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Almost commuting operators and physics

According to von Neumann (in 1927)
quantum mechanics attributes to the quantities qk and pk the well-known oper-
ators Qk = qk · · · and Pk = ℏ

i
∂
∂qk

· · · , whose lack of commutability [...] cor-
responds to the lack of simultaneous measurability of these quantities. We
now assume that two other, commuting, operators P′

k,Q
′
k exist whose differ-

ence from Pk (respectively, Qk) is so small that its size [...] does not significantly
exceed the value ℏ/2 required by the uncertainty relation.

and also (in 1932)
the macroscopic procedure consists of replacing all possible operators A, B, C,
..., which as a rule to not commute with each other, by other operators A′, B′,
C′, ..., (of which these are functions to within a certain approximation) which
do commute with each other.

Such approximations are not always possible, which is why we have Chern
insulators.
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Almost commuting matrices and K-theory

In basis |−s⟩ , |−s + 1⟩ , . . . , |s⟩, define

Zs |k⟩ = αk |k⟩ , Ls |k⟩ = βk |k + 1⟩

for some −1 = α1 < α2 < · · · < αn = 1, α2
n + β2

n ≈ 1.
Now set

Xs =
1
2 (L

†
s + Ls), Ys =

i
2 (L

†
s − Ls).

These almost commute and generate a “fuzzy sphere” since

∥[Xs,Ys]∥ → 0, ∥[Xs,Ys]∥ → 0, ∥[Ys,Zz]∥ → 0 and
∥∥X2

s + Y2
s + Z2

s − I
∥∥ → 0.

Man-Duen Choi (in 1988) showed

Xs ⊗ σx + Ys ⊗ σy + Zs ⊗ σz

has two more positive than negative eigenvalues. He proved that X′
s,Y′

s,Z′
s

commuting with each other implies∥∥X′
s − Xs

∥∥+
∥∥Y′

s − Ys
∥∥+

∥∥Z′
s − Zs

∥∥ ≥ 1 − s.
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Almost commuting matrices and 1D physics

Theorem (Lin, 1995). ∀ϵ > 0, ∃δ > 0 for the following.
If H and X are n-by-n Hermitian matrices with ∥HX − XH∥ ≤ δ then there are H′

and X′ commuting with ∥H − H′∥ < ϵ and ∥X − X′∥ < ϵ.

Hastings (2008) – This tell us a gapped, finite, 1D system in Class A is
“Wannierizable” / close to an atomic limit.

True in all 10 AZ symmetry classes if one allows zero-modes (follows from
extensions of Lin’s theorem by David Herrera, 2024 and others).
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States approximately local in position and energy

For a system (non-interacting) with open boundaries, the key observables are H
for energy and position observables X1, . . . ,Xd.

Eigenstates ψ1 and ψ2 of H at slightly different energies might be delocalized in
position while

ψ = 1√
2
ψ1 +

1√
2
ψ2

is well-localized. The LDOS can miss this.

For Hermitian observable A we have∥∥A |ψ⟩ − λ |ψ⟩
∥∥2

= △2
ψA + (Eψ[A]− λ)2 .

A joint approximate eigenvector for X1, . . . ,Xd,H is a state that is approximately
localized in energy and position.
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The quadratic local gap

We define a local gap at position x and energy E as

µQ
x,E(X1, . . . ,Xd,H) = min

∥ψ∥=1

 d∑
j=1

∥∥Xjψ − xjψ
∥∥2

+ ∥Hψ − Eψ∥2

 1
2

,

and this equals the square root of the smallest eigenvalue of

Qx,E(X1, . . . ,Xd,H) =

d∑
j=1

(
Xj − xjI

)2
+ (H − EI)2 .

We call the function
(x,E) 7→ µQ

x,E(X1, . . . ,Xd,H)

the quadratic pseudospectrum of (X1, . . . ,Xd,H), or the quadratic local gap

Since Qx,E(X1, . . . ,Xd,H) will generally be sparse, this is practical to compute
numerically.
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The Quadratic local gap in 1D

a) Level sets

�
�(�

,�
) (�

,�
)

�
�(�

,�
) (�

,�
)

b) Image

2

3

1

0

2

3

1

0

4

2

0

−2

−4

�

�

0 1 2 3 4 5 6 7 8 9

4

2

0

−2

−4

�

�

0 1 2 3 4 5 6 7 8 9

Shown is the quadratic pseudospectrum for a very short topologically non-trivial
SSH system.

In practice, replace Xj by κXj to somewhat align position units with energy units.
Generally a large range of κ gives consistent results.

We seek a “square root” of Qx,E(X1, . . . ,Xd,H) that detects K-theory.
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The Clifford local gap

Pick Hermitian matrices γj that anticommute and so that γ2
j = I. The spectral

localizer is

Lx,E(X1, . . . ,Xd,H) =

d∑
j=1

(Xj − xjI)⊗ γj + (H − EI)⊗ γd+1.

As long as H is local, so [H,Xj] are small, we find

(Lx,E(X1, . . . ,Xd,H))2 ≈ (Qx,E(X1, . . . ,Xd,H))⊗ I.

We call the function
(x,E) 7→ µC

x,E(X1, . . . ,Xd,H)

the Clifford pseudospectrum of (X1, . . . ,Xd,H) where

µC
x,E(X1, . . . ,Xd,H)

equals minimum absolute value of an eigenvalue of Lx,E(X1, . . . ,Xd,H).
• Almost as good at finding well-localized states.
• Also detects local topology.
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Both local gaps for an SSH chain
a) Level sets
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The quadratic pseudospectrum.

a) Level sets
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The Clifford pseudospectrum.
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Local topology in Chern insulators

When d = 2 we generally use γ1 = σx, γ2 = σy, γ3 = σz.

In class A, the invariant is
1
2

Sig (Lx,y,E(X,Y,H))

where the signature is the number of eigenvalues that are positive minus the
number that are negative.

The signature can change only when Lx,y,E(X,Y,H) becomes singular. When
µC

x,y,E(X1, . . . ,Xd,H) is large a large change in H will be required to change the local
index.

If XH = HX and HY = YH we are in “an atomic limit” and we find
1
2

Sig (Lx,y,E(X,Y,H)) = 0.

If signature is zero then there is a path (Xt,Yt,Ht), almost commuting at every t,
from (Xt,Yt,Ht) to an atomic limit. Can be a long path.
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Both local gaps of a Chern insulator
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Shown are y = 0 slices. Units are adjusted, replacing X and Y by κX and κY.

Top is quadratic, bottom is Clifford. Left is clean. Right is with disorder.
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1D in Class AIII

If Π implements Chiral-symmetry then we have XΠ = ΠX and ΠH = −HΠ. Here

Lx,E(X,H) = (X − xI)⊗ σx + (H − EI)⊗ σy

Shifting H to H − EI ruins symmetry, unless E = 0.

At E = 0 the local invariant is
1
2

Sig (((X − xI) + iH)Π) .

Notice ((X − xI) + iH) is a block out of the spectral localizer

Lx,0(X,H) =

[
0 (X − xI)− iH

(X − xI) + iH 0

]
.
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Local measure of strength of topological protection

Studying materials, only need to track Lλ(X,Y,H) as λ moves on a line.
Need only compute the index formula (K-theory) and the eigenvalue closest to
zero (local gap).
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Small disorder can move the edge state a little.

Moving or eliminating the edge state takes a larger permutation.
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Adding disorder
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Dimension cross-over in class D

Consider a Shiba lattice, in class D. Atop the
surface of a superconductor, place pattern
of magnetic atoms.

For line in x-direction, use as local invariant

sign (det ((X − xI) + iH))

and
1
2

Sig (Lx,y,E(X,Y,H))

for a disk or square.

For other shapes, we can use both.
This is on the Arxiv, joint with Cerjan and
Rodriguez-Vega.
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Dimension cross-over in Class D

From a disk to a line
of adatoms.

Spectrum of 1D and
2D localizers as x-
position varies.

2D local invariant
and local gap.

1D local invariant
and local gap.
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Quantum spin Hall systems

For a class AII system in 2D, we assume T 2 = −I and that X, Y and H all commute
with T . Typically T = U ◦ K where U = I ⊗ iσy. For fixed x, y and H,

Lx,y,E(X,Y,Z)

is in class D in 0D for the time-reversal operator

(I ⊗ iσy ⊗ iσy) ◦ K

which is, in some basis, just K (complex conjugation). Theory says there is a unitary
Q so that

Q (Lx,y,E(X,Y,Z))Q†

is anti-symmetric. Then we compute Fermionic parity, here a local Z2 index,

Sign
(

Pf
(

Q (Lx,y,E(X,Y,Z))Q†
))

.

The Pfaffian can only change sign by going through zero, so only when the spectral
localizer becomes singular.
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A crafty unitary

Suppose T = U ◦ K and U2 = I. We seek a unitary Q so that

Q ◦ K ◦ Q† = T .

Since Q ◦ K ◦ Q† = QQ⊤ ◦ K what is required is QQ⊤ = U.
In the case of

U = (iσy)⊗ (iσy) =


0 0 0 −I
0 0 I 0
0 I 0 0
−I 0 0 0


we can use

Q =
e−

iπ
4

√
2


I 0 0 iI
0 I −iI 0
0 −iI I 0
iI 0 0 I

 .
Thus QLx,y,E(X,Y,Z)Q† is skew-symmetric and purely imaginary. Where there is a
local gap, the Pfaffian of this is well-defined and takes a real, non-zero value.
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Calculating these invariants

Good software to compute the sign of a Pfaffian is in development. Expect to
compute this effectively for Hilbert space dimension N up to about 1 million on a
powerful workstation.

The other local indices, in any dimension, any AZ class, end up with

• sig
(

L̃
)
→ use sparse LDLT factorization

• sign
(
det(L̃)

)
→ use sparse LU factorization

• sign
(

Pf(L̃)
)
→ stuck with dense Hessenberg factorization, for a little longer.

Matlab code for all these are in an online supplement to my 2015 paper. In all
cases, L̃ is built from the full spectral localizer.

Avoid computing all the eigenvalues.
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When can we link these invariant to established invariants?

Schulz-Baldes, with me or Nora Doll, proved roughly the following.
If infinite-volume system is gapped, and we use κXj for small κ, and if we truncate
to a large radius ρ, then at the center the local index of (Xρ,Yρ,Hρ) agrees with the
established bulk index of (X,Y,H).

To know how big we we need ρ, and how small κ, we need an estimate on the
spectral gap of H, i.e. g = ∥H−1∥−1.

In practice, we can use smaller ρ and a wider range of κ than theorems indicate.

10 20 30 40 50 60 70 80 90 100

����� ��� �	�
�� � �
 ��	 ����	�

0

0.5

1

1.5

2

2.5

3

�
�
��

	
�


�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

��
��

�


�
�

10 20 30 40 50 60 70 80 90 100

����� ��� �	�
�� � �
 ��	 ����	�

0

0.5

1

1.5

2

2.5

3

�
�
��

	
�


�

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

��
��

�
��

�
	�

Terry Loring (University of New Mexico) Quantifiable local topological protection in quantum materials 20 / 34



Truncating infinite-area topological insulator
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No gap in spec(Hρ) (due to spectral pollution / interesting edge states) so this is no
help in computing spec(H).

For correct ρ and κ, the local gap will approximate the distance of κ to the
spectrum of H.
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px + ipy tight-binding model on an Ammann-Beenker tiling
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px + ipy tight-binding model, a bulk and an edge state

These methods work by finding approximate eigenvalues of Hρ that avoid the
edges.

Better methods in infinite-dimensional numerical linear algebra have been
developed since this work. See Hege, Moscolari and Teufel, 2025.
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Some places where the spectral localizer finds local topology

• Models of photonic Quasicrystals, not just tight-binding (with Wong and Cerjan).

• Topological semimetals (Stoiber and Schulz-Baldes)

• Topological metals, if we find a local gap (with Cerjan)

• Fragile topology given C2T symmetry (with Lee, Wong, Vaidya, Cerjan).

• Metal-isulator heterostructures

• With modifications, pseudospectral methods work with periodic boundary
conditions.
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A topological Chern metal

The LDOS cannot distinguish
topological and trivial metals.

The Clifford pseudospectrum
shows a clear edge effect in the
topological case. (Hue shows the
local index).

From paper written with Cerjan.
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Photonic crystal slabs

LDOS(c) (d)

(a) (b)

(e) (f)
LDOS

From a paper with Stephan Wong
and Alexander Cerjan.
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Metal-insulator heterostructures

(a) A photonic crystal with Perfectly
Matched Layer to simulate light lost to
free space.

(b) Bandstructure.

(c) Real part of local density of states.

(d) Localizer gap data, at fixed E1

(e) Flow of eigenvalues of spectral lo-
calizer – crossing indicate change in
local topology.

Dixon, Kahlil Y., et al. “Classifying Topology
in Photonic Heterostructures with Gapless
Environments.” Physical Review Letters, 131:21
(2023), 213801.
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terfly.



Hofstadter butterfly

Simulated data2. Local K-theory illustrated in color. Not a simple tight-binding
model, but a discretized version of the single-particle Hamiltonian:

H =
1

2m∗ (−iℏ∇+ eA(x))2 + V(x) +
µBg
ℏ

szB

2C. Spataru, W. Pan, A. Cerjan, PRL, 2025.
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The End


