

Studying Inflation with Numerical Relativity

Panagiotis (Panos) Giannadakis

Numerical Simulations of the Early Universe

Nordita, Stockholm 28/07/2025

Outlook

- Why Inflation?
- The Initial Condition problem-When inflation can inflate?-
- Testing Inflation with Numerical Relativity

J. Aurrekoetxea, K. Clough, M. Elley, R. Flauger, N. Righi, E. Lim

1608.04408: Clough, DiNunno, Fischer, Flauger, Lim, Paban 1712.07352: Clough, Flauger, Lim

1910.12547: Aurrekoetxea, Clough, Flauger, Lim 2405.03490: Aurrekoetxea, Clough, Elley, Flauger, **Giannadakis** and Lim

2508.xxxxx: Elley, Flauger, Giannadakis, Lim

Our Universe

FRLW expansion

Big Bang Initial Conditions?

Some Dynamics?

Universe today result of:

Initial Conditions?

Some Dynamics? ——— Inflation Both?

Observations

CMB T=2.7K

Homogeneous
Isotropic
Flat
No relics

The paradigm: Single Scalar Field Inflation

Once upon a time there was a spatially homogeneous scalar field $\phi(t)$ slowly rolling

$$\frac{\rho}{p} = \frac{\frac{1}{2}\dot{\phi}^2 + \frac{1}{2a^2}(\nabla\phi)^2 + V(\phi)}{\frac{1}{2}\dot{\phi}^2 + \frac{1}{2a^2}(\nabla\phi)^2 - V(\phi)} \approx -1$$

This works!

$$rac{1}{p} \sim rac{rac{1}{2} \dot{\phi}^2 + rac{1}{2a^2} (
abla \phi)^2 + V(\phi)}{rac{1}{2} \dot{\phi}^2 + rac{1}{2a^2} (
abla \phi)^2 - V(\phi)}$$

$$rac{1}{p} \sim rac{rac{1}{2} \dot{\phi}^2 + rac{1}{2a^2} (
abla \phi)^2 + V(\phi)}{rac{1}{2} \dot{\phi}^2 + rac{1}{2a^2} (
abla \phi)^2 - V(\phi)}$$

The phase space of a succesful inflation

Model space: The different inflationary models (single field, multifield etc)

IC space: dynamical variables initial configuration

General Recipe: Take an inflation model and check how it works for different initial conditions

Single Field Inflation actual IC phase space

Testing Inflation

Step 1: Pick an inflation model

Step 2: Choose initial conditions

Step 3: Check if it gives N>60 efolds

An inflationary model is **robust** to inhomogeneous initial conditions if its phase space has an attractor behavior and if N>60 at least at some patch of Hubble size

Can inflation be successful if it starts with inhomogeneous initial conditions?

↓ Numerical Relativity

3+1 Decomposition

Foliate the spacetime into 3D slices evolving in a time coordinate

tensor modes

expansion/contraction

Matter sector:
$$\phi(ec{x}), \dot{\phi}(ec{x})$$

$$K=-3H\;\;{
m for\,FLRW}$$

For IC specify matter, solve constraints for geometry, fix gauge dofs

How to simulate inhomogeneous inflation

- Take a model with potential $V(\phi)$
- Specify initial field configuration with harmonic perturbations in 3 directions and put maximum **only one** perturbation mode per species

"Momentum" inhomogeneities:
$$egin{array}{ccc} \phi_{init}(ec{x}) = \phi_0 + \Delta\phi(ec{x}) \ \dot{\phi}_{init}(ec{x}) = \dot{\phi}_0 + \Delta\Pi(ec{x}) \end{array} \Rightarrow S_i \quad \text{also non trivial}$$

"Tensor" inhomogeneities:
$$A_{ij}^{TT}$$
 Vacuum GW perturbations

- Choose simulation domain size $L = H_0^{-1} = \left(\sqrt{\frac{8\pi G}{3}}V(\phi_0)\right)^{-1}$
- Solve constraints for the rest of geometric dofs

Simulate and count no. efolds locally in an patch of H_0^{-1} where the potential dominates and the scalar field has homogenised

$$N = \ln \left(rac{a_{end}(t,ec{x})}{a_{init}}
ight)$$

Any Lessons??

Lesson 1:

Models with **Superplanckian** characteristic scale $\delta\phi\gg M_P$ are very robust to all types of inhomogeneities

Lesson 2:

Models with **Subplanckian** characteristic scale $\delta \phi \ll M_P$ are NOT robust to inhomogeneities, inflation is pushed off the slow roll region

$$ho_{inhom} \sim 10^{-4} V(\phi_0)$$

1608.04408: Clough, DiNunno, Fischer, Flauger, Lim, Paban 2405.03490: Aurrekoetxea, Clough, Elley, Flauger, **Giannadakis** and Lim

Lesson 3: Model space: The shape of the potential is important:

Convex models: Robust

to inhomogeneities

$$V''(\phi_0) > 0$$

Concave models: Not Robust

to inhomogeneities

$$V''(\phi_0) < 0$$

Lesson 3: Model space: The shape of the potential is important:

Convex moust: Robust

to inhomogeneities

Concave models: Not Robust to inhomogeneities

Lesson 4: most dangerous wavelength

$$\lambda = H_0^{-1}$$

Deep Subhorizon wavelengths: they homogenise and requires larger inhomogeneities to fail

Superhorizon wavelengths: give patches where inflation might fail very quickly and others where lasts N>>60

Near Horizon wavelengths $\lambda = H_0^{-1}:$ Inflation might fail everywhere

1608.04408: Clough, DiNunno, Fischer, Flauger, Lim, Paban

2405.03490: Aurrekoetxea, Clough, Elley, Flauger, Giannadakis and Lim

250x.xxxxx: Elley, Flauger, **Giannadakis**,Lim

Lesson 5: Tensor modes are not dangerous

Scalar inhomogeneity amplittude vs tensor mode amplitude

1712.07352: Clough, Flauger, Lim

N gets saturated with tensor modes amplitude

Lesson 6: Kinetic inhomogeneities make inflation less robust

 $\dot{\phi}_0
eq 0$ homogenous boost most dangenrous

$$N_\Pi=1 \ \dot{\phi}_0 + \Delta\Pi(ec{x})
eq 0 \ \lambda = H_0^{-1}$$

phase dependece

2405.03490: Aurrekoetxea, Clough, Elley, Flauger, **Giannadakis** and Lim

Constraining a-attractors

2508.xxxxx: Elley, Flauger, Giannadakis, Lim

Scalar Power Spectrum: $\mathcal{P}_s = A_s \left(rac{k}{k_*}
ight)^{n_s-1}$

Tensor Power Spectrum: $\mathcal{P}_s = A_t igg(rac{k}{k_*}igg)^{n_t}$

$$r=rac{\mathcal{A}_t}{\mathcal{A}_s}$$

Upper bound from observations:

$$r \le 0.036$$

What about lower bound?

Lesson 8: Constraining r

Assume IC (dummy equipartition): $V(\phi_0) \sim \langle V \rangle \sim \langle \rho_{grad} \rangle$ ($\sim \langle \rho_{kin} \rangle$ X)

Check for different μ small scale modelsand see where iflation starts to happen

T-type:
$$V(\phi) = \Lambda^4 anh^2(rac{\phi}{\mu})$$

E-type:

$$V(\phi)=\Lambda^4(1-e^{rac{\phi}{\mu}})^2$$

Is there a critical µ for robustness? Possible low constraint for r:

$$\mu \leftrightarrow \delta \phi \Rightarrow r pprox 16 \epsilon(\phi_0,\mu)$$

Lesson 8: Constraining r

T-model results:

$$\mu_c=0.017 M_P\Rightarrow r_c=1.45 imes 10^{-6}$$

E-model results:

$$\mu_c=0.017 M_P\Rightarrow r_c=3.63 imes 10^{-7}$$

Warning: no such IC for $~\mu < 0.017 M_P$

(scalar field starts exploring the exponential wall)

max no. efolds vs µ

Take Home

- Our Universe is unique and inflation "should" give a mechanism to obtain this "uniqueness" semi-independently of IC
- Zeroth order message: small scale dangerous, large scale safe
- Kinetic inhomogeneities dangerous especially homogeneous boosts
- Model dependence: Convex models > Concave models
- Possible low bound for tensor-to-scalar ratio for α-attractors

¡Thank you!