
the entire spectrum is presented in (a) and a close-up around
the central peak is shown in (b). The comb of subsidiary
resonances is marked by arrows in (b). The spectral resolution
of the calculations was set to 10�3 ~v/a.

nv is increased, a wider symmetrical structure emerges
at base of the central peak, which signals that inter-
vacancy hybridization is turning the bound states into
continuum resonances and spreading their weight over a
finite spectral region. Interestingly, this energy spread-
ing entails a finer structure of subsidiary peaks that flank
the node for dilute concentrations, nv . 1%; see Fig. 1 b.
This comb of sharp resonances is characteristic of three-
dimensional (3D) WSMs and cannot be observed in the
DoS of a 2D Dirac semimetal with vacancies [41].

Magnetic response.—We have argued that, in general,
quantum interference effects between vacancies lift the
degeneracy of zero-energy modes, thus generating sharp
resonances shifted away from the node. These hybrid
states are no longer proper bound states but, crucially,
still retain a quasi-localized character. In Ref. [41], this
picture was confirmed by exact diagonalization results,
but here we take a less direct but more practical ap-
proach. Rather than probing the real-space wavefunc-
tions, we scrutinize the modification to the DoS induced
by an external uniform magnetic field, in the presence of
vacancies. The rationale for this is that quasi-localized
electronic states should remain robust to applied mag-
netic fields, thus effectively freezing out the DoS around
the nodal energy. This intuition is backed by our DoS
simulations for selected field strengths in the range 2�20
T shown in Fig. 2. We also present the DoS calculated
in the clean system for a direct comparison at a finite
B. Two features are worth mentioning. First of all, near
the nodal energy, the DoS stays pinned to its zero-field
values which corroborates the quasi-localized character
of defect states. Indeed, the DoS central peak (shaded

• 256 million orbitals 
• 65536 moments

Lifting of nodal DoS at arbitrary small : no topological protectionn
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➡ FastCheb: Fast Fourier-Chebyshev algorithm for ultra-high resolution simulations

Castro et al., PRB 107, 045418 (2023); Castro et al., PRL 132, 076302 (2024)

➡   [all energies at once] O(DN ln N)

➡ tens of billions of moments - fast & accurate

σ̃raðεkÞ ¼
1

1 − ε2k

"
XM−1

m¼0

gmTmðεkÞhaL;rm j

#

·

"
XM−1

n¼0

gnTnðεkÞjaR;rn i
#

¼ 1

1 − ε2k
hϕL;r

a;k jϕ
R;r
a;ki; ð4Þ

which we call left and right vectors. Moreover, we have
introduced the auxiliary vectors jaL;rm i ¼ TmðĥÞjri and
jaR;rn i ¼ ṽaTnðĥÞṽajri for compactness of notation. Next,
the energy points are carefully chosen in order to match the
nodes of the Chebyshev polynomials of the first kind,
i.e.,εk ¼ cos ðπðkþ 1=2Þ=MÞ. Exploiting the Chebyshev-
to-Fourier mapping, TnðxÞ ¼ cosðn arccos xÞ, the right and
left vectors at the εk points become

jϕR=L;r
a;k i ¼

XM−1

m¼0

cos ðmπðkþ 1=2Þ=MÞ
1þ δm;0
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π
jaR=L;rm i: ð5Þ

These are discrete cosine Fourier transforms of the vector
sequences Km=πja

R=L;r
m i, which is the main result of this

Letter. We call these energy-space vectors.
Next, we employ a divide-and-conquer strategy to obtain

all of the energy-space vectors simultaneously in an efficient
manner. The key steps are as follows. First, we carry out the
vector recursions and construct the matrices aLðRÞ by lining
up all vectors of the left (right) sequences jaLðRÞn i along their
columns. Then, we run through the matrices aLðRÞ, row by
row, performing one-dimensional cosine FFTs. These FFTs
yield the ith rows of the energy-space matrices as ϕR=L;r

a;i;k ¼
FFTm→k½Kma

R=L;r
i;m =π& (i ¼ 1;…; D). The partial result

pa;iðεkÞ of the dot product from Eq. (4) is updated every
time an energy-space row is obtained, i.e., pa;iðεkÞ ¼
pa;i−1ðεkÞ þ ϕL†

a;i;kϕ
R
a;i;k. Finally, once all D rows have been

visited, the random vector contribution is obtained as
σ̃raðεkÞ ¼ pa;DðεkÞ=½π2ð1 − ε2kÞ&. The explicit evaluation
of the M2 Chebyshev moments fμra;mng is bypassed. In
its place,D FFTs of lengthM are performed, yielding a total
of OðDM logMÞ operations.
Realizing the full extent of these advantages, however,

requires that the aLðRÞ are all stored in memory. That entails
a memory cost Oð2DMÞ, which is demanding for large
systems [13]. To overcome this challenge, we employ a
partitioning scheme which we discuss in detail in the
Supplemental Material [27].
Implementation and benchmark.—In order to assess its

baseline performance, FastCheb is implemented within
framework of the open-source KITE code [16]. KITE is a
high-performance code for spectral simulations of Green’s
functions and related quantities in real space [18,19], and

hence is an ideal testbed for this study. The efficiency of
our algorithm can be best appreciated in a direct com-
parison with the standard recursive method. To this end,
we simulate the diagonal conductivity of graphene using a
minimal nearest-neighbor tight-binding (TB) model on a
honeycomb lattice. The results of this benchmark are
summarized in Fig. 1(a), where the computational effort
is seen to follow closely the behavior expected from the
earlier considerations. In this example, the calculation with
5000 Chebyshev moments using FastCheb is 50 times
faster compared to the standard approach, while for M ¼
25 000 it has already become 232 times faster. This
M-scaling law for the CPU time is robust and represen-
tative of a wide class of problems. By the way of two main
case studies, we show below that FastCheb has pivotal
advantages in linear-response studies of bulk electrical
conductivity and conductance in nanostructures.
Ballistic conductance and twisting effects.—We start by

simulating a two-terminal quantum-transport device made
from a large graphene nanoribbon. The linear conductance
at the Fermi energy, GðEFÞ, is obtained from the T → 0
limit of Eq. (2) [σaaðEFÞ ≃ ð4e2=hΩÞ⟪σ̃raðεFÞ⟫R] using the
framework for two-terminal devices recently developed in

FIG. 1. (a) Scaling of CPU time with Chebyshev orderM in the
FastCheb and standard approaches. This benchmark is for a
single random vector evaluation of σxx in a small system with
256 × 128 orbitals. (b) Fermi-energy dependence of the linear
conductance of a large graphene nanoribbon with side lengths
Lx ¼ Ly ¼ 100 nm, to which absorbing contacts of the same
dimension are attached. The full TB model contains 107 orbitals.
(c) and (d) Panoramic and detailed views of linear conductance
curves for a TBG device with a total of 2.5 × 106 orbitals. Values
of M corresponding to each curve in (b)–(d) are indicated on the
plots. See Ref. [27] for more details.
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hence is an ideal testbed for this study. The efficiency of
our algorithm can be best appreciated in a direct com-
parison with the standard recursive method. To this end,
we simulate the diagonal conductivity of graphene using a
minimal nearest-neighbor tight-binding (TB) model on a
honeycomb lattice. The results of this benchmark are
summarized in Fig. 1(a), where the computational effort
is seen to follow closely the behavior expected from the
earlier considerations. In this example, the calculation with
5000 Chebyshev moments using FastCheb is 50 times
faster compared to the standard approach, while for M ¼
25 000 it has already become 232 times faster. This
M-scaling law for the CPU time is robust and represen-
tative of a wide class of problems. By the way of two main
case studies, we show below that FastCheb has pivotal
advantages in linear-response studies of bulk electrical
conductivity and conductance in nanostructures.
Ballistic conductance and twisting effects.—We start by

simulating a two-terminal quantum-transport device made
from a large graphene nanoribbon. The linear conductance
at the Fermi energy, GðEFÞ, is obtained from the T → 0
limit of Eq. (2) [σaaðEFÞ ≃ ð4e2=hΩÞ⟪σ̃raðεFÞ⟫R] using the
framework for two-terminal devices recently developed in

FIG. 1. (a) Scaling of CPU time with Chebyshev orderM in the
FastCheb and standard approaches. This benchmark is for a
single random vector evaluation of σxx in a small system with
256 × 128 orbitals. (b) Fermi-energy dependence of the linear
conductance of a large graphene nanoribbon with side lengths
Lx ¼ Ly ¼ 100 nm, to which absorbing contacts of the same
dimension are attached. The full TB model contains 107 orbitals.
(c) and (d) Panoramic and detailed views of linear conductance
curves for a TBG device with a total of 2.5 × 106 orbitals. Values
of M corresponding to each curve in (b)–(d) are indicated on the
plots. See Ref. [27] for more details.
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Ref. [32]. Note that in the zero-temperature limit, this
quantity is a pure Fermi surface property and the conduc-
tivity kernel directly yields the dc response. The linear
conductance is known to exhibit well-defined quantization
steps due the transverse subbands formed in confined
nanostructures. The changes in the conductance occur in
discrete steps of e2=h (per spin) each time a new transport
channel opens up at the Fermi level [33,34]. Figure 1(b)
shows that this behavior is fully captured by the spectral
algorithm, with the Chebyshev truncation order playing a
central role. Because the plateau width is so small (around
1 meV), tens of thousands of iterations are required to
accurately reproduce sharp step changes in the conductance.
This can be traced back to the slow algebraic convergence
generated by steplike discontinuities, one of the hardest
singularities to resolve with polynomial expansions [35].
Thanks to the efficiency of FastCheb, such fine features can
be captured with modest computational effort.
Next, we demonstrate the power of our algorithm by

resolving the linear-response conductance of large twisted
bilayer graphene (TBG) devices. We focus on commensu-
rate structures with small twist angle θ, modelled via a
Slater-Koster tight-binding scheme [36,37]. To faithfully
capture interlayer interactions in TBG, it is imperative to go
beyond a nearest-neighbor approximation [38]. Here, we
include full hopping integrals up to a distance of 0.58 nm
(approximately four times the bond length). In practice this
entails around 60 neighbors for each carbon atom, which
makes a transport study prohibitively demanding for exact
diagonalization. The conductance of a TBG device with
θ ¼ 1.24° obtained with FastCheb is shown in Figs. 1(c)

and 1(d). Owing to the full-spectral capability of the
algorithm, it is possible to zoom in on small features, such
as the conductance peak at the charge neutrality point
caused by residual dispersion of the conduction bands. The
absence of ballistic conductance steps is due to the channel
mixing caused by elastic scattering between the layers, and
is thus a direct result of moiré supercell effects [32]. Based
on our extensive tests, we estimate that the largest TBG
simulation (i.e., M ¼ 56 000, corresponding to a spectral
resolution of 0.5 meV, and taking 40 core hours with
FastCheb), would require around 2400 core hours using the
standard kernel polynomial approach.
Kubo-Bastin formulation: Hall conductivity.—The key

motivation for developing FastCheb is to extend the range
of transport phenomena that can be studied by means of
microscopic lattice models. It is well known that many
facets of disordered systems and quantum criticality are
notoriously challenging to address numerically even at the
level of one-particle properties (such as the inverse locali-
zation length [39,40]). An example is the scaling behavior
of integer quantum Hall transitions that remains a long-
standing problem, with most recent progress making use of
transfer-matrix calculations in quasi-1D geometry [41–44].
The possibility to perform large-scale lattice calculations of
the full conductivity tensor in 2D geometry makes
FastCheb a promising tool in quantum transport. Here, a
start is made towards the application of such a tool to
quantum Hall systems. The Kubo-Bastin formalism is
employed for this purpose because it provides a unified
treatment of all components of the conductivity tensor [26]
and is amenable to spectral expansions [16,25,27,45].
We choose the integer quantum Hall effect in graphene to

demonstrate the capacity of FastCheb to probe topological
transport in large 2D systems. The Hall conductivity in
graphene obeys an unconventional quantization condition,
σnxy ¼∓ 2e2=hð2nþ 1Þwith n∈Zþ

0 (here, the% signs hold
for electrons or holes), due the Berry phase of the electron
wave functions [46–48]. The numerical implementation of
the Kubo-Bastin formula revolves around the same concepts
as before, however this time 6 energy-space vectors are
required (as opposed to two for pure Fermi surface
quantities like the T ¼ 0 longitudinal conductivity). The
perpendicular magnetic field is included in the Hamiltonian
through Peierls’s phases in the hopping terms, generating a
magnetic flux Φ per unit cell. To emulate the effect of
disorder, we supplement the TB Hamiltonian with an
uncorrelated on-site potential [16].
The longitudinal (xx) and Hall (xy) conductivity of a

large system with side lengths Lx ¼ 1600 and Ly ¼ 3200
(in units of the lattice spacing) is shown in Fig. 2. Both
quantities are seen to follow the expected behavior for the
insulating quantum Hall regime of graphene [46], thus
validating the robustness of the new approach. We empha-
size again that the large values of M—required to resolve
sharp features satisfactorily—are out of reach for previous

FIG. 2. Longitudinal and transverse conductivity as function of
the Fermi energy in a disordered graphene system tuned to the
quantum Hall regime. The lattice has a total of 107 sites. The
parameters are set to W ¼ 0.1t (disorder strength), with t ¼
2.7 eV (nearest-neighbor hopping energy), and magnetic flux
Φ ≃ 3 × 10−4h=e. Data are averaged over 10 random-vector
and 4 disorder realizations. Periodic boundary conditions are
employed.
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Efficiency

Design-level optimisation

• On-the-fly matrix-free computations

• Optimal multi-threading scaling

• CPU-memory “alignment” to minimise cache-to-cache transfers and cache misses

Part 2b: KITE open-source initiative

At the subdomain level, KITE has a smaller length scale, a TILE, to reorganize the matrix-vector
multiplication. The subdomain is tiled by identical D-dimensional hypercubic sections of linear length
TILE. The multiplication is then performed inside each hypercube before moving on to the next one.
This reorganization of the multiplication permits two significant optimizations:

— independently of the number of dimensions, TILE is always defined on compilation, and it controls
the size of memory chunks. This allows the vectorization of the inner loop in the matrix/vector
multiplication;

— contributions for each vector element are determined by the neighbours in all directions.
Multiplications along the memory alignment could result in a memory element being called each
time the multiplication is performed on one of its neighbours, as the lattice typically exceeds the
cache memory. Iterating sequentially inside the small hypercube, allows KITE to fully fit it inside
the memory cache and minimize the transfers and cache misses.

During the regular multiplication (the one pertaining to the periodic part of the Hamiltonian) inside
each of the hypercubes, KITE is also performing the multiplication related to the disorder and
defects, leading to a major performance boost. The ideal value of this TILE compilation parameter is
highly dependent on the hardware architecture and should be optimized by the user to allow
maximal performance.

3.3. KITE workflow
The KITE workflow is divided into three phases (figure 3). First, the user specifies the SETB model on a
Python configuration script by using the Pybinding syntax. This configuration file also includes
information about the target functions to be evaluated, number of energy points required, etc.
The model, together with the calculation settings, is exported to a HDF5 file which becomes the I/O
of the main program (KITEx).

In the second phase, the pre-compiled KITEx executable reads the HDF5 file and computes the
matrices of Chebyshev polynomials that correspond to each of the requested quantities (DOS, optical
conductivity, etc). This is the most demanding step of the calculation. Calculated quantities are written
back into the HDF5 file.

In the third phase, the KITE-tools executable, a post-processing tool, reads the Chebyshev moments
from the I/O file and uses them to compute the final quantities. The post-processing is the only part of
the calculation that needs information about the free parameters in the formulae, such as the resolution η
in Green’s functions and number of energy points. Consequently, it is possible to pass them as command-
line arguments to the executable, ignoring those specific parameters in the configuration file, which can
be useful, for example, for re-calculating the requested target functions for different temperatures or
different chemical potentials.

It is also possible to use a smaller number of polynomials than those originally requested to KITEx,
for example, to study convergence (figure 1). Each of the quantities that KITE-tools calculates has its own
set of parameters that can be modified through command-line arguments. This scheme allows the user to
calculate several quantities with a single KITEx usage. The post-processing usually takes less than 1min.

domain

computer

ghosts

core

ghosts

local domain

cache lines

tile

Figure 2. Multi-scale organization of KITE. The lattice (left) is divided into domains, which are assigned to different computing
processor units. Each core also gets information about the neighbouring domains (orange slices in the middle image). Each
domain is divided into TILES and the computation in each core is done inside each of these tiles first, before moving on to a
neighbouring tile. Finally, each tile is composed of several unit cells (right).
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Inner workings

generalised Chebyshev moments (N-particle Green’s functions)
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Algorithms Type #orbitals Availability 

Models N.A. LCAOs 1D / 2D / 3D N/A v1.0 

Disorder N.A. Generic multi-orbital (short-range) N/A v1.0

B field N.A. Vector B aligned with a desired crystal axis N/A v1.0 - v1.1

LDOS/ARPES Full Spectral Generic, High-Resolution  v1.0

Linear RFs Full Spectral DC, AC, XX, XY, spin, orbital, etc. v1.0 - v1.2

Linear RFs Single Shot High-Resolution  
(FS response) v1.0

Nonlinear RFs Full Spectral 2nd order v1.0

t-Dynamics Single Shot Generic, High-Resolution v1.0

Geometry & Topology Single Shot Generic, High-Resolution v1.2

Functionalities

Part 2b: KITE open-source initiative
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Workflow 

Part 2b: KITE open-source initiative

• import / build model

• ‘disorder cell‘
• target functions

• visualisation tools

KITEx (C++)

(I/O)

post-processing tools

KITE

DoS:  TBLG ϴ=1.05
(12k atoms, 70k hoppings p/ cell)  

4 billion atoms 

KITE: Workflow

KITE + pybinding

Vppp ¼ V0
pppe

"(d"a0)=d

and Vpps ¼ V0
ppse

"(d"d0)=d,
(4:3)

where V0
ppp ¼ "2:7 eV and V0

pps ¼ 0:48 eV are intralayer and interlayer hopping integrals, a0≈ 0.142 nm
and d0≈ 0.335 nm are carbon–carbon distance in graphene and interlayer distance in bilayer graphene,
respectively. dij is the vector connecting two sites, d=|dij| is the distance between them, and δ=
0.3187a0 is chosen in order to fit the next-nearest intra-layer hopping to 0:1V0

ppp. All neighbours
within the distance of 4a0 are being considered.

The numerical analysis of special features in the electronic structure of tBLG systems, such as gap-opening
and flat bands, require a small probing energywindow to be resolved, usually of the order of 1meV. To avoid
finite-size effects, this resolution has to be finer than the mean-level spacing which originates from the
discreteness of the simulated finite lattice. This brings, besides the intrinsic large unit cell of the twisted
structures, the requirement for a large system. Due to the implementation of ‘memory saving’ algorithms
explained in §3.2, KITE can handle such requirements. In this example, the simulated system contains
640× 512 unit cells, with 11 908 atomic sites within one unit cell, which leads to a total number of
orbitals N≃ 4× 109, the largest SETB simulation reported in the literature to our knowledge. In addition
to its giant dimension, the SETBmodel also has avery high coordination numberZ (around 60 neighbours).

Given the large size of the system, the STE can be safely undertaken using a single random vector for
resolutions down to 1meV. The DOS calculation can be requested with the following command

where a large number of moments (M= 12 000) are requested to allow post-processing of DOS data with
fine energy resolution (cf. figure 1d ). KITEx code returns the set of calculated CPGF moments and
KITE-tools reconstructs the DOS with the requested resolution.

Figure 4 shows the calculated DOS in two cases: a rigid, non-relaxed structure (a) and a lattice on
which a molecular dynamics relaxation was performed (b). The relaxation was performed externally
within the LAMMPS software package [77,78] by considering a combination of Brenner potentials for
in-plane interactions and a registry-dependent Kolmogorov–Crespi potential [79] with parameters
given in [80] for the out-of-plane van der Waals interaction. As suggested previously, refined features
are resolved only at high-energy resolution (≈1 meV). Notably, the DOS peak at E= 0 eV indicates the
presence of a flat band due to the specific twisting angle. Away from the flat band, the situation in
the two cases is quite different. Mini-gaps around the flat bands start appearing only after relaxing
the sample [81,82] and agree with recent experiments [83,84]. The P-complexity factor for this
calculation (equation (2.35)) is P=O(1015). Nevertheless, this calculation requires a modest 83 GB
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Figure 4. Comparison between the DOS of tBLG for (a) rigid non-relaxed lattice and (b) lattice relaxed by molecular dynamics, for
different values of η. The inset of panel (a) depicts the tBLG lattice structure. Simulation details: 640× 512 units cells, with 11 908
atomic sites per unit cell, M= 12 000 and R= 1. Total RAM required ≈83 GB (single real precision).

Listing 5. Code used for the DOS calculation.
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Figure 2: Left panel — 24-spin hexagonal cluster on the honeycomb lattice. The red,
green and purple bonds illustrate the periodic boundary conditions. Right panel —
Nearest neighbor bonds colored in red, green and purple (respectively ω = x , y, z in
our cartoon). The bond-directional character of the Kitaev interaction implies that
to each bond corresponds a different type of interaction. Similarly to the case of the
Ising model on the triangular lattice, where we have geometrical frustration, here we
have exchange frustration due to the nature of the interaction and it is not possible
to find a spin configuration that simultaneously minimizes the energy on all bonds.

leads to short time expansions with Mt Lanczos vectors and the initial state |ω(t = 0)→= |ϵ̃0→:

GB̂Â(ϑt) = ↑GS|eiNϑtĥB̂e↓iNϑtĥÂ|GS→ ↔
!
↑GS|Â†Â|GS→

Mt∑

j=0

e↓Ni(ϖ j↓ϖm)ϑt↑GS|B̂|ϱ̃ j→↑ϱ̃ j |ϵ̃0→ .

(52)
The eigenvectors of the tridiagonal matrix of Eq. (45), {ṽ j} give ↑ϱ̃ j |ϵ̃0→ = ṽ j0. However,

the overlaps of the type ↑GS|B̂|ϱ̃ j→ must be evaluated explicitly using the vector B̂|GS→, which
now has to be stored in memory separately, thus adding to the memory cost:

↑GS|B̂|ϱ̃ j→=
Mt∑

i=0

ṽ ji↑GS|B̂|ϵ̃i→ . (53)

Moreover, we must update the initial state of the Lanczos expansion at each time interval,
|ω(t)→ using short time Lanczos expansions. Then, we re-compute the eigenvectors of a new
tridiagonal matrix and re-evaluate ↑GS|B̂|ϱ̃ j→ for each time step. This process becomes compu-
tationally expensive very quickly since we may require a large number of time steps to capture
important features of GB̂Â(t). On the other hand, the CPGF treats the cases B̂ ↗= Â† and B̂ = Â†

on equal footing. Therefore, the CPGF is a general purpose approach, which accesses spectral
functions for the case B̂ ↗= Â† using the same methodology and with the same computational
complexity and memory requirements as the case B̂ = Â†.

4 Applications

In this section we apply the methods described in Sec. 3 to two generalized Kitaev models on
the honeycomb lattice for a 24-spin hexagonal cluster with periodic boundary conditions (see
left panel of Fig. 2): the K-H and the K-I models.

4.1 Kitaev-Heisenberg model

The K-H model combines Kitaev and Heisenberg interactions. The Hamiltonian can be cast as
a sum over NN bonds ↑i, j→ω on the honeycomb lattice (the superscript refers to the type of
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Table 3: Average CPU times, tCPU, for MTPQ and FTCP calculations for the K-I model
on a 24-spin hexagonal cluster with ω= 0.7 and JI = 0.001,0.03.

JI
tCPU/ hours

MTPQ FTCP

0.001 142 77
0.03 61 29

the pure Kitaev case of Fig. 9, the left panel (c) shows a much more pronounced plateau-like
behavior between T = 10→1 and T = 10→2, ending in an abrupt decrease of entropy. In con-
trast, the right panel (d) shows no plateau at all, with a gentler decrease in entropy between
T = 10→1 and T = 10→2. This is a manifestation of the intrinsic differences between the two
liquid phases (Kitaev QSL and nematic). Finally, figures 11 e),f) illustrate the high tempera-
ture enhancement of the kinetic energy of the Majorana fermions c, a behavior that is shared
between the two phases. Here, statistical fluctuations are very small for both MTPQ and FTCP,
with negligible error bars.

4.2.3 Dynamics: Hybrid Lanczos-Chebyshev approach

Lastly, we present novel results that elaborate on the picture of the K-I system that was outlined
in Ref. [61]. We find that the signatures of the quantum phase transitions are present not only
in static quantities, such as the energy and squared magnetization, but also in the dynamical
spin susceptibility. This spectral function is obtained by considering the relevant observable in
Eq. (48) to be the Fourier-transformed spin operator, i.e. Â =

∑
r e→iq·rŜz

r/
↑

N , where r is a
position on the lattice and q is the wave vector.

In Fig. 12, we show the variation of the q = (0, 0) dynamical spin susceptibility, Sω (ϵ),
with the model parameter JI . These results are obtained with the hybrid Lanczos-Chebyshev

Figure 12: Dynamical spin susceptibility of the K-I system for varying JI and ω= 0.7,
normalized to its maximum value. The phase transitions are marked as gray dashed
lines. The results obtained with the Lanczos and HLC methods are identical. The
white space corresponds to a vanishing Sω (ϵ), as shown on the bottom of the
color bar.
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4.5. Spintronics: time-evolution of spin polarized wave-packets
KITE also provides the functionality of performing real-space wave-packet propagation [96]. The time
evolution of wave-packets |ψ(t)〉 under a time-independent Hamiltonian is determined by the time-
evolution operator Û(t) according to

jc(t)i ¼ e"iĤt=h" jc(0)i ¼ Û(t)jc(0)i, (4:12)

where |ψ(0)〉 is the initial state. The spectral expansion of the time-evolution operator in terms of
Chebyshev polynomials of first kind is given by [97]

Û(t) ¼ e"iĤt=h" ¼ e"ideþt=h" c0 þ 2
X1

n¼1
cnT n(Ĥ)

" #
, (4:13)

where Ĥ is the rescaled Hamiltonian with eigenvalues in the canonical interval (see equations (2.14) and
(2.15)) and cn ¼ ("1)nJn(de"t=h" ), where Jn(de"t=h" ) are Bessel functions of the first kind.

To exemplify this functionality, we use KITE to resolve the spin dynamics in heterostructures of
graphene and semiconducting (group VI) transition metal dichalcogenide (TMD) monolayers. The
point group symmetry is C3v. Hence, two types of interface-induced spin–orbit effects are allowed
[98,99]: (i) intrinsic-like SOC (invariant under the crystal symmetries of the isolated monolayers), and
(ii) Bychkov–Rashba interaction due to broken mirror reflection (z→−z) symmetry. The characteristic
spin–valley coupling of the TMD monolayer [100] is ‘imprinted’ on graphene states, becoming the
dominant interfacial intrinsic-type SOC [101]. This spin–valley coupling acts as a pseudomagnetic
field oriented along ẑ for electrons at K(K

0
) Dirac points, leading to highly anisotropic spin dynamics

characterized by long out-of-plane spin lifetimes [102–104]. Such a spin relaxation anisotropy was
recently observed in Hanle-type spin precession measurements on graphene/TMD bilayers [105,106].
To simulate spin-relaxation dynamics in the presence of disorder, we consider a nearest-neighbour
SETB model for monolayer graphene subject to Bychkov–Rashba effect

Ĥ ¼ "
X

,i,j.,s
t ĉyisĉ js þ

2i
3

X

,i,j.,s,s0
ĉyisĉ js0 [lR(ŝ$ dij)z]ss0 þ

X

i,s
Dis ĉ

y
isĉis, (4:14)

where the first two terms are defined below equation (4.4) and the last term accounts for an on-site
potential that can represent either an Anderson disorder or a magnetic impurity. In this example, we
illustrate how the spin dynamics of in-plane and out-of-plane spins is affected by both types of
disorder. Section 4.2 presented the on-site disorder entry in KITE, with Δis∈ [−W/2, +W/2]. Magnetic
impurities are modelled as resonant Ising scatterers with opposite sign for each spin, Δis=Wressz (if i is
occupied by an impurity), distributed with a given concentration c. The latter can be incorporated
with the following command:

y 
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m
)
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Figure 9. LDOS of a vacancy in WSe2 for E= 0 eV, with a tight-binding model of six orbitals [95]: (a) the total LDOS, and the
orbital projected LDOS for orbitals (b) d3z2"r2 , (c) dxy and (d ) dx2"y2 . Simulation details: 256× 256 unit cells and M= 512
Chebyshev moments. Total RAM required ≈10 MB (double complex precision).
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quasistatic approximation using experimentally measured
bulk dielectric functions and the resulting matrix elements
are calculated following the approach of Pedersen et al.
[44]; see Sec. V for details.

The evaluation of Eq. (1) via exact diagonalization
methods becomes impractical for large nanoparticles. To
overcome this challenge, we exploit the observation that
the hot-carrier generation rate, Eq. (1), is a spectral quan-
tity similar to the density of states ρ(E) =

∑
n δ(E − En).

For such quantities, highly efficient numerical approaches
have recently been developed that avoid the need to diag-
onalize large Hamiltonian matrices [38–41]. To harness
these spectral methods, we write the hot-carrier rate as

Ne(E, ω) = 4π

!V

∫ ∞

−∞
dE ′δ(E − E ′; σ )

×
∫ ∞

−∞
dEφ(E , E ′, ω)δ(E − E ′ − !ω; γ )

f (E)(1 − f (E ′)), (3)

where φ(E , E ′, ω) =
∑

if |〈f |(̂tot(ω)|i〉|2δ(E − Ei)δ(E ′ −
Ef ) can be conveniently expressed as the trace of
the operator δ(E − Ĥ)(̂tot(ω)δ(E ′ − Ĥ)(̂tot(ω). In order
to apply the full machinery of spectral methods, we
rescale and shift the energy variables E(E ′) '→ ε(ε′)

and the Hamiltonian Ĥ '→ ĥ so that the spectral weight
is mapped into the interval [−1 : 1], where first-kind
Chebyshev polynomials, Tn(ε) = cos(n arccos ε) (with n
being a non-negative integer), form a complete set of
orthogonal functions [45]. The spectral operator δ(ε −
ĥ) can now be formally expressed as an infinite series
of Chebyshev polynomials according to δ(ε − ĥ) =
[2/(π

√
1 − ε2)]

∑∞
n=0(1 + δn0)

−1Tn(ĥ)Tn(ε). In practical
calculations, this series is truncated after N − 1 terms,

which induces unphysical Gibbs oscillations. These can
be removed by multiplying each term in the series with a
coefficient of Jackson’s kernel given by J (n, N ) = [(N −
n) cos(πn/N ) + sin(πn/N ) cot(π/N )]/N [41,46], which
effectively replaces each delta function by a Gaussian (note
that the width of these Gaussians is much smaller than the
physical broadening parameters σ and γ ). Inserting these
series into φ(ε, ε′, ω) gives

φ(ε, ε′, ω) ≈ 1
E2

−

N−1∑

n=0

N−1∑

m=0

4µmn(ω)Tm(ε)Tn(ε
′)

π2
√

(1 − ε2)(1 − ε′2)

× J (n, N )J (m, N )

(1 + δn0)(1 + δm0)
, (4)

where we have defined µmn(ω) = Tr[Tm(ĥ)(̂tot(ω)Tn(ĥ)
(̂tot(ω)] that can be computed efficiently exploiting
the recurrence relation of Chebyshev polynomials and
stochastic trace evaluation techniques [41]; see Sec. V for
details.

III. HOT-CARRIER GENERATION RATES

We have calculated hot-carrier generation rates for
spherical nanoparticles of Ag, Au, and Cu containing up to
1 072 241 atoms [corresponding to diameters up to 32 nm
(Ag), 33 nm (Au), and 28 nm (Cu)].

Figure 1(a) shows the evolution of the hot-electron and
hot-hole generation rates in Ag nanoparticles as a func-
tion of the diameter when the nanoparticle is illuminated
at the LSP frequency (3.5 eV in vacuum). For the small-
est nanoparticle (D = 2 nm), the hot-electron and hot-hole
rates exhibit a series of discrete peaks characteristic of a
moleculelike behavior. At a diameter of 4 nm, we find
that the hot-electron and hot-hole rates have evolved into
smooth curves. The hot-hole rate has a sharp peak near
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FIG. 1. Hot-carrier generation rates for spherical silver nanoparticles. (a) Dependence of the hot-hole (blue) and hot-electron (red)
rates on the nanoparticle diameter D at the LSP frequency. (b) Dependence of hot-carrier rates on the illumination frequency for a
D = 32 nm nanoparticle. Yellow arrows indicate peaks arising from d-to-sp band transitions and green arrows indicate peaks arising
from sp-to-sp band transitions. The zero of energy is set to the Fermi level.
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spin dynamics is limited by elastic scattering processes at the Fermi surface leading to spin relaxation
(and not by energy dephasing). We note that the constraint σE≪ λR leads to the requirement of a
significant standard deviation σ, and in turn a large computational domain (system size).

To illustrate this capability, we simulate the spin dynamics of graphene on a TMD monolayer in the
strong SOC regime (lRt ! h" , where τ is the scattering time [104]), subject to different types of disorder.
The BRSOC acts as an in-plane pseudo-magnetic field, and both Sk ; Sx,y and S⊥≡Sz are subjected to
precession. In our computational experiment, the originally defined wave-packet at t=0 (i.e. a sum of
plane waves with a Gaussian envelope) diffuses isotropically in the basal plane of graphene in the
presence of Anderson scalar disorder only (figure 10a) and Anderson disorder combined with a
resonant concentration of magnetic impurities (figure 10b) or hollow adatoms (figure 10c). In all cases,
the spin precession is anisotropic and the spin density executes several precession cycles around the
pseudo-magnetic field before fading way. In this strong SOC regime, the spin dynamics is
characterized by fast damped oscillations, with spins relaxing on the timescale of a single scattering
event. For example, for short-range scalar disorder (a), the two spin components are precessing
accordingly with predictions, and KITE captures the cos (lRt=h" ) evolution of the S⊥ spin, as well as
the fine effect of the higher-order precession terms which result in the cos2 (lRt=h" ) evolution of Sk

1.0

Sz
Sx

Sz
Sx

0.80.6
t (ps)

0.40.20

1.00.80.6
t (ps)

(a) (b)

(c)

0.40.20 1.00.80.6
t (ps)

0.40.20

1.0

0.5

S 
(1

/2
)

–0.5

0

1.0

0.5

S 
(1

/2
)

–0.5

0

Figure 10. Time evolution of in-plane (Sk) and out-of-plane (S⊥) spin components of a spin-polarized wave-packet in a medium-
size graphene/TMD heterostructure flake with ≈103 million (pz-) orbitals in the presence of (a) Anderson disorder with W= 1.5 eV
and Anderson disorder (W= 1.5 eV) superimposed with (b) magnetic short-range impurities (Wres = 0.25 eV) (non-magnetic heavy
adatoms in hollow position (c)) with concentration c= 0.04. The average self-energy mediated by the impurities Δex = c#Wres

matches the SOC energy scale, thus strongly affecting the spin dynamics. In (c), the self-energy mediated by the heavy
adatoms give rise to several spin–orbit interactions within the adsorption sites. The adatom–graphene interaction is
parametrized by a set of spin-conserving hoppings (nearest neighbour, timp ¼ "0:85+ 0:08 i eV, second-nearest neighbour,
nimp ¼ "0:49+ 0:08 i eV, and third-nearest neighbour, ρimp =−0.35 eV, where ± holds for spin up (down) electrons), as
well as spin–flip interactions between all sites of the hexagonal plaquette (λimp =−0.12 eV) due to the broken mirror
reflection symmetry (for details, see [66]). Other parameters read as: t=−2.507 eV, λR= 10 meV, Fermi energy E= 0.1 eV
and initial wave-packet width σ≈ 110 nm. The insets illustrate snapshots of the real-space wave-packet profile (a,b) and a
hollow adatom (c). Simulation details: 7168× 7168 unit cells, time steps of 2 fs and M= 70 Chebyshev moments per time
step. Total RAM required ≈17 GB (double complex precision).
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Outlook & Next steps

➡ Soon, KITE v1.2 with new functionalities: quantum geometry, topology & flavoured (orbital/spin) vertex operators

➡ Chebyshev spectral methods: real-space simulation of condensed matter on large scales

The community (i.e. you!) will be key to inspire and drive new developments: get in touch with us! 

Thank you!

➡ Future additions to the KITE open-source code: superconductivity, interacting spin models, …  


