Scaling of many-body localization transitions: Fock-space and real-space quantum dynamics and spectral observables

Alexander Mirlin

Karlsruhe Institute of Technology

In collaboration with: Thibault Scoquart and Igor Gornyi

Topology and Geometry Beyond Perfect Crystals May 26 – June 13, 2025 Nordita, Stockholm, Sweden

- Charge and heat transport and noise in fractional quantum Hall edges (and edge junctions) with counterpropagating modes
 - $\longrightarrow~$ don't miss the talk by Christian Spånslätt on Friday
- Quantum dynamics and phase transitions induced by quantum measurements
- Generalized multifractality at Anderson localization transitions between metallic and insulating phases and between distinct topological phases.

Outline

- Introduction: Many-body localization.
- Spin models and their Fock-space representation.
- Analytical predictions for critical disorder of MBL transition $W_c(n)$. Role of Fock-space correlations in Hamiltonian.
- Numerical results for $W_c(n)$ via spectral observables.
- Quantum dynamics: Generalized imbalance and its fluctuations. Phase diagrams of MBL transitions in n W plane.
- Transition width $\Delta W(n)/W_c(n)$. Estimates for system sizes needed to study asymptotic scaling.
- Outlook

Scoquart, Gornyi, ADM, Phys. Rev. B **109**, 214203 (2024) Scoquart, Gornyi, ADM, arXiv:2502.16219

Many-body localization (MBL)

Fundamental theme: Ergodicity and its violation in disordered interacting many-body systems at finite energy density

Gornyi, ADM, Polyakov, Phys. Rev. Lett. 2005 Basko, Aleiner, Altshuler, Annals Phys. 2006

MBL transitions: transitions between ergodic and MBL phases.

 \longrightarrow Extension of Anderson-localization transitions to a (much more complex) setting of highly excited states of a many-body problem

Key questions:

• Asymptotics of critical disorder $W_c(n)$ of the MBL transition and of the transition width $\Delta W(n)/W_c(n)$ for large system size (e.g., number of spins) n?

• Scaling behavior of various observables around the transition?

• Phase diagram. Physics of a broad intermediate regime seen in numerical simulations? Does its width shrink asymptotically to zero? Or are there two transitions asymptotically, with an intermediate phase in the $n \to \infty$ limit?

Comment on MBL and topology: MBL may protect topological order by promoting it to any (also infinite) temperature.

MBL transition in models with short-range interaction

Analytical predictions:

• finite-size drift of $W_c(n)$

• d = 1: $W_c(n \to \infty) = \text{const}$

Gornyi, ADM, Polyakov, 2005 Basko, Aleiner, Altshuler, 2006 Ros, Müller, Scardicchio, 2015 Imbrie 2016

 $\bullet~d>1:$ avalanches due to exponentially rare ergodic spots

 \longrightarrow slow increase of $W_c(n)$ (slower than any power law)

De Roeck, Huveneers 2017

Thiery, Huveneers, Müller, De Roeck, 2018

Gopalakrishnan, Huse, 2019

Doggen, Gornyi, ADM, Polyakov, 2020

Numerics for 1D models: (mainly random-field Heisenberg model)

Pal, Huse, 2010

Luitz, Laflorencie, Alet, 2015

Doggen, Schindler, Tikhonov, ADM, Neupert, Polyakov, Gornyi, 2018

• several works: hypothesis of $W_c(n) \sim n$

Šuntajs, Bonča, Prosen, Vidmar, 2020 Sels, Polkovnikov 2021 - 2023

• several works: hypothesis of intermediate phase

Weiner, Evers, Bera, 2019 Biroli, Hartmann, Tarzia, 2024 Colbois, Alet, Laflorencie, 2024

Localization transition on random regular graphs

Random regular graph – random graph with constant connectivity m + 1Locally tree-like (as Bethe lattice) but without boundary Anderson localization on RRG ($\varepsilon_i \rightarrow$ disorder W)

$$\mathcal{H} = \sum_{\langle i,j \rangle} \left(c_i^+ c_j + c_j^+ c_i \right) + \sum_{i=1} \varepsilon_i c_i^+ c_i$$

Relation to the MBL problem:

Hilbert space size $N \sim m^L$ where L is "linear size"

Sites \longleftrightarrow many-body basis states, links \longleftrightarrow interaction matrix elements

• For $N \to \infty$, transition at $W_c \sim m \ln m$

• Substantial finite-size drift of W_c ; becomes stronger with increasing m

• Relation to RRG used to derive $W_c(n)$ for MBL models with long-range interaction (including several models in this talk)

Tikhonov, ADM, 2016-2021

Herre, Karcher, Tikhonov, ADM, 2023

MBL transition in experiment: Cold atoms

MBL transition in quantum dynamics of cold atoms in optical lattices:

1D, even-odd imbalance as indicator of the transition Schreiber et al, Science 2015

2D, left-right imbalance as indicator of the transition Choi et al, Science 2016

MBL transition in experiment: Coupled superconducting qubits

Spectroscopy of a chain of 9 superconducting qubits Roushan et al, Science 2017

MBL transition in experiment: 2D superconducting quantum processor

Fock-space dynamics in 6 × 4 qubit array: From ergodicity to MBL Yao et al, Nature Phys. 2023

Alexander Mirlin

Fock-space representation of spin- $\frac{1}{2}$ models

- Generic model of *n* interacting spins $\frac{1}{2}$ Many-body Hilbert space \equiv Fock space: vertices of *n*-dimensional hypercube Hamiltonian: $\hat{H} = \hat{H}_0 + \hat{H}_1 = \sum_{\alpha} E_{\alpha} |\alpha\rangle \langle \alpha| + \sum_{\alpha \neq \beta} T_{\alpha\beta} |\alpha\rangle \langle \beta|$
- $\longrightarrow\,$ tight-binding model on a graph in Fock space
- Only no-spin-flip and single-spin-flip terms in \hat{H} \rightarrow graph is formed by hypercube edges; coordination number is nAll models that we consider here are of this type

Alexander Mirlin Scaling of many-body localization transitions 10/29

1D model

$$\hat{H}^{1\mathrm{D}} = \sum_{i=1}^{n} \epsilon_i \hat{S}_i^z + 2 \sum_{i=1}^{n} V_{i,i+1}^z \hat{S}_i^z \hat{S}_{i+1}^z + 2 \sum_{i=1}^{n} \sum_{a \in \{x,y\}} \left[V_{i,i+1}^a \hat{S}_i^z \hat{S}_{i+1}^a + V_{i,i-1}^a \hat{S}_i^z \hat{S}_{i-1}^a \right]$$

 ϵ_i – random field, box distribution on [-W, W]

 $V_{i,i+1}^z, V_{i,i+1}^x, V_{i,i-1}^x, V_{i,i+1}^y, V_{i,i-1}^y - \text{random interactions} \sim \mathcal{N}(0,1)$

Fock-space representation:

Correlations $(C_E)_{\alpha\beta} = \langle E_{\alpha}E_{\beta} \rangle$ and $(C_T)_{\alpha\beta\mu\nu} = \langle T^*_{\alpha\beta}T_{\mu\nu} \rangle$ crucially important! $(C^{1D}_E)_{\alpha\beta} = \frac{W^2}{12}(n-2r_{\alpha\beta}) + \frac{1}{4}(n-2q_{\alpha\beta})$ $r_{\alpha\beta}$ – Hamming distance $q_{\alpha\beta}$ – number of sites i with $s^{(\alpha)}_{i,i+1} = -s^{(\beta)}_{i,i+1}$

 $(C_T^{1D})_{\alpha\beta\mu\nu} = \frac{1}{2} \left(s_{k-1}^{(\alpha)} s_{k-1}^{(\mu)} + s_{k+1}^{(\alpha)} s_{k+1}^{(\mu)} \right)$ for parallel links $(\alpha \to \beta)$ and $(\mu \to \nu)$ Covariances $(C_E^{1D})_{\alpha\beta}$ and $(C_T^{1D})_{\alpha\beta\mu\nu}$ are **not** functions of Hamming distance.

1D model (cont'd)

Correlations $(C_E)_{\alpha\beta} = \langle E_{\alpha}E_{\beta} \rangle$ and $(C_T)_{\alpha\beta\mu\nu} = \langle T^*_{\alpha\beta}T_{\mu\nu} \rangle$ crucially important!

For 1D model, they depend on the corresponding Fock-space vertices and links **not** solely via Hamming distance. This reflects the 1D real-space geometry.

For all models considered here:

$$E_{\alpha} \sim \mathcal{N}\left(0, \frac{nW^2 + 3n}{12}\right) \text{ and } T_{\alpha\beta} \sim \mathcal{N}\left(0, \frac{1}{2}\right) + i\mathcal{N}\left(0, \frac{1}{2}\right)$$

The models differ in correlations C_E and/or C_T

Quantum dot (QD) model

 $E_{\alpha} \sim \mathcal{N}\left(0, \frac{nW^2 + 3n}{12}\right)$ and $T_{\alpha\beta} \sim \mathcal{N}\left(0, \frac{1}{2}\right) + i\mathcal{N}\left(0, \frac{1}{2}\right)$ – same as for 1D model Difference – in correlations C_E and C_T :

$$(C_E^{\rm QD})_{\alpha\beta} = n \left[\frac{W^2}{12} \left(1 - \frac{2r_{\alpha\beta}}{n} \right) + \frac{1}{4} \left(1 - \frac{2r_{\alpha\beta}}{n} \right)^2 \right] \qquad (C_T^{\rm QD})_{\alpha\beta\mu\nu} = 1 - \frac{2r_{\alpha\mu}}{n}$$

Depend on Hamming distance only. Reflect real-space structure of QD model.

Overview of models

 $E_{\alpha} \sim \mathcal{N}\left(0, \frac{nW^2 + 3n}{12}\right)$ and $T_{\alpha\beta} \sim \mathcal{N}\left(0, \frac{1}{2}\right) + i\mathcal{N}\left(0, \frac{1}{2}\right)$ for all models u1D – obtained from 1D by removing hopping correlations uQD – obtained from QD by removing hopping correlations QREM (quantum random energy model) – obtained by removing both, energy and hopping correlations

Role of correlations C_E and C_T ? \longrightarrow compare $W_c(n)$ for all models

Overview of models: Analytical results for $W_c(n)$

- QREM, u1D, uQD: no hopping correlations
 - \longrightarrow suppressed interference between paths on a graph
 - $\longrightarrow~{\rm RRG}$ results can be applied, with coordination number $m+1\mapsto n$
- QD: more careful analysis needed; yields the behavior akin to RRG
- 1D: strong cancellations of k! paths in k-th order of perturbation theory \rightarrow totally different result: $W_c(n) \sim 1$.
 - $W \gg 1 \longrightarrow \sim n/W$ resonant spins, separated by distances $\sim W \gg 1$
 - \longrightarrow do not interact \longrightarrow do not thermalize the system \longrightarrow MBL phase

MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum MBL phase: Poisson level statistics, $r_{\rm P} \simeq 0.3863$ Ergodic phase: GUE level statistics, $r_{\rm GUE} \simeq 0.5996$ Mean gap ratio r has a jump from $r_{\rm GUE}$ to $r_{\rm P}$ at $W_c(n)$ for $n \to \infty$ Numerics: 1D (solid) and u1D (dashed) as an example:

MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum MBL phase: Poisson level statistics, $r_{\rm P} \simeq 0.3863$ Ergodic phase: GUE level statistics, $r_{\rm GUE} \simeq 0.5996$ Mean gap ratio r has a jump from $r_{\rm GUE}$ to $r_{\rm P}$ at $W_c(n)$ for $n \to \infty$

Numerics: $W_c(n)$ from level statistics, defined via $r(W) = \frac{r_{\text{GUE}} + r_{\text{P}}}{2} \simeq 0.493$

MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR) $P_2 = \sum_{\beta} |\langle \beta | J \rangle|^4 \qquad |J\rangle$ - eigenstate β - basis states (graph vertices) "Fractal dimension" $\frac{-\ln P_2}{\ln N} = \frac{-\ln P_2}{n \ln 2}$ has a jump at $W_c(n)$ for $n \to \infty$ $\longrightarrow \alpha = \frac{\partial \ln P_2}{\partial \ln W}$ has a maximum at $W_c(n)$

Numerics: 1D (solid) and u1D (dashed) as an example:

MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR) $P_2 = \sum_{\beta} |\langle \beta | J \rangle|^4 \qquad |J \rangle$ - eigenstate β - basis states (graph vertices) "Fractal dimension" $\frac{-\ln P_2}{\ln N} = \frac{-\ln P_2}{n \ln 2}$ has a jump at $W_c(n)$ at $n \to \infty$ $\longrightarrow \alpha = \frac{\partial \ln P_2}{\partial \ln W}$ has a maximum at $W_c(n)$

Numerics: $W_c(n)$ from IPR (maximum of $\partial \ln P_2/\partial W$)

Quantum dynamics: Generalized imbalance

Consider quantum dynamics starting from a basis state $|\alpha\rangle$ Spin autocorrelation function \equiv Generalized imbalance

$$\mathcal{I}^{(\alpha)}(t) = \langle \alpha | \frac{1}{n} \sum_{j=1}^{n} \sigma_j^z(t) \sigma_j^z | \alpha \rangle = \langle \psi(t) | \hat{\mathcal{I}}^{(\alpha)} | \psi(t) \rangle \qquad |\psi(t)\rangle = \hat{U}(t) | \alpha \rangle$$

$$\hat{\mathcal{I}}^{(\alpha)} = \frac{1}{n} \sum_{j=1}^{n} s_j^{(\alpha)} \sigma_j^z = 1 - \frac{2\hat{x}}{n} \qquad \qquad \hat{x} = \frac{1}{2} \sum_{i=1}^{n} \left(1 - s_i^{(\alpha)} \sigma_i^z \right)$$

 \hat{x} – operator of Hamming distance with respect to the basis state α

• MBL phase: $\mathcal{I}^{(\alpha)}(t) \xrightarrow{t \to \infty} \mathcal{I}_{\infty}, \qquad 0 < \mathcal{I}_{\infty} \leq 1$

• ergodic phase: $\mathcal{I}^{(\alpha)}(t) \xrightarrow{t \to \infty} 0$, up to small finite-size corrections

 $\longrightarrow \overline{\mathcal{I}^{(\alpha)}}(t \to \infty)$ – indicator of the MBL transition $W_c(n)$

Quantum and mesoscopic variances: additional indicators, maximum at $W_c(n)$ $v_q(t) = \overline{\langle [\hat{\mathcal{I}}^{(\alpha)}]^2(t) \rangle - \langle \hat{\mathcal{I}}^{(\alpha)}(t) \rangle^2} = \left(\frac{2}{n}\right)^2 \left[\overline{\langle x^2(t) \rangle - \langle x(t) \rangle^2} \right]$ $v_m(t) = \overline{\langle \hat{\mathcal{I}}^{(\alpha)}(t) \rangle^2} - \overline{\langle \hat{\mathcal{I}}^{(\alpha)}(t) \rangle}^2 = \left(\frac{2}{n}\right)^2 \left[\overline{\langle x(t) \rangle^2} - \overline{\langle x(t) \rangle}^2 \right]$

Time evolution of average imbalance

Dynamics of average generalized imbalance $\overline{\mathcal{I}(t)}$ for 1D, QD, QREM models System size n = 14 for all the models; disorder range from $W \simeq 1$ to $W \simeq 100$

- sharp drop of $\overline{\mathcal{I}_{\infty}}$ from $\overline{\mathcal{I}_{\infty}} \sim 1$ to $\overline{\mathcal{I}_{\infty}} \approx 0$ at some W \longrightarrow manifestation of MBL transition at $W \approx W_c(n)$
- ergodic phase, $W < W_c(n)$: power-law decay of $\overline{\mathcal{I}(t)}$ for 1D model (manifestation of Griffiths effects) vs fast (exponential) decay for QD and QREM
- transition region much stronger disorder $W \approx W_c(n)$ for QD, QREM as compared to 1D, in consistency with analytical predictions

Time evolution of average imbalance (cont'd)

Analytical predictions for the ergodic phase and numerics (n = 8 - 16):

1D model:

 $\overline{\mathcal{I}(t)} \sim t^{-\gamma_I}$

Griffiths effects

 $\gamma_I \rightarrow 0 \text{ for } W \rightarrow W_c$

QREM and QD models:

 $\overline{\mathcal{I}(t)} \sim e^{-2Dt}$

 $\ln D^{-1} \propto W$ (pre-critical regime)

OREM

Average imbalance at $t \to \infty$

Analytical predictions and numerics (n = 8 - 16):

- In the limit $n \to \infty$, a jump of $\overline{\mathcal{I}}_{\infty}$ at $W_c(n)$ from 0 in the ergodic phase to
 - 1 in the QD model and QREM
 - $1 p_c$ with $0 < p_c < 1$ in the 1D model

• MBL phase: 1D, QD models: $1 - \overline{\mathcal{I}}_{\infty} \simeq \frac{\pi^{3/2}}{2\sqrt{2}W}$

QREM: $1 - \overline{\mathcal{I}}_{\infty} \simeq \frac{\pi\sqrt{3}}{\sqrt{n}W}$

• $W_c^{\text{1D}}(n) \simeq \text{const}$ $W_c^{\text{QD}}(n) \gtrsim n^{3/4} \ln^{1/2} n$

 $W_{c}^{\text{QREM}}(n) \sim n^{1/2} \ln n$

Alexander Mirlin Scaling of many-body localization transitions 23 / 29

Quantum & mesoscopic imbalance fluctuations at $t \to \infty$

Analytical predictions & numerics for imbalance variances $v_q, v_m(t \to \infty)$

• MBL phase: 1D, QD:
$$v_q \simeq 3v_m \simeq \frac{3\pi^{3/2}}{4\sqrt{2}nW}$$
 QREM: $v_q \simeq 3v_m \simeq \frac{3\pi\sqrt{3}}{2n^{3/2}W}$

- ergodic phase, all models: $v_q \simeq 1/n$ v_m exponentially small
- $W_c^{\text{1D}}(n) \simeq \text{const}$ $W_c^{\text{QD}}(n) \gtrsim n^{3/4} \ln^{1/2} n$ $W_c^{\text{QREM}}(n) \sim n^{1/2} \ln n$

Alexander Mirlin Scaling of many-body localization transitions 24/29

Phase diagrams of the MBL transitions

Indicators of $W_c(n)$: average imbalance; level statistics (gap ratio); mesoscopic and quantum fluctuations of imbalance.

Transition width $\Delta W(n)$ – from average imbalance

MBL transition width

- Variable $\overline{X}(W)$ (e.g. average imbalance or level statistics gap ratio), with a jump $(\Delta X)_t$ at the transition (at $n \to \infty$)
- Select window $(\Delta \overline{X})_{w}$ of width $(\Delta X)_{t}/2R$ with $R \sim 1$
- \rightarrow disorder interval associated with the transition: $[W_{-}(n); W_{+}(n)]$

$$\longrightarrow$$
 transition width $\delta(n) = R \ln \frac{W_{+}(n)}{W_{-}(n)} \simeq R \frac{\Delta W(n)}{W_{c}(n)}$

Analytical predictions:

• QREM: asymptotically $\delta(n) \sim n^{-3} \ln^2 n$ However, this behavior is reached only for $n > n_*$, where $n_* \approx 22$ (see figure)

• 1D, QD models: lower bound $\delta(n) \ge \frac{1}{\sqrt{2n}}$

related to Harris bound,

cf. Chandran, Laumann, Oganesyan, arXiv:1509.04285

MBL transition width (cont'd)

Numerical results, fits $\delta(n) \sim n^{-\mu}$ in the range $n = 8 \dots 16$

Comparison to lower bound \rightarrow asymptotic regime to be reached for $n > n_*$, where $n_* \leq 80$

Pre-critical regime as expected analytically. Asymptotic regime to be reached for $n > n_*$, where $n_* \approx 22$

- Extension to other models within the same class of spin models
 - power-law $1/r^{\alpha}$ interaction: from 1D ($\alpha = \infty$) to QD ($\alpha = 0$).
 - 2D model
- MBL phase: mechanism of transition to ergodicity
 - proliferation of system-wide resonances
 - phenomenological RG schemes for MBL transition: connection to numerics / experiments? manifestation in observables for realistic system sizes?

Summary

- Family of spin- $\frac{1}{2}$ models with single-spin-flip random interaction
 - pair interactions: 1D, QD
 - models with (partly) removed Fock-space correlations: QREM, u1D, uQD
- Scaling of MBL transition point $W_c(n)$: $W_c^{1D}(n \to \infty) = \text{const}$, in stark contrast to $W_c^{u1D}(n) \approx W_c^{uQD}(n) \sim n \ln n$, $W_c^{\text{QREM}}(n) \sim n^{1/2} \ln n$, and $W_c^{\text{QD}}(n) \gtrsim n^{3/4} \ln^{1/2} n$ Crucial role of Fock-space Hamiltonian correlations.
- Observables: spectral (level and eigenstate statistics) and quantum-dynamics (imbalance and its fluctuations)
 - \rightarrow indicators of MBL transition $W_c(n)$; all in mutual agreement
- Direct MBL-to-ergodicity transition, no evidence of intermediate phase
- Transition width ΔW(n)/W_c(n) ~ n^{-μ} with μ ≈ 1 for all models for n ≤ 16. "Pre-critical regime", not the asymptotic behavior! Asymptotic scaling of width: n > n_{*}. Estimate n_{*} ≈ 22 for QREM and n_{*} ≤ 80 for 1D and QD.
- Outlook: Extension to power-law interaction and to 2D. Transition mechanism: development of resonances in MBL phase, RG, ...