Bridging disorder & topology via large-scale simulation of condensed matter: *The open-source quantum KITE initiative*

Aires Ferreira

University of York, U.K.

Topology & Disorder Beyond Perfect Crystals: NORDITA, 26 May - 13 June, 2025

Acknowledgements

KITE co-founders (left to right →
Ferreira, Rappoport, Lopes,
João, Anđelković & Covaci)

EcoDataCenter Sweden

Viking - York HPC facility

Open source * community driven * extensive online documentation & more!

T. Rappoport (U Minho)

J. Lopes (U Porto)

L. Covaci (U Antwerp)

E. Mucciolo (UCF)

J. Lischner (IC London)

D. Bahamon (Mackenzie)

J. Pinho

H. Veiga

J. Pires

S. Castro

M. Andelkovic

S. Joao

D. Goncalves

E. Aerts

B. Jorisssen

Z. Samiullah

F. Brito

R. Smeyers

Outline

Part 1: Methodology

- Approximation theory (Chebyshev spectral expansions)
- Chebyshev methods in condensed matter physics

Part 2: Applications

- Disorder & Topology: from millions to billions of sites
- ➡ Open-source KITE initiative

Motivation

$$(H = H_{\rm e} + H_{\rm I} + H_{\rm e})$$

Full many-body problem is far too complex

Solution: Break the problem into smaller parts, construct effective theories, think differently!

09/06/2025

Topology & Disorder Beyond Perfect Crystals, NORDITA

credit: <u>isgs.illinois.edu</u>

aires.ferreira @ york.ac.uk

• Specialised numerical / simulation tools: DFT, DMRG, QMC, ...

General-purpose spectral methods

09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

• Exact diagonalisation, many-body (diagrammatic) perturbation theory, 1/N expansions, etc.

➡ Large-scale electronic structure in real space

09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA João et al., R. Soc. open sci. 7, 191809 (2020)

Part 1a

"All science is dominated by the idea of approximation" (Bertrand Russel)

09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

Finding a suitable spectral approximation

function of real variable (e.g., energy) defined on a finite interval, $\varepsilon \in [\varepsilon_{min}, \varepsilon_{max}]$

- Old problem in approximation theory (Chebyshev, 1854)

John P. Boyd, Chebyshev & Fourier Spectral Methods (2001)

$$\sum_{n} \langle \phi_n | f
angle \phi_n(arepsilon)$$

There is an ideal polynomial interpolant, so-called 'minimax polynomial' $\min_{p \in P_M} \max_{\varepsilon} |f(\varepsilon) - p(\varepsilon)|$

Pragmatically, <u>near-minimax approximations based on orthogonal polynomials</u> are best

Choice of basis set

Boyd's moral principle:

"Unless you are <u>really, really sure</u> another set of basis functions is better, use Chebyshev polynomials"

PERIODIC

John P. Boyd, Chebyshev & Fourier Spectral Methods (2001)

Fourier Chebyshev

Chebyshev polynomials of the first kind

A Fourier series in disguise, yet non-periodic and defined on a finite interval

$$T_0(x) = 1$$
$$T_1(x) = x \dots$$

$$T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$$

Chebyshev recursion rule

$$\left(T_n(\cos\theta) = \cos(n\theta)\right) \ n \in$$

Finding a suitable spectral approximation

expansion moments

Spectral expansions in condensed matter

Part 1b

Large-scale real-space Chebyshev expansions: key ideas & milestones

09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

The idea

First, rescale \hat{H} so that (dimensionless) eigenvalues E fall into the canonical interval $\varepsilon \in [-1:1]$

Lattice Hamiltonian

 $\dim \hat{H} = D$

$$\delta E_{\pm} + = \frac{E_{max} \pm E_{min}}{2}$$

 $E_{max/min}$ are some reasonable upper/lower energy bounds

Spectral expansions in condensed matter

The idea

Reconstruct target function (e.g. LDoS) with spectral resolution:

$$\Phi(\mathbf{x},\varepsilon) \simeq \omega(\varepsilon) \sum_{n < N} \mu_n(\mathbf{x}) T_n(\mathbf{x}) = 0$$

"Bandwidth" $\Lambda = 2\delta E_+$

Mean level spacing

 $\Delta \varepsilon = \Delta \varepsilon(L)$

Types of Chebyshev moments

Single expansion

$$\mu_n = \operatorname{Tr}[T_n(\hat{h})]$$

For 1-particle Green's functions and related quantities (e.g. DoS)

Spatially resolved quantities (e.g., local Chern marl

Double expansion

$$\mu_{nm} = \operatorname{Tr}[\hat{A} T_n(\hat{h}) \,\hat{B} \,T_m(\hat{h})]$$

For 2-particle Green's functions (e.g. optical conductivity)

$$\mu_{nm}^{i,\alpha} = \langle i, \alpha | T_n(\hat{h}) \, \hat{X} \, T_m(\hat{h}) \, \hat{Y} | i, \alpha \rangle$$

First large-scale calculations

However ... "Understanding grows only logarithmically with the number of floating point operations" (J.P. Boyd)

Anderson model with million sites

Part 2a

From millions ($D = 10^6$) to billions ($D = 10^9$) atomic orbitals

09/06/2025 Topology & Disorder Beyond Perfect Crystals, NORDITA

Chebyshev polynomial Green's function (CPGF) method

CPGF coefficients have a simple closed-form solution

Control over energy resolution

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

Exact decomposition of lattice Green's functions

$$g_n(z) T_n(\hat{h})$$

$$z = \varepsilon + i\eta$$

Graphene with dilute random vacancies

$$\sigma_{xx}(\varepsilon = 0) = \frac{4e^2}{\pi h} + \text{weak correc.}$$

Ostrovsky, Gornyi & Mirlin, PRB 74, 235443 (2006)

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

A numerically-exact real-space approach would be ideal!

$$l_{\rm mfp} \sim n_v^{-1} \qquad L \gg l_{\rm loc}, l_{\rm mfp}$$

Challenge: Mean free paths can easily reach hundreds *nm*!

 $\sigma_{xx}(z) \simeq \langle R | \Im \hat{\mathcal{G}}(z) \, \hat{v}_x \, \Im \hat{\mathcal{G}}(z) \, \hat{v}_x | R \rangle$ $\langle \psi_L(z) | \qquad |\psi_R(z) \rangle$

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

- 3.6 billion sites 0.4% vacancy concentration
- **N = 12000** (for each Green's function in the 2-particle response function)

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

- 3.6 billion sites
- **N = 12000** (for each Green's function in the 2-particle response function)

Ferreira & Mucciolo, Phys. Rev. Lett. 114, 116602 (2015)

$$\sigma_{xx} = \frac{4e^2}{\pi h} \left(1 \pm 0.0\right)$$

Universal value within accuracy

Offidani & Ferreira, Phys. Rev. Lett. 121, 126802 (2018); João et al., R. Soc. open sci. 7, 191809 (2020)

Chern insulators: quantum anomalous Hall effect & magneto-optical response

'full-spectral' algorithm

$$\sigma_{xy}(z) \propto \int_{-1}^{\varepsilon_F} d\varepsilon \operatorname{Re} \operatorname{Tr} \left[i \hat{v}_x \, \partial_z \hat{\mathcal{G}}(z) \, \hat{v}_y \, \Im \hat{\mathcal{G}}(z) \right]$$

Double Chebyshev expansion

Minimum RAM: 8 GB (double complex precision)

ferromagnetic graphene

• 8192×8192 lattice • $M_t = 4.2 \times 10^6$

Offidani & Ferreira, Phys. Rev. Lett. 121, 126802 (2018); João et al., R. Soc. open sci. 7, 191809 (2020)

Chern insulators: quantum anomalous Hall effect & magneto-optical response

'full-spectral' algorithm: optical conductivity tensor

Topology and geometry in disordered condensed matter

 $\langle \mathbf{x} | \mathcal{P} x (1 - \mathcal{P}) y \mathcal{P} | \mathbf{x} \rangle$

Veiga *et al.*, to appear (2025)

Space-resolved quantum geometric tensor

$$= \Omega_{xy}(\mathbf{x}) + i (2\pi)^{1-d} C(\mathbf{x})$$

$$Local marker (topology)$$

Local Chern marker statistics

Veiga *et al.*, to appear (2025)

• 512×512 lattice • $\eta \approx 0.01t$

Local Chern marker statistics

Chern PDFs are stable within and near the single-particle gap

 \blacktriangleright Topological phase transitions are observed changing W and/or ε

Veiga *et al.*, to appear (2025)

$$W = 2.5t$$

65000 samples

512 samples take 1.5 hours to run on 4 cores.

J. Pires et al., Phys. Rev. Res. 3, 013183 (2021) J. Pires et al., PRB 106, 184201 (2022)

→ Weyl semi-metal: diffusive metallic phase and anomalous transport due to point defects

Lifting of nodal DoS at arbitrary small *n*: no topological protection

J. Pires et al., PRL 129, 196601 (2022)

• 256 million orbitals • 65536 moments

Castro et al., PRB 107, 045418 (2023); Castro et al., PRL 132, 076302 (2024)

FastCheb: Fast Fourier-Chebyshev algorithm for ultra-high resolution simulations

 $\rightarrow O(DN \ln N)$ [all energies at once]

→ tens of billions of moments - fast & accurate

Benchmark on a ballistic 2-terminal graphene device

• $N_t = M^2 = 10^{10}$

Ultra-high resolution quantum transport

Fast Fourier-Chebyshev algorithm

• 10^7 lattice sites • $N_t = M^2 \simeq 3.1 \times 10^9$

Castro et al., PRB 107, 045418 (2023); Castro et al., PRL 132, 076302 (2024)

Quantum Hall effect

 10⁷ lattice sites • W = 0.1t • $\Phi = 3 \times 10^{-4} h/e$

Part 2b: KITE open-source initiative

fast flight ('speed')

powerful eyes ('high resolution')

https://quantum-kite.com

Suite of algorithms for real-space simulation of condensed matter

- ➡ Open-source code
- Extensive on-line documentation
- Github repository (2 approvals for new push requests)
- ➡ Users and developers workshops

Efficiency

Design-level optimisation

- On-the-fly **matrix-free** computations
- CPU-memory "alignment" to minimise cache-to-cache transfers and cache misses
- Optimal multi-threading scaling

J. Lopes (U Porto)

Inner workings

$$\mu_{n_1...n_N}^{m_i...m_p} = \langle \hat{X}_{m_1} T_{n_1}(\hat{h}) \, \hat{Y}_{m_1} \dots \hat{X}_{m_p} \, T_{n_N}(\hat{h}) \, \hat{Y}_{m_p} \rangle \longrightarrow \sigma_{ij}(\mu, T, \omega, \vec{q})$$

$$\Omega_{\alpha\beta}(\mathbf{x})$$

generalised Chebyshev moments (N-particle Green's functions)

• stable

• accurate

general-purpose

Functionalities

	Algorithms	Туре	#orbitals	Availability
Models	N.A.	LCAOs 1D/2D/3D	N/A	v1.0
Disorder	N.A.	Generic multi-orbital (short-range)	N/A	v1.0
B field	N.A.	Vector B aligned with a desired crystal axis	N/A	v1.0 - v1.1
LDOS/ARPES	Full Spectral	Generic, High-Resolution	$O(10^{10})$	v1.0
Linear RFs	Full Spectral	DC, AC, XX, XY, spin, orbital, etc.	<i>O</i> (10 ⁸)	v1.0 - v1.2
Linear RFs	Single Shot	High-Resolution (FS response)	<i>O</i> (10 ¹⁰)	v1.0
Nonlinear RFs	Full Spectral	2nd order	<i>O</i> (10 ⁷)	v1.0
t-Dynamics	Single Shot	Generic, High-Resolution	<i>O</i> (10 ¹⁰)	v1.0
Geometry & Topology	Single Shot	Generic, High-Resolution	<i>O</i> (10 ¹⁰)	v1.2

Workflow

- import / build model
- 'disorder cell'
- target functions
- visualisation tools

KITEx (C++)

precision=0,

post-processing tools

(I/O)

-0.3

-0.7

-1.1

-1.5

-1.2

-1.0

(t)

 g_1

••••••••••

••••••

....

Finite-*T* Chebyshev Polynomial (FTCP) & Hybrid Lanczos-Chebyshev (HLC) methods (Brito & Ferreira, 2024)

strongly correlated systems

disordered superconductors

(Joao, Lopes & Ferreira, 2024)

plasmonics

(Jin *et al.*, 2022)

real-space LDOS (Joao *et al.*, 2020)

dynamics (Joao *et al*., 2020)

- Chebyshev spectral methods: real-space simulation of condensed matter on large scales
- Future additions to the KITE open-source code: superconductivity, interacting spin models, ...

Thank you!

Soon, KITE v1.2 with new functionalities: quantum geometry, topology & flavoured (orbital/spin) vertex operators

The community (i.e. you!) will be key to inspire and drive new developments: get in touch with us!

