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Our recent research that is NOT covered by this talk

● Charge and heat transport and noise in fractional quantum Hall edges
(and edge junctions) with counterpropagating modes

Ð→ don’t miss the talk by Christian Sp̊anslätt on Friday

● Quantum dynamics and phase transitions induced by quantum
measurements

● Generalized multifractality at Anderson localization transitions between
metallic and insulating phases and between distinct topological phases.
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Outline

● Introduction: Many-body localization.

● Spin models and their Fock-space representation.

● Analytical predictions for critical disorder of MBL transition Wc(n).
Role of Fock-space correlations in Hamiltonian.

● Numerical results for Wc(n) via spectral observables.

● Quantum dynamics: Generalized imbalance and its fluctuations.

Phase diagrams of MBL transitions in n −W plane.

● Transition width ∆W (n)/Wc(n).
Estimates for system sizes needed to study asymptotic scaling.

● Outlook

Scoquart, Gornyi, ADM, Phys. Rev. B 109, 214203 (2024)

Scoquart, Gornyi, ADM, arXiv:2502.16219
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Many-body localization (MBL)

Fundamental theme: Ergodicity and its violation in disordered interacting
many-body systems at finite energy density

Gornyi, ADM, Polyakov, Phys. Rev. Lett. 2005

Basko, Aleiner, Altshuler, Annals Phys. 2006

MBL transitions: transitions between ergodic and MBL phases.

Ð→ Extension of Anderson-localization transitions to a (much more complex)
setting of highly excited states of a many-body problem

Key questions:

● Asymptotics of critical disorder Wc(n) of the MBL transition and of the
transition width ∆W (n)/Wc(n) for large system size (e.g., number of spins) n?

● Scaling behavior of various observables around the transition?

● Phase diagram. Physics of a broad intermediate regime seen in numerical
simulations? Does its width shrink asymptotically to zero? Or are there two
transitions asymptotically, with an intermediate phase in the n→∞ limit?

Comment on MBL and topology: MBL may protect topological order
by promoting it to any (also infinite) temperature.
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MBL transition in models with short-range interaction

Analytical predictions:

● d = 1: Wc(n→∞) = const Gornyi, ADM, Polyakov, 2005
Basko, Aleiner, Altshuler, 2006
Ros, Müller, Scardicchio, 2015

Imbrie 2016

● d > 1: avalanches due to exponentially rare ergodic spots
Ð→ slow increase of Wc(n) (slower than any power law)

De Roeck, Huveneers 2017
Thiery, Huveneers, Müller, De Roeck, 2018

Gopalakrishnan, Huse, 2019

Doggen, Gornyi, ADM, Polyakov, 2020

Numerics for 1D models: (mainly random-field Heisenberg model)

● finite-size drift of Wc(n) Pal, Huse, 2010
Luitz, Laflorencie, Alet, 2015

Doggen, Schindler, Tikhonov, ADM, Neupert, Polyakov, Gornyi, 2018

● several works: hypothesis of Wc(n) ∼ n Šuntajs, Bonča, Prosen, Vidmar, 2020

Sels, Polkovnikov 2021 - 2023

● several works: hypothesis of intermediate phase Weiner, Evers, Bera, 2019
Biroli, Hartmann, Tarzia, 2024

Colbois, Alet, Laflorencie, 2024
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Localization transition on random regular graphs

Random regular graph – random graph with constant connectivity m + 1

Locally tree-like (as Bethe lattice) but without boundary

Anderson localization on RRG (εi Ð→ disorder W )

H = ∑
⟨i,j⟩

(c+i cj + c+j ci) +∑
i=1

εic
+
i ci

Relation to the MBL problem:

Hilbert space size N ∼mL where L is “linear size”

Sites ←→ many-body basis states, links ←→ interaction matrix elements

● For N →∞, transition at Wc ∼m lnm

● Substantial finite-size drift of Wc;
becomes stronger with increasing m

● Relation to RRG used to derive Wc(n)
for MBL models with long-range interaction
(including several models in this talk)

Tikhonov, ADM, 2016-2021

Herre, Karcher, Tikhonov, ADM, 2023
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MBL transition in experiment: Cold atoms

MBL transition in quantum dynamics
of cold atoms in optical lattices:

1D, even-odd imbalance as indicator
of the transition
Schreiber et al, Science 2015

2D, left-right imbalance as indicator
of the transition
Choi et al, Science 2016

Alexander Mirlin Scaling of many-body localization transitions 7 / 29



MBL transition in experiment:
Coupled superconducting qubits

Spectroscopy of a chain of 9 superconducting qubits
Roushan et al, Science 2017

level statistics spatial IPR of eigenstates spatial correlations
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MBL transition in experiment:
2D superconducting quantum processor

Fock-space dynamics
in 6 × 4 qubit array:
From ergodicity to MBL
Yao et al, Nature Phys. 2023
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Fock-space representation of spin-1
2 models

● Generic model of n interacting spins 1
2

Many-body Hilbert space ≡ Fock space: vertices of n-dimensional hypercube

Hamiltonian: Ĥ = Ĥ0 + Ĥ1 =∑
α

Eα ∣α⟩ ⟨α∣ + ∑
α≠β

Tαβ ∣α⟩ ⟨β∣

Ð→ tight-binding model on a graph in Fock space

● Only no-spin-flip and single-spin-flip terms in Ĥ

Ð→ graph is formed by hypercube edges; coordination number is n

All models that we consider here are of this type
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1D model

Ĥ1D =
n

∑
i=1

εiŜ
z
i + 2

n

∑
i=1

V zi,i+1Ŝ
z
i Ŝ

z
i+1 + 2

n

∑
i=1

∑
a∈{x,y}

[V ai,i+1Ŝzi Ŝai+1 + V ai,i−1Ŝzi Ŝai−1]

εi – random field, box distribution on [−W,W ]
V zi,i+1, V xi,i+1, V xi,i−1, V yi,i+1, V yi,i−1 – random interactions ∼ N (0,1)

Fock-space representation:

Eα = ⟨α∣ Ĥ1D ∣α⟩ = 1
2

n

∑
i=1
s
(α)
i εi + 1

2

n

∑
i=1
s
(α)
i,i+1V

z
i,i+1 ∼ N (0, nW

2
+3n

12
)

Tαβ = ⟨α∣ Ĥ1D ∣β⟩ = 1
2
(V xk−1,ks

(α)
k−1 + iV yk−1,ks

(α)
k−1,k + V xk+1,ks

(α)
k+1 + iV yk+1,ks

(α)
k+1,k)

∼ N (0, 1
2
) + iN (0, 1

2
)

s
(α)
i ≡ ⟨α∣σzi ∣α⟩ = ±1 s

(α)
i,i+1 ≡ s

(α)
i s

(α)
i+1 = ±1

Correlations (CE)αβ = ⟨EαEβ⟩ and (CT )αβµν = ⟨T ∗αβTµν⟩ crucially important!

(C1D
E )αβ = W 2

12
(n − 2rαβ) + 1

4
(n − 2qαβ) rαβ – Hamming distance

qαβ – number of sites i with s
(α)
i,i+1 = −s

(β)
i,i+1

(C1D
T )αβµν = 1

2
(s(α)k−1s

(µ)
k−1 + s

(α)
k+1s

(µ)
k+1) for parallel links (α→ β) and (µ→ ν)

Covariances (C1D
E )αβ and (C1D

T )αβµν are not functions of Hamming distance.
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1D model (cont’d)

Correlations (CE)αβ = ⟨EαEβ⟩ and (CT )αβµν = ⟨T ∗αβTµν⟩ crucially important!

For 1D model, they depend on the corresponding Fock-space vertices and links
not solely via Hamming distance. This reflects the 1D real-space geometry.

For all models considered here:

Eα ∼ N (0, nW
2
+3n

12
) and Tαβ ∼ N (0, 1

2
) + iN (0, 1

2
)

The models differ in correlations CE and/or CT
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Quantum dot (QD) model

ĤQD =
n

∑
i=1

εiŜ
z
i +

2√
n

n

∑
i,j=1

V zijŜ
z
i Ŝ

z
j +

1√
n

n

∑
i,j=1

∑
a∈{x,y}

V aij (Ŝzi Ŝaj +H.c.)

Eα ∼ N (0, nW
2
+3n

12
) and Tαβ ∼ N (0, 1

2
)+ iN (0, 1

2
) – same as for 1D model

Difference – in correlations CE and CT :

(CQD
E )αβ = n [W

2

12
(1 − 2rαβ

n
) + 1

4
(1 − 2rαβ

n
)
2

] (CQD
T )αβµν = 1 − 2rαµ

n

Depend on Hamming distance only. Reflect real-space structure of QD model.

Alexander Mirlin Scaling of many-body localization transitions 13 / 29



Overview of models

Eα ∼ N (0, nW
2
+3n

12
) and Tαβ ∼ N (0, 1

2
) + iN (0, 1

2
) for all models

u1D – obtained from 1D by removing hopping correlations

uQD – obtained from QD by removing hopping correlations

QREM (quantum random energy model) – obtained by removing both, energy
and hopping correlations

Role of correlations CE and CT ? Ð→ compare Wc(n) for all models
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Overview of models: Analytical results for Wc(n)

● QREM, u1D, uQD: no hopping correlations

Ð→ suppressed interference between paths on a graph

Ð→ RRG results can be applied, with coordination number m + 1↦ n

● QD: more careful analysis needed; yields the behavior akin to RRG

● 1D: strong cancellations of k! paths in k-th order of perturbation theory

Ð→ totally different result: Wc(n) ∼ 1.

W ≫ 1 Ð→ ∼ n/W resonant spins, separated by distances ∼W ≫ 1
Ð→ do not interact Ð→ do not thermalize the system Ð→ MBL phase
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MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum

MBL phase: Poisson level statistics, rP ≃ 0.3863

Ergodic phase: GUE level statistics, rGUE ≃ 0.5996

Mean gap ratio r has a jump from rGUE to rP at Wc(n) for n→∞

Numerics: 1D (solid) and u1D (dashed) as an example:
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MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum

MBL phase: Poisson level statistics, rP ≃ 0.3863

Ergodic phase: GUE level statistics, rGUE ≃ 0.5996

Mean gap ratio r has a jump from rGUE to rP at Wc(n) for n→∞

Numerics: Wc(n) from level statistics, defined via r(W ) = rGUE + rP
2

≃ 0.493
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uQD (from r)
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MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR)

P2 =∑
β

∣⟨β∣J⟩∣4 ∣J⟩ - eigenstate β - basis states (graph vertices)

“Fractal dimension”
− lnP2

lnN
= − lnP2

n ln 2
has a jump at Wc(n) for n→∞

Ð→ α = ∂ lnP2

∂ lnW
has a maximum at Wc(n)

Numerics: 1D (solid) and u1D (dashed) as an example:
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MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR)

P2 =∑
β

∣⟨β∣J⟩∣4 ∣J⟩ - eigenstate β - basis states (graph vertices)

“Fractal dimension”
− lnP2

lnN
= − lnP2

n ln 2
has a jump at Wc(n) at n→∞

Ð→ α = ∂ lnP2

∂ lnW
has a maximum at Wc(n)

Numerics: Wc(n) from IPR (maximum of ∂ lnP2/∂W )

8 10 12 14
n

10

5

20

30
W

c
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1D (from IPR)

uQD (from IPR)

u1D (from IPR)
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Quantum dynamics: Generalized imbalance

Consider quantum dynamics starting from a basis state ∣α⟩
Spin autocorrelation function ≡ Generalized imbalance

I(α)(t) = ⟨α∣ 1
n ∑

n
j=1 σ

z
j (t)σzj ∣α⟩ = ⟨ψ(t)∣ Î(α) ∣ψ(t)⟩ ∣ψ(t)⟩ = Û(t) ∣α⟩

Î(α) = 1

n

n

∑
j=1

s
(α)
j σzj = 1 − 2x̂

n
x̂ = 1

2

n

∑
i=1

(1 − s(α)i σzi )

x̂ – operator of Hamming distance with respect to the basis state α

● MBL phase: I(α)(t) t→∞ÐÐ→ I∞, 0 < I∞ ≤ 1

● ergodic phase: I(α)(t) t→∞ÐÐ→ 0, up to small finite-size corrections

Ð→ I(α)(t→∞) – indicator of the MBL transition Wc(n)
Quantum and mesoscopic variances: additional indicators, maximum at Wc(n)
vq(t) = ⟨[Î(α)]2(t)⟩ − ⟨Î(α)(t)⟩2 = ( 2

n
)2 [⟨x2(t)⟩ − ⟨x(t)⟩2]

vm(t) = ⟨Î(α)(t)⟩2 − ⟨Î(α)(t)⟩
2

= ( 2
n
)2 [ ⟨x(t)⟩2 − ⟨x(t)⟩

2
]
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Time evolution of average imbalance

Dynamics of average generalized imbalance I(t) for 1D, QD, QREM models

System size n = 14 for all the models; disorder range from W ≃ 1 to W ≃ 100

10−1 100 101 102 103 104 105

t

10−1

100

I(
t)

1D

10−1 100 101 102 103 104 105

t

10−4

10−3

10−2

10−1

100

I(
t)

QD

10−1 100 101 102 103 104 105

t

10−4

10−3

10−2

10−1

100

I(
t)

QREM

100

101

102

W

sharp drop of I∞ from I∞ ∼ 1 to I∞ ≈ 0 at some W

Ð→ manifestation of MBL transition at W ≈Wc(n)
ergodic phase, W <Wc(n):
power-law decay of I(t) for 1D model (manifestation of Griffiths effects)

vs fast (exponential) decay for QD and QREM

transition region – much stronger disorder W ≈Wc(n) for QD, QREM

as compared to 1D, in consistency with analytical predictions
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Time evolution of average imbalance (cont’d)

Analytical predictions for the ergodic phase and numerics (n = 8− 16):

1D model:

I(t) ∼ t−γI
Griffiths effects

γI → 0 for W →Wc
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t
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100

I(
t)
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W = 3.13

W = 4.13

W = 5.99

W = 10.48

W = 26.56

W = 67.34
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γ
I
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n = 16

extrapolation

QREM and QD models: I(t) ∼ e−2Dt lnD−1 ∝W (pre-critical regime)
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Average imbalance at t→∞

Analytical predictions and numerics (n = 8 − 16):

● In the limit n→∞, a jump of I∞ at Wc(n) from 0 in the ergodic phase to

1 in the QD model and QREM

1 − pc with 0 < pc < 1 in the 1D model

● MBL phase: 1D, QD models: 1 − I∞ ≃ π3/2

2
√

2W
QREM: 1 − I∞ ≃ π

√
3√

nW

● W 1D
c (n) ≃ const WQD

c (n) ≳ n3/4 ln1/2 n WQREM
c (n) ∼ n1/2 lnn

100 101 102

W

0.0

0.2

0.4

0.6

0.8

1.0

I ∞

1D
Eq. (74)

n = 8

n = 10

n = 12

n = 14

n = 16
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W
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I ∞
QD

Eq. (74)
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n = 14

n = 16
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W
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I ∞
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Eq. (56), n=8

n = 8

n = 10

n = 12

n = 14

n = 16
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Quantum & mesoscopic imbalance fluctuations at t→∞

Analytical predictions & numerics for imbalance variances vq, vm(t→∞)

● MBL phase: 1D, QD: vq ≃ 3vm ≃ 3π3/2

4
√

2nW
QREM: vq ≃ 3vm ≃ 3π

√
3

2n3/2W

● ergodic phase, all models: vq ≃ 1/n vm – exponentially small

● W 1D
c (n) ≃ const WQD

c (n) ≳ n3/4 ln1/2 n WQREM
c (n) ∼ n1/2 lnn

100 101 102

W
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(n
/4

)
×
v m Eq. (75)

0.0
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)
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v q

1D
n = 8

n = 10

n = 12

n = 14

n = 16

Eq. (76)
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W

0.0

0.1

0.2

(n
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)
×
v m Eq. (75)
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/4
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v q
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Eq. (76)
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0.0

0.2

0.4

0.6

(n
/4

)
×
v q

QREM
Eq. (57), n=8
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Phase diagrams of the MBL transitions
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n

101
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W
c

ergodic
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∝ n1/2 lnn

QREM

Wc from max(vm)

Wc from max(vq)

Wc from I∞
Wc from gap ratio

Indicators of Wc(n): average imbalance; level statistics (gap ratio);
mesoscopic and quantum fluctuations of imbalance.

Transition width ∆W (n) – from average imbalance
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MBL transition width

● Variable X(W ) (e.g. average imbalance or level statistics gap ratio),

with a jump (∆X)t at the transition (at n→∞)

● Select window (∆X)w of width (∆X)t/2R with R ∼ 1

Ð→ disorder interval associated with the transition: [W−(n);W+(n)]

Ð→ transition width δ(n) = R ln
W+(n)
W−(n)

≃ R ∆W (n)
Wc(n)

Analytical predictions:

● QREM: asymptotically δ(n) ∼ n−3 ln2 n

However, this behavior is reached

only for n > n∗, where n∗ ≈ 22 (see figure)

101 102

n

10−2

10−1

100 ln(W+/W−)

asymptotics, Eq. (57)

QREM (from r)

● 1D, QD models: lower bound δ(n) ≥ 1√
2n

related to Harris bound,

cf. Chandran, Laumann, Oganesyan, arXiv:1509.04285
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MBL transition width (cont’d)

Numerical results, fits δ(n) ∼ n−µ in the range n = 8 . . .16

8 10 12 14 16 18 20
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

δ(
n

)

∝
n −1

lower bound (2n)−1/2

1D, QD
1D (gap ratio)

1D (I∞)

QD (gap ratio)

QD (I∞)

Eq. (87)

8 10 12 14 16 18 20
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1

δ(
n

)

∝
n −1.2

∝ n−3 ln2 n

QREM
from gap ratio

from I∞
Eq. (C6)

Comparison to lower bound
Ð→ asymptotic regime to be reached
for n > n∗, where n∗ ≲ 80

Pre-critical regime as expected
analytically.
Asymptotic regime to be reached
for n > n∗, where n∗ ≈ 22
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Outlook

Extension to other models within the same class of spin models

power-law 1/rα interaction: from 1D (α =∞) to QD (α = 0).

2D model

MBL phase: mechanism of transition to ergodicity

proliferation of system-wide resonances

phenomenological RG schemes for MBL transition:

connection to numerics / experiments?

manifestation in observables for realistic system sizes?
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Summary

Family of spin- 1
2

models with single-spin-flip random interaction

pair interactions: 1D, QD
models with (partly) removed Fock-space correlations: QREM, u1D, uQD

Scaling of MBL transition point Wc(n): W 1D
c (n→∞) = const,

in stark contrast to W u1D
c (n) ≈W uQD

c (n) ∼ n lnn,

WQREM
c (n) ∼ n1/2 lnn, and WQD

c (n) ≳ n3/4 ln1/2 n

Crucial role of Fock-space Hamiltonian correlations.

Observables: spectral (level and eigenstate statistics) and

quantum-dynamics (imbalance and its fluctuations)

Ð→ indicators of MBL transition Wc(n); all in mutual agreement

Direct MBL-to-ergodicity transition, no evidence of intermediate phase

Transition width ∆W (n)/Wc(n) ∼ n−µ with µ ≈ 1 for all models for n ≤ 16.

“Pre-critical regime”, not the asymptotic behavior! Asymptotic scaling of

width: n > n∗. Estimate n∗ ≈ 22 for QREM and n∗ ≲ 80 for 1D and QD.

Outlook: Extension to power-law interaction and to 2D.

Transition mechanism: development of resonances in MBL phase, RG, . . .
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