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Our recent research that is NOT covered by this talk

e Charge and heat transport and noise in fractional quantum Hall edges
(and edge junctions) with counterpropagating modes

— don’t miss the talk by Christian Spanslétt on Friday

e Quantum dynamics and phase transitions induced by quantum
measurements

o Generalized multifractality at Anderson localization transitions between
metallic and insulating phases and between distinct topological phases.
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e Introduction: Many-body localization.
e Spin models and their Fock-space representation.

e Analytical predictions for critical disorder of MBL transition W.(n).
Role of Fock-space correlations in Hamiltonian.

e Numerical results for W,(n) via spectral observables.

e Quantum dynamics: Generalized imbalance and its fluctuations.
Phase diagrams of MBL transitions in n — W plane.

e Transition width AW (n)/W.(n).
Estimates for system sizes needed to study asymptotic scaling.

e Outlook

Scoquart, Gornyi, ADM, Phys. Rev. B 109, 214203 (2024)
Scoquart, Gornyi, ADM, arXiv:2502.16219
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Many-body localization (MBL)

Fundamental theme: Ergodicity and its violation in disordered interacting
many-body systems at finite energy density
Gornyi, ADM, Polyakov, Phys. Rev. Lett. 2005
Basko, Aleiner, Altshuler, Annals Phys. 2006

MBL transitions: transitions between ergodic and MBL phases.

— Extension of Anderson-localization transitions to a (much more complex)
setting of highly excited states of a many-body problem

Key questions:

e Asymptotics of critical disorder W, (n) of the MBL transition and of the
transition width AW (n)/W.(n) for large system size (e.g., number of spins) n?
e Scaling behavior of various observables around the transition?

e Phase diagram. Physics of a broad intermediate regime seen in numerical

simulations? Does its width shrink asymptotically to zero? Or are there two
transitions asymptotically, with an intermediate phase in the n — co limit?

Comment on MBL and topology: = MBL may protect topological order
by promoting it to any (also infinite) temperature.
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MBL transition in models with short-range inter

Analytical predictions:

ed=1: WC(TL - OO) = const Gornyi, ADM, Polyakov
Basko, Aleiner, Altshuler
Ros, Miiller, Scardicchio

. 2005
, 2006
. 2015

Imbrie 2016

e d > 1: avalanches due to exponentially rare ergodic spots
— slow increase of W,(n) (slower than any power law)

De Roeck, Huveneers 2017

Thiery, Huveneers, Miiller, De Roeck
Gopalakrishnan, Huse
Doggen, Gornyi, ADM, Polyakov

Numerics for 1D models: (mainly random-field Heisenberg model)

e finite-size drift of W,(n) Pal, Huse
Luitz, Laflorencie, Alet
Doggen, Schindler, Tikhonov, ADM, Neupert, Polyakov, Gornyi

e several works: hypothesis of W.(n) ~n Suntajs, Bonéa, Prosen, Vidmar

, 2018
, 2019
, 2020

, 2010
, 2015
, 2018

. 2020

Sels, Polkovnikov 2021 - 2023

e several works: hypothesis of intermediate phase Weiner, Evers, Bera
Biroli, Hartmann, Tarzia
Colbois, Alet, Laflorencie,
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Localization transition on random regular graphs

Random regular graph — random graph with constant connectivity m + 1

Locally tree-like (as Bethe lattice) but without boundary
Anderson localization on RRG (g; — disorder W)
H=) (cfcj+cle)+ Y eice
(i,3) i=1
Relation to the MBL problem:
L

Hilbert space size N ~m*~ where L is “linear size”

Sites «— many-body basis states, links <— interaction matrix elements

e For N — oo, transition at W, ~mlnm . _RRG

0.12

e Substantial finite-size drift of W; N\
becomes stronger with increasing m

e Relation to RRG used to derive W,(n) £
for MBL models with long-range interaction
(including several models in this talk)

Tikhonov, ADM, 2016-2021

Herre, Karcher, Tikhonov, ADM, 2023 w
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MBL transition in experiment: Cold atoms

MBL transition in quantum dynamics
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MBL transition in experiment:

Coupled superconducting qubits

Spectroscopy of a chain of 9 superconducting qubits

Roushan et al, Science 2017
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MBL transition in experiment:

2D superconducting quantum processor

Real space Fock space
b B s

Fock-space dynamics

in 6 x 4 qubit array:
From ergodicity to MBL
Yao et al, Nature Phys. 2023
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Fock-space representation of spin-+ models

e Generic model of n interacting spins %
Many-body Hilbert space = Fock space: vertices of n-dimensional hypercube
Hamiltonian: H=Hy+H = Y Eula){a]+ Y Tagla) (B
o a#f3
— tight-binding model on a graph in Fock space
e Only no-spin-flip and single-spin-flip terms in H
— graph is formed by hypercube edges; coordination number is n
All models that we consider here are of this type

[ T1114)
~N

2™ basis states: Spin-flips T\ 5

Hamming distance T

0 1 n # of different spins
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1D model

n n n

H'P = Z €i5; +2 Z ‘/ifnlsizsiil +2 Z Z [‘/i(,li+1SiZS;l+l + Vi(,li—lsiz ;l—l]
i=1 i=1 i=1 ae{z,y}

€; — random field, box distribution on [-W, W]

z x x Y Y
‘/i,i+17 ‘/i,i+17 ‘/i,i—h V; V;

vis1s Vi1 — random interactions ~N(0,1)

Fock-space representation:

E, = <a|H1D |y = % » SZ(-Q)GZ‘ _,_% > 8(04) V=
=1 i=1

i,4+1 " 1,0+1

o N (07 nW122+3n)

Top = {a| H'P|B) = 5 (sz—l,ksz(f)l + ivky—l,ksgz)l,k + sz+1,1~:31(£)1 +ivky+1,k o )

Sk+1k
* M (Oz) N (03) KO lofla=at o, 2o -
Correlations (Cg)as = (EaEp) and (C1)apuw = (15T, ) crucially important!
(CEP)ap = %(n = 2rag) + +(n - 2qag) T — Hamming distance
Gap — number of sites i with s{%), = —s{%) |
(CPP)apur = % (s,(ﬁ)ls,(c‘j)l + s,(j)lslgﬂ) for parallel links (o - 8) and (4 - v)

Covariances (C1P)ag and (C3P)ap,. are not functions of Hamming distance.
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1D model (cont’d)

Gaussian on-site energies (complex) Gaussian hoppings

W2 +3 7 t\\\
E, NN(O, u) / ‘c: / Tﬂ@wN(O,%) +iN (0,%)

12

Hamming distance T

0 1 n

Correlations (Cg)ag = (EaEs) and (C1)apuw = <T;BTHV> crucially important!
For 1D model, they depend on the corresponding Fock-space vertices and links
not solely via Hamming distance. This reflects the 1D real-space geometry.

For all models considered here:

E, ~ N(O,’Wf—;‘nm) and Tag~ N (0,3)+iN(0,3)

The models differ in correlations C'g and/or Cr
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Quantum dot (QD) model

QD ZQS? n l Z V};Sf AJ%+ L Z Z VZ‘;(S‘ZZS}I +H.c.)
ot n ;521 T i5=1 ae{w,y}

Gaussian on-site energies
nW?+3n
12

(complex) Gaussian hoppings

1 1
o (0.3) +1 (01)

Eo~N ((J.

Hamming distance 1"

0 1 n
E, ~ N(O, ”Wfi;?’”) and Tog ~ /\f(O7 %) +iN(0, %) — same as for 1D model
Difference — in correlations Cg and Crp:
2 2
ooy _ | W7 1_27”aﬁ) }(1_27"043) QD 1 Zrow
(©)an =[5 (1-222) e 1 (122 () =1~

Depend on Hamming distance only. Reflect real-space structure of QD model.
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Overview of models

E,~ N(O,"Wfig?m) and T,p ~ N(O,%) +i./\/(0, %) for all models
ulD — obtained from 1D by removing hopping correlations

u@D — obtained from QD by removing hopping correlations

QREM (quantum random energy model) — obtained by removing both, energy
and hopping correlations

hopping correls.

1D
Cr(la),18) 1) 1
QD
Cr(Tau)
QREM uQD ulD
no +
n‘a CE(Ira,g) CE(\a; ,18)) energy correls.

Role of correlations Cg and Cr ? —> compare W,(n) for all models
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Overview of models: Analytical results for V

hopping correls.

1D
CT(|Q>7W>7|M>)' W~ 1
QD
Cr(Ta,u) A
7(ren) n*/*vVInn < W, < nlan

QREM uQD ulD

no
W, ~/nlnn W, ~nlnn W, ~nlnn
nlo CE('rQﬁ) CE(|04I> .18) energy correls.

e QREM, ulD, uQD: no hopping correlations
— suppressed interference between paths on a graph
—> RRG results can be applied, with coordination number m + 1+~ n
e QD: more careful analysis needed; yields the behavior akin to RRG
e 1D: strong cancellations of k! paths in k-th order of perturbation theory
— totally different result: W.(n) ~ 1.

W >1 — ~n/W resonant spins, separated by distances ~ W > 1
— do not interact —> do not thermalize the system — MBL phase
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MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum
MBL phase: Poisson level statistics, rp ~0.3863
Ergodic phase: GUE level statistics, rqug ~ 0.5996

Mean gap ratio r has a jump from rqug to rp at We(n) for n - oo

Numerics: 1D (solid) and ulD (dashed) as an example:

0.67=—= —
n=12
n=10
— n=38
L 0.5
04 |
10 102
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MBL transition via level statistics

Analytical predictions: Mean adjacent gap ratio r of energy-level spectrum
MBL phase: Poisson level statistics, rp ~0.3863
Ergodic phase: GUE level statistics, rqug ~ 0.5996

Mean gap ratio r has a jump from rqug to rp at We(n) for n - oo

Numerics: W,(n) from level statistics, defined via (W) = w ~0.493

0.6 X QD (from r) K uQD (fromr) ==+ xnlin
50 X 1D (from r) X ulD (fromr)  veeer xn
2 40
=
<
=
o
& 0.5
=
<]
D
Q
K=t
k=)
<
04 i e

W.P(14) WP(14)
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MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR)

Py =Y [(B1))* |7} - eigenstate B - basis states (graph vertices)
B
-InP, -InP
“Fractal dimension” ———2 = ——~2 has a jump at W.(n) for n - oo
InN nln2
In P,
a= gliﬂi has a maximum at W,(n)

Numerics: 1D (solid) and ulD (dashed) as an example:

100 10! 102
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MBL transition via eigenstate IPR

Analytical predictions: Fock-space inverse participation ratio (IPR)

Py=3" (BT |.J) - eigenstate B - basis states (graph vertices)
B

—IHPQ _ —1HP2
InN  nln?2

“Fractal dimension” has a jump at W.(n) at n - oo

o= 61HP2
oW

Numerics: W.(n) from IPR (maximum of d1ln P,/OW)
IPR

has a maximum at W,(n)

+ QD (ffomIPR) 4+ uQD (from IPR) ==+ ocnlin _
+ 1D (from IPR) + wD (from IPR) ===+
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Quantum dynamics: Generalized imbalance

Consider quantum dynamics starting from a basis state |«)

Spin autocorrelation function = Generalized imbalance

T(t) = (a| £ Xy 05 (10 a) = (W0 T (1)) [4(1)) = U(t) |a)
f o 1 & (@) - 2% o1& (@) =

I()zf];sj o;j=1-— x=§;(1—si Ui)

n n

Z — operator of Hamming distance with respect to the basis state «

t—o0

e MBL phase: Z((t) —> Zo,, 0<Zo<1
e ergodic phase: Z(®(t) Iz, 0, up to small finite-size corrections
—  Z(9)(t - o00) — indicator of the MBL transition W.(n)

Quantum and mesoscopic variances: additional indicators, maximum at We,(n)
0g(t) = (@2 (1) — (T (1)2 = (2) [(22(0) — (2(6))]
om(®) = EO@O - EO @) = (2 [0r -Gy
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Time evolution of average imbalance

Dynamics of average generalized imbalance Z(t) for 1D, QD, QREM models
System size n = 14 for all the models; disorder range from W ~1 to W ~ 100

(t)

1D

10" 10"
107

=
[l

107

Rt

QD QREM

10-0 100 10! i0? 0 Ui i Bt
t

0 5] 5 4 3 e
-0 0" 1;) Tt Io T T T TR /KR I T

o sharp drop of Ze, from Zeo ~ 1 to Zoo ~ 0 at some W
— manifestation of MBL transition at W ~ W.(n)

o ergodic phase, W < W.(n):

power-law decay of Z(t)

for 1D model (manifestation of Griffiths effects)

vs fast (exponential) decay for QD and QREM

@ transition region — much

stronger disorder W ~ W, (n) for QD, QREM

as compared to 1D, in consistency with analytical predictions

Alexander Mirlin Scaling of many-body localization transitions 21 /29



Time evolution of average imbalance (cont’d)

Analytical predictions for the ergodic phase and numerics (n = 8 - 16):

100 0.5 A —— n=8
1D model: i
—— n=12
04 —— n=14
I(t) ~t™ B e
Griffiths effects = &
[T Wt L N Tt 02
—— W=313
’}/[—>0fOI‘W—>WC ::::“,? ot
R [ighpy
W = 2656
— W=6734 0.
01 107 10t 10% 10° 10 10° 2 3 1 5 6 7 B 9 10
t w
QREM and QD models: Z(t) ~ e 2P? In D™ oc W (pre-critical regime)
100 10 QREM QD QREM

10t 10t

107 ﬁ/

10°2

(t)

10!

107 107




Average imbalance at t — oo

Analytical predictions and numerics (n =8 - 16):

e In the limit n — oo, a jump of Zo, at W,.(n) from 0 in the ergodic phase to
o 1 in the QD model and QREM
o 1-p. with 0 <p. <1 in the 1D model

3/2 -
T QREM: 1-Z. = V3
2/2W N

e MBL phase: 1D, QD models: 1-T. =

1/2
o W2P(n) =~ const WAP(n) 2 n¥41In'?n WRREM () w12 1np
1D QREM
LR p— Eq. (74) L | p— Eq. (74) R | Eq. (56), n=8
—f— n=8 —+— n=8 —f— n=38
= n=10 |~ n=10 = n=10
08 4~ n=12 081 nove ] 08] 4+ n_n
—+n=u —f= n=14 —f= n=14
—+= n=16 —f— n=16 —f= n=16
0.6 0.6 0.6
3 3 3
N N N
04 / 0.4 0.4
02 ) 02 02
00l —— 0.0 — 0.0
10" 10! 10 10" 10! 10 10° 10! 10
w w W
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Quantum & mesoscopic imbalance fluctuations at ¢ - oo

Analytical predictions & numerics for imbalance variances vg, v, (t - o)

3312 313
e MBL phase: 1D, QD: v, ~3v,, ~ ——— REM: v, ~ 3v,, ~
P « a N2nW Q I

- 2n32W
e ergodic phase, all models: vg~1/n Um — exponentially small
o WP(n) = const WQP(n) 2 n?/* In'?n WQREM (1) « p12Inn

06 QD QREM

Eq. (57), n=8

——— Eq. (58), n=8

0.05

0.0
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Phase diagrams of the MBL transitions

[SIR-EN|

Q=

localized

oc[n?4(In n)l‘{f

ergodic

1D

const

/ ergodic

8 10 12 14

16 18 20 22
n

10!

ergodic

W, from mazx(vy,)
W, from maz(v,)
W, from Z

W, from gap ratio

10

14 16 18 20 22

Indicators of W,.(n): average imbalance; level statistics (gap ratio);
mesoscopic and quantum fluctuations of imbalance.

Transition width AW (n) — from average imbalance
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MBL transition width

e Variable X (W) (e.g. average imbalance or level statistics gap ratio),
with a jump (AX); at the transition (at n — oo)
e Select window (AX),, of width (AX);/2R with R~ 1

— disorder interval associated with the transition: [W_(n); W, (n)]

Wo(n) | o AW(n)

— transition width d(n)=R In Wo(n) W)

100 In(W./W_)

Analytical predictions: — aymptoties B, (57)

X QREM (from 1)
e QREM: asymptotically §(n) ~n3In’*n \

. . . 107!
However, this behavior is reached

only for n > n,, where n, ~ 22 (see figure)

S T 107

1
e 1D, QD models: lower bound &§(n) > — n

related to Harris bound,
cf. Chandran, Laumann, Oganesyan, arXiv:1509.04285
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MBL transition width (cont’d)

Numerical results, fits 6(n) ~n™* in the range n=8...16

1D, QD QREM
—e— 1D (gap ratio) —e— from gap ratio
1 —%— 1D (Za) 1 —— from I,
091 —e— QD (gap ratio) 091~ Eq. (C6)
0.8 —%— QD (Z) 08
0.7 e Eo. (57) 0.7
0.6 3 0.6
0.5 0.5
S S
L\.§0‘1 - ?Q/O 4
2y & N
03 03 R
NN
02 e 0.2 o
(2n)~1/5
8 10 12 14 16 18 20 8 10 12 14 16 18 20
n n

Pre-critical regime as expected
analytically.

Asymptotic regime to be reached
for n > n,, where n, ~ 22

Comparison to lower bound
— asymptotic regime to be reached
for n > n,, where n, <80
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Outlook

e Extension to other models within the same class of spin models
e power-law 1/r® interaction: from 1D (a = o0) to QD («a = 0).
e 2D model

o MBL phase: mechanism of transition to ergodicity
e proliferation of system-wide resonances
e phenomenological RG schemes for MBL transition:
connection to numerics / experiments?

manifestation in observables for realistic system sizes?
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o Family of spin—% models with single-spin-flip random interaction
e pair interactions: 1D, QD
e models with (partly) removed Fock-space correlations: QREM, ulD, uQD

o Scaling of MBL transition point W.(n): WP (n — o) = const,
in stark contrast to WP (n) » WHP(n) ~ nlnn,
WQREM ()« n121nn, and WERP(n) 2 n3/* In'?n
Crucial role of Fock-space Hamiltonian correlations.
@ Observables: spectral (level and eigenstate statistics) and
quantum-dynamics (imbalance and its fluctuations)
— indicators of MBL transition W.(n); all in mutual agreement
o Direct MBL-to-ergodicity transition, no evidence of intermediate phase
o Transition width AW (n)/W.(n) ~n™* with p~ 1 for all models for n < 16.
“Pre-critical regime”, not the asymptotic behavior! Asymptotic scaling of
width: n > n,. Estimate n, ~ 22 for QREM and n, $ 80 for 1D and QD.
o Outlook: Extension to power-law interaction and to 2D.
Transition mechanism: development of resonances in MBL phase, RG, ...
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