



Cold baryogenesis revisited

Simone Blasi
DESY Hamburg

Based on:

Bhusal, **SB**, Cataldi, Chatrchyan, Gorghetto, Servant, to appear

• It allows for non-trivial field configurations (which play a role in $U(1)_{B}$ violation)

$$\mathcal{L} = -\frac{1}{2} \mathrm{Tr}(F_{\mu\nu}F^{\mu\nu}) - \frac{1}{2} \mathrm{Tr}(D^{\mu}\Phi)^{\dagger} D_{\mu}\Phi - \frac{\lambda}{4} \left[\mathrm{Tr}(\Phi^{\dagger}\Phi) - v^2 \right]^2$$

$$\vdots$$
SU(2) only for simplicity
$$\Phi(\mathbf{x},t) = \begin{pmatrix} \varphi_2^* & \varphi_1 \\ -\varphi_1^* & \varphi_2 \end{pmatrix}$$

$$\Phi(\mathbf{x},t) = U(\mathbf{x},t)\sigma(\mathbf{x},t), \quad \sigma^2 = \operatorname{Tr}(\Phi^\dagger \Phi)$$

$$U \in \operatorname{SU}(2) \qquad \text{In vacuum: } \sigma^2 = v^2 = \operatorname{const.}$$

Higgs winding number:

$$N_H(t) = w[U] = \frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \text{Tr}[U^{\dagger} \partial_i U U^{\dagger} \partial_j U U^{\dagger} \partial_k U]$$

$$U(x,t) \text{ defined iff } \sigma \neq 0 \qquad N_H(t) \in \mathbb{N} \text{ with } U \to \mathbf{1}_{2 \times 2} \text{ at } r = \infty$$

- On the vacuum manifold $\sigma^2=v^2$ the topological charge is conserved
- $N_{H}(t)$ can however jump by an integer when $\sigma^2=0$ somewhere

• Chern-Simons number:

$$N_{CS}(t) = \frac{g^2}{32\pi^2} \int d^3x \, \epsilon^{ijk} \text{Tr}\left(A_i \partial_j A_k + \frac{2}{3} ig A_i A_j A_k\right)$$

 $N_{\mathrm{CS}}(t) \not \in \mathbb{N}$ away from the vacuum

• $\Delta N_{\rm CS} = N_{\rm CS}(t) - N_{\rm CS}(0)$ gauge invariant, related to non-conservation of $U(1)_B$:

$$\partial_{\mu}j_{B}^{\mu} = \partial_{\mu}j_{L}^{\mu} = N_{f}\frac{g_{W}^{2}}{32\pi^{2}}W_{\mu\nu}\tilde{W}^{\mu\nu}, \quad \Delta B = \Delta L = N_{f}\Delta N_{\text{CS}}$$

• $\delta N = N_H(t) - N_{CS}(t)$ is gauge invariant, in terms of Goldstone-Wilczek current:

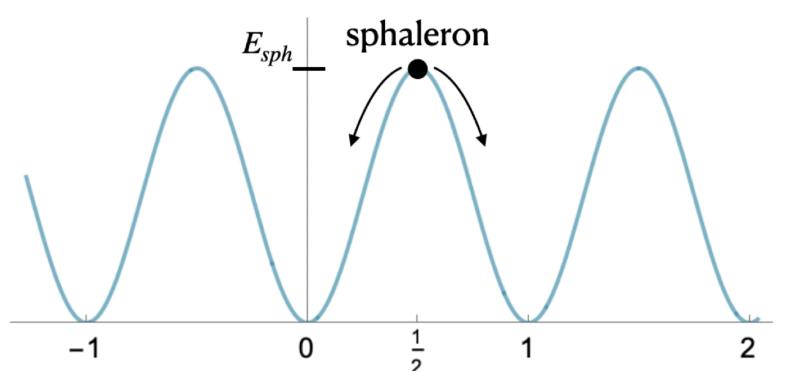
$$\delta N = \frac{1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, {\rm Tr} \left[U^\dagger D_i U \, U^\dagger D_j U \, U^\dagger D_k U + \frac{3}{2} ig \, U^\dagger F_{ij} D_k U \right]$$

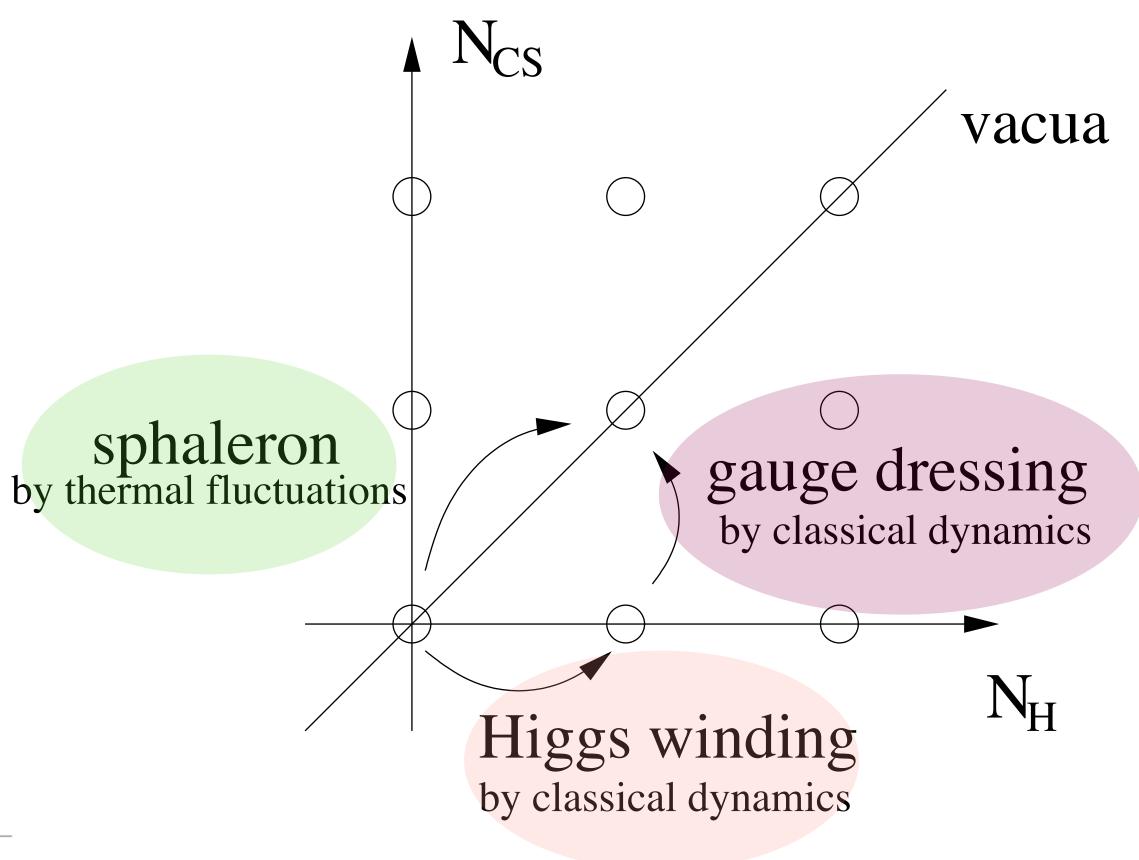
- In the vacuum, $D_{\mu}\Phi=0$ and one trivially has $\delta N=0$

Example: pure gauge
$$\ \Phi=rac{v}{\sqrt{2}}U, \quad A_{\mu}=rac{1}{ig}U^{\dagger}\partial_{\mu}U$$

Sphaleron: static, spherically symmetric, unstable, gauge-Higgs configuration:

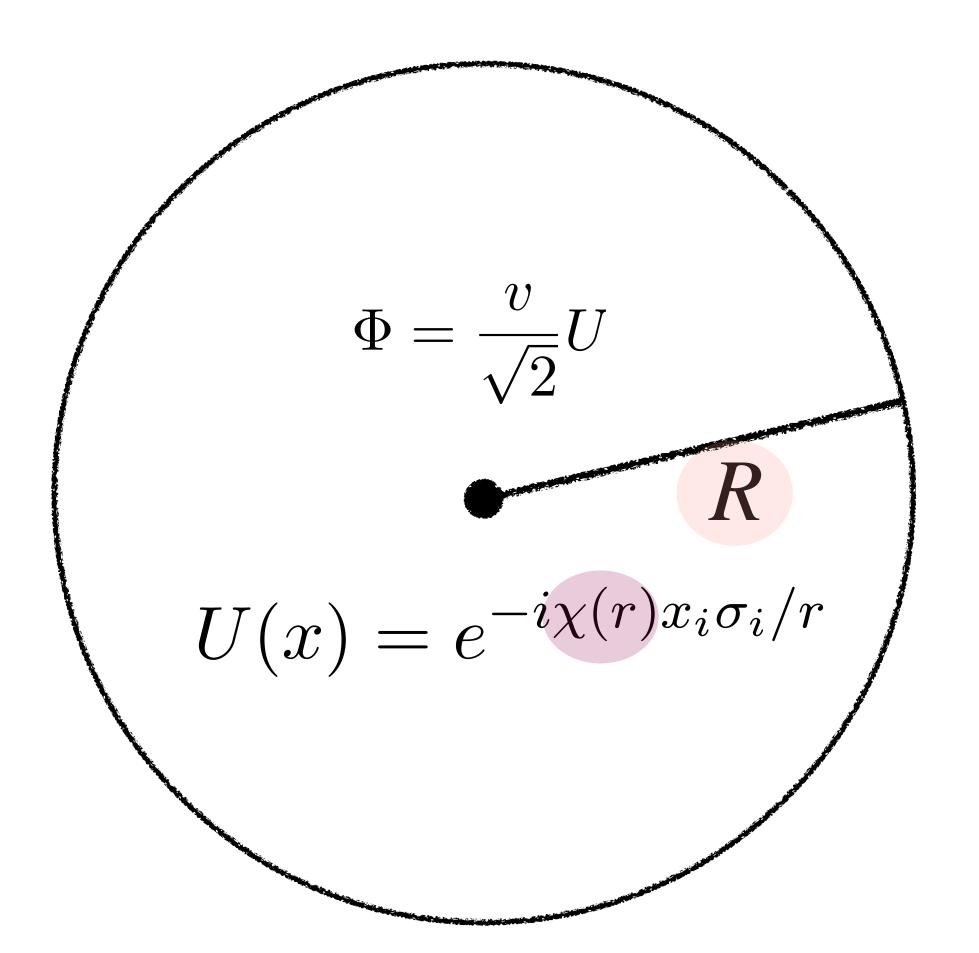
$$E_{\rm sph} = \frac{m_W}{\alpha_w} B(\lambda/g^2)$$





Cartoon from Konstandin, Servant [1104.4793] JCAP

• Collapse of a spherical texture with $N_H=1$ and no gauge fields (g=0)



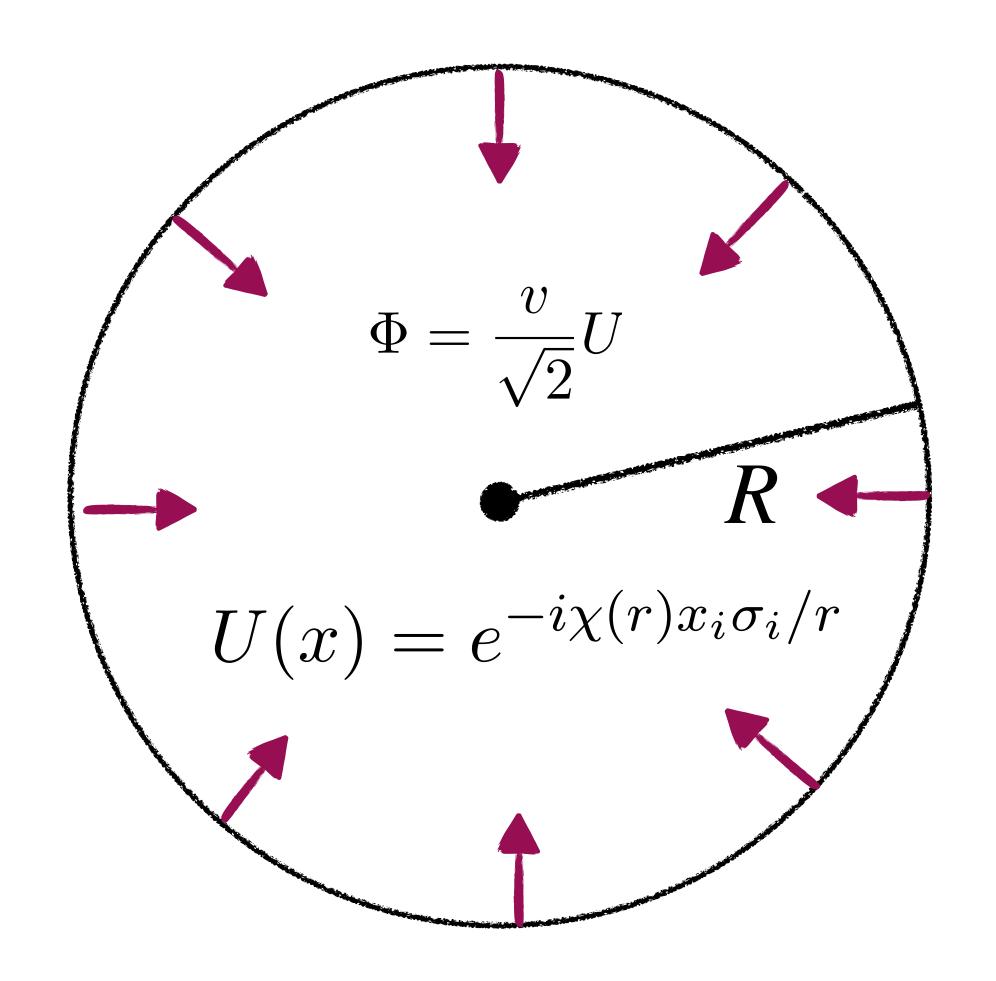
Initial conditions (t = 0)

Field always within the vacuum manifold, but non-zero energy due to scalar field gradients: $E_T \sim c \cdot 4\pi v^2 R$

$$\chi(r)=\pi\left[1- an^{-1}(r/R)
ight]$$

$$N_H=rac{1}{\pi}\left[\chi(r=0)-\chi(r=\infty)
ight]=1$$

• Collapse of a spherical texture with $N_{\!H}=1$ and no gauge fields (g=0)



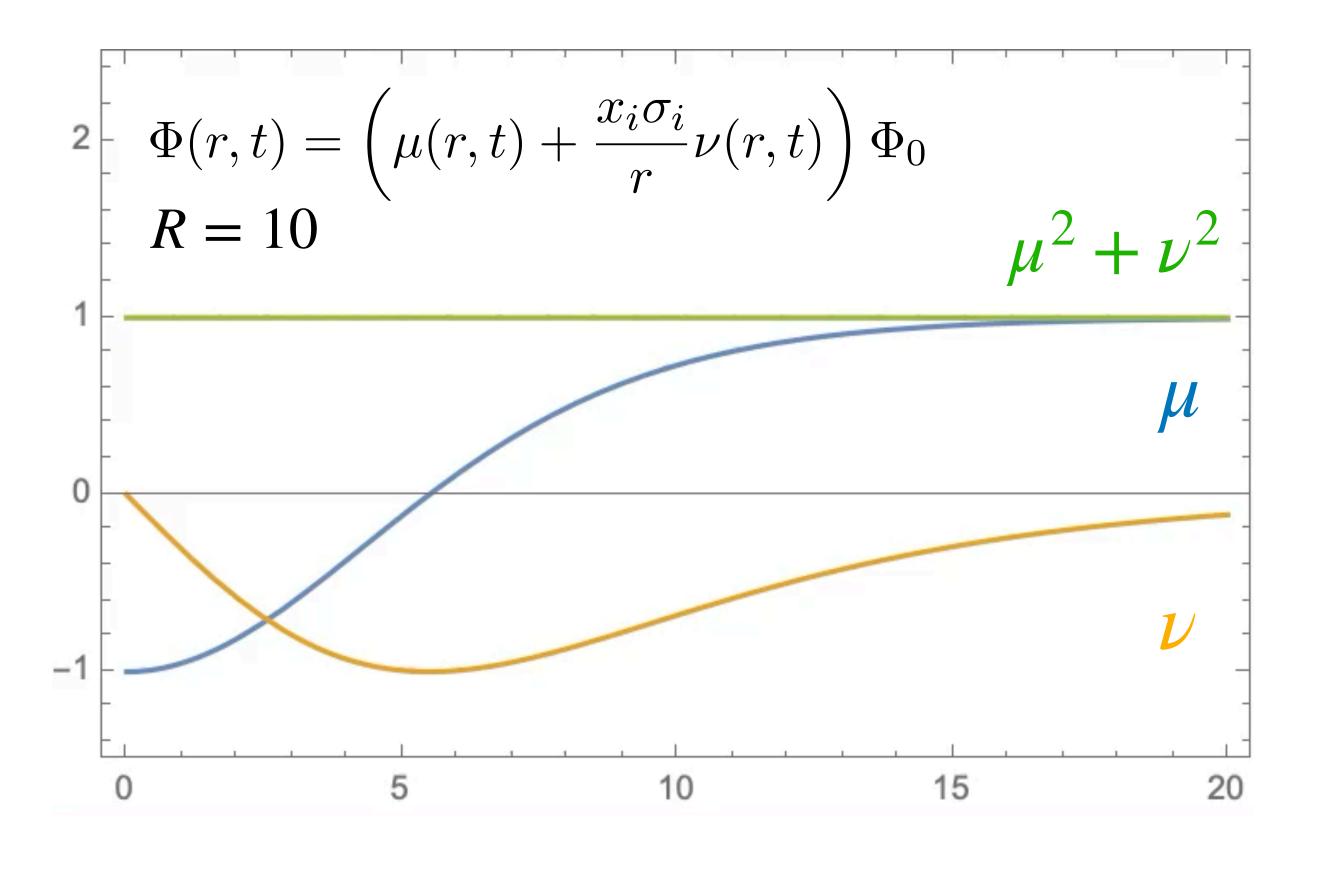
Initial conditions (t = 0)

Field always within the vacuum manifold, but non-zero energy due to scalar field gradients: $E_T \sim c \cdot 4\pi v^2 R$

General param. for subsequent evolution:

$$\Phi(r,t) = \left(\mu(r,t) + \frac{x_i \sigma_i}{r} \nu(r,t)\right) \Phi_0, \quad \mu^2 + \nu^2 \neq 1$$

• Collapse of a spherical texture with $N_H=1$ and no gauge fields (g=0)

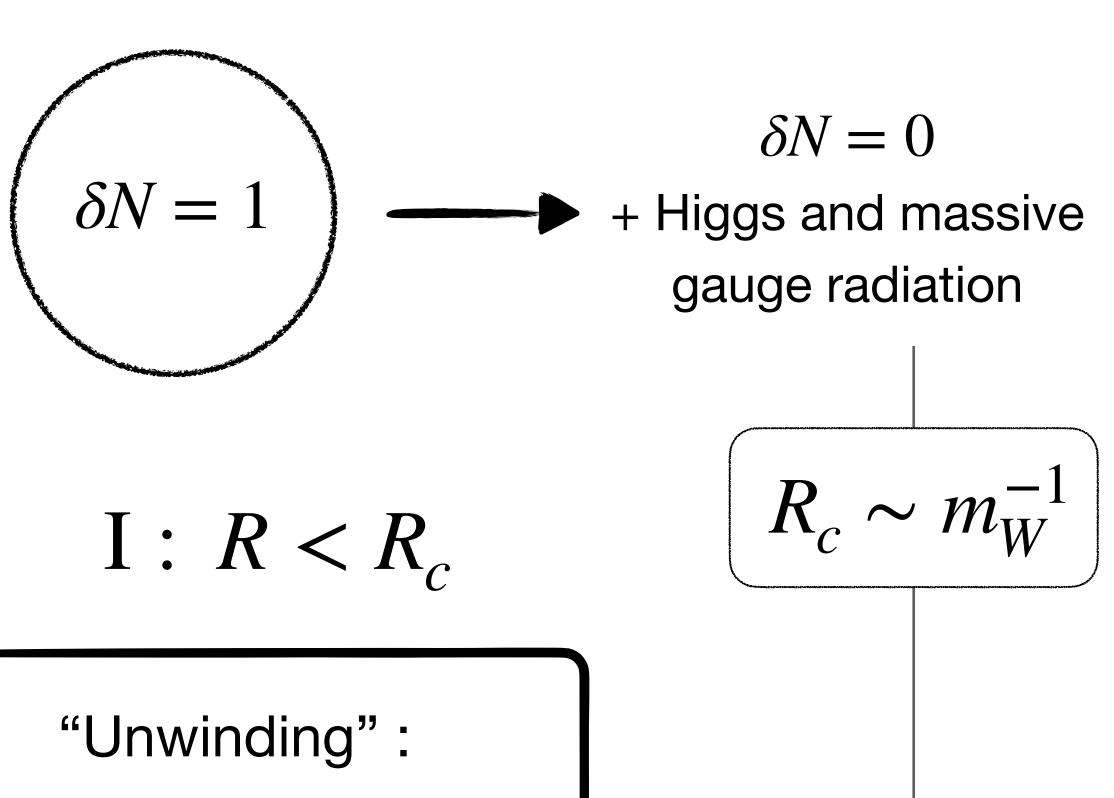


Higgs texture collapses and **unwinds** by crossing the false vacuum $\Phi=0$

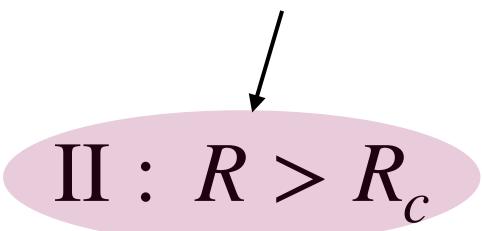
$$N_H = 0$$

$$N_H = 1$$
+ Higgs and Goldstone radiation

• Collapse of a spherical texture with $\delta N=1$ and gauge fields $(g\neq 0)$



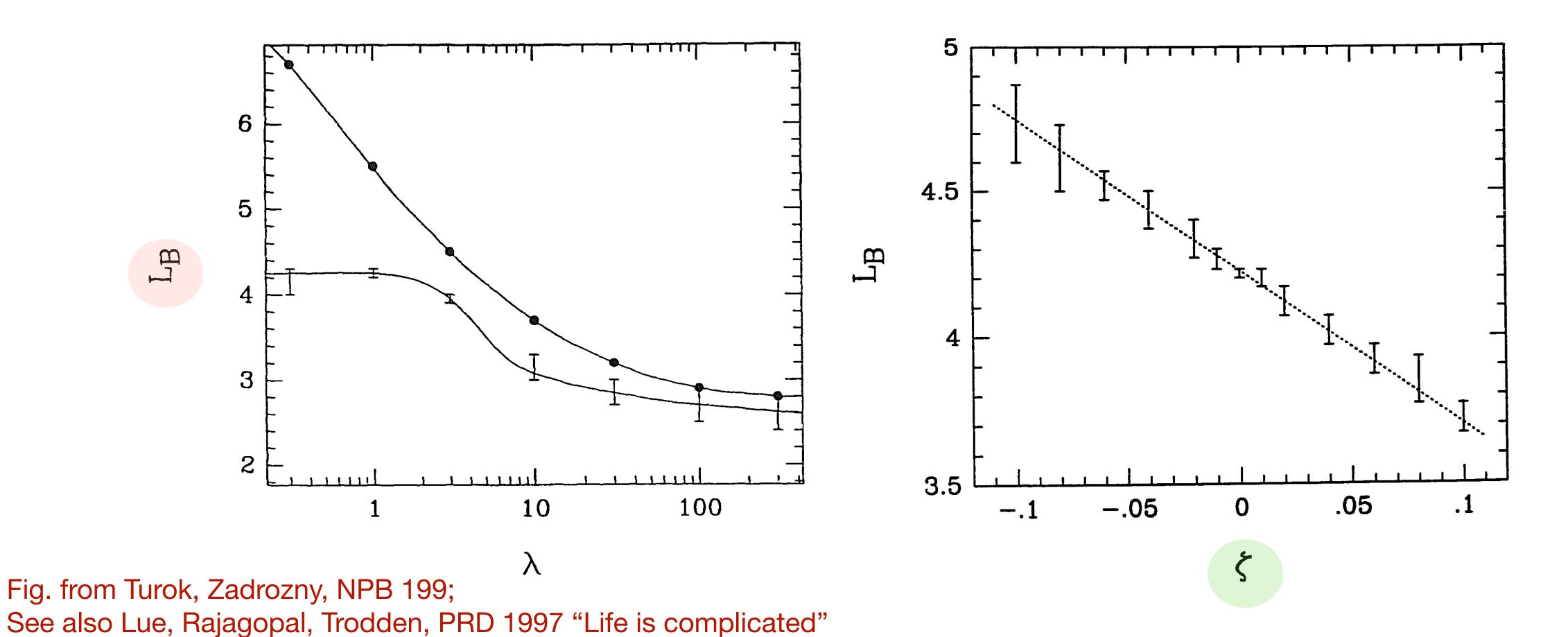
Gauge fields turn on and cancel $D_{\mu}=\partial_{\mu}-igA_{\mu}$



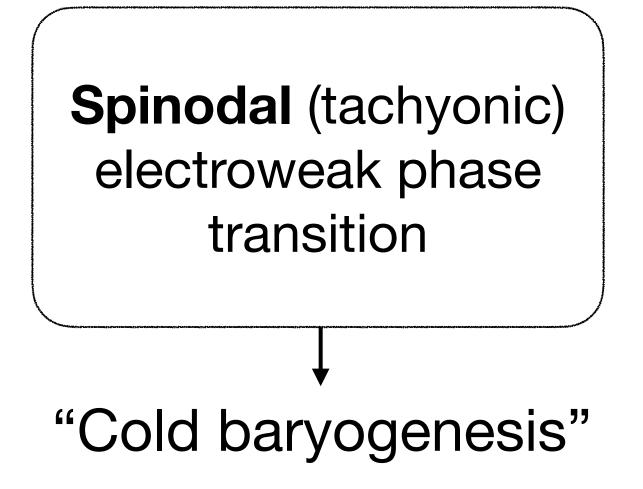
"Dressing":

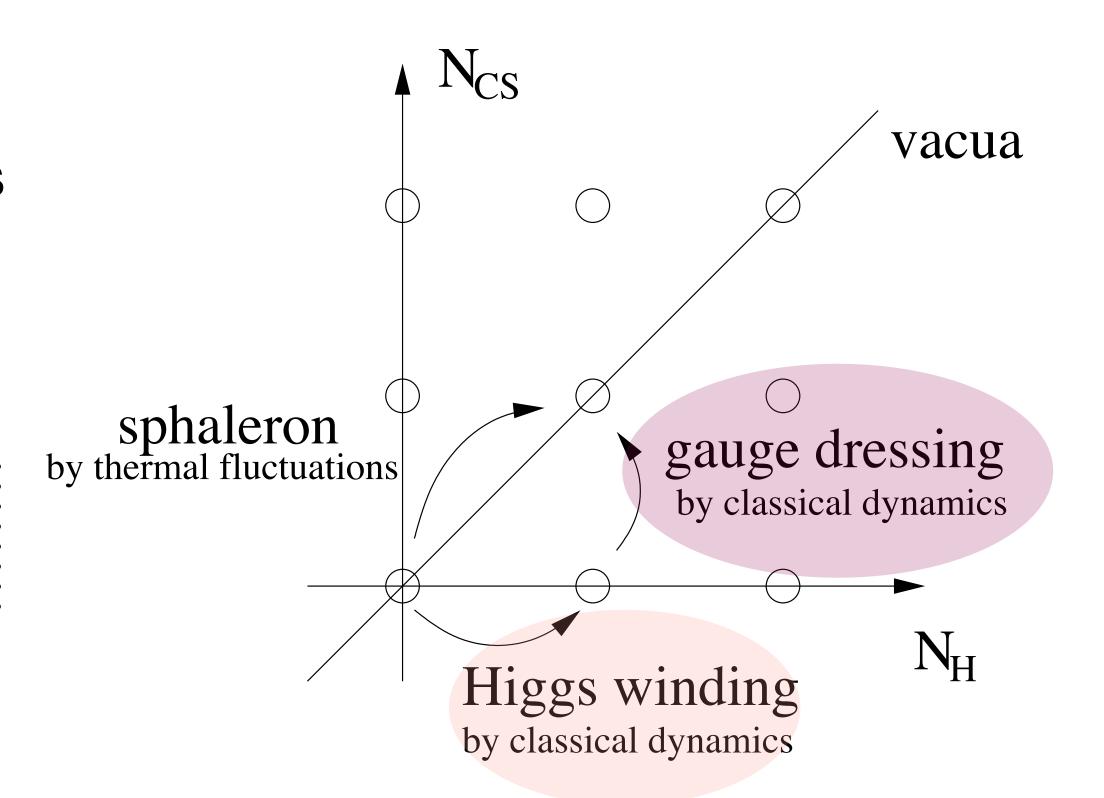
$$\Delta N_H = 0, \quad \Delta N_{\rm CS} = -1$$

• Determination of the critical size (bifurcation scale) and impact of CP violation



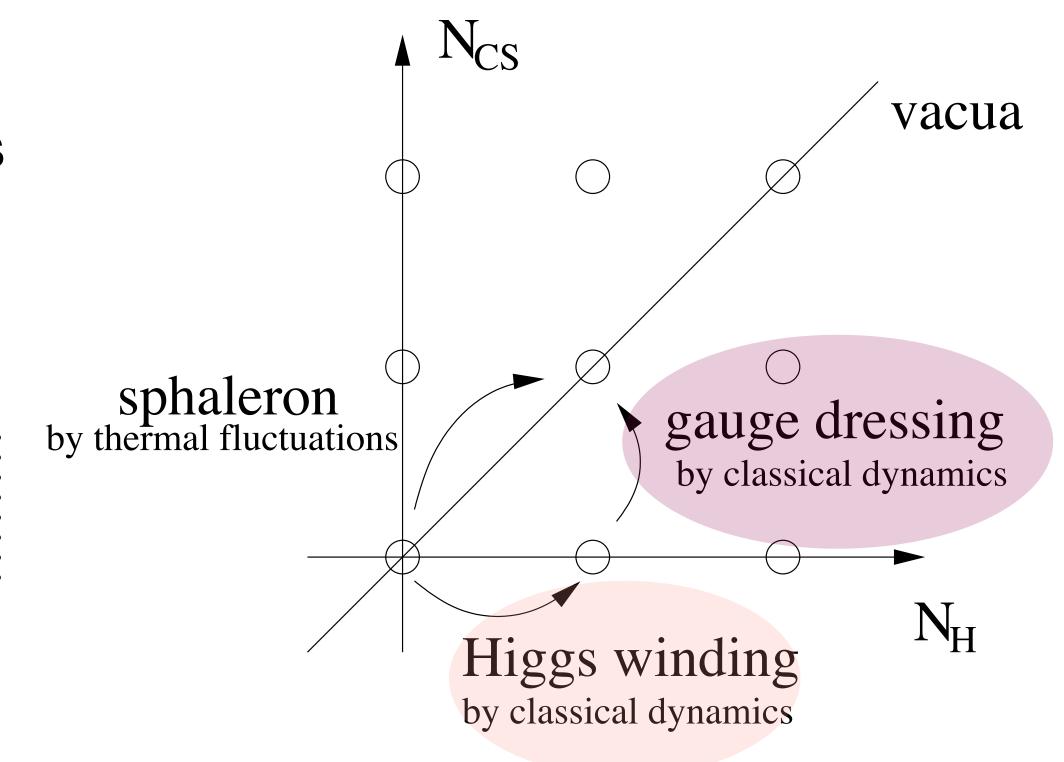
- In addition to thermal sphalerons, there exists another mechanism (dressing of SM textures) that can operate even at T=0
- Which dynamics in the early Universe can generate Higgs windings in the first place?





• In addition to thermal sphalerons, there exists another mechanism (dressing of SM textures) that can operate even at T=0

 Which dynamics in the early Universe can generate Higgs windings in the first place?



Spinodal (tachyonic)
electroweak phase
transition

"Cold baryogenesis"

• In addition to thermal sphalerons, there exists another mechanism (dressing of SM textures) that can operate even at T=0

Which dynamics in the early Universe can generate Higgs windings in the first place?

sphaleron
by thermal fluctuations

by classical dynamics

NH

Higgs winding
by classical dynamics

Spinodal (tachyonic) electroweak phase transition

"Cold baryogenesis"

Bubble collisions in a first order electroweak phase transition

See also Konstandin, Servant [1104.4793] JCAP; Servant [1407.0030] PRL

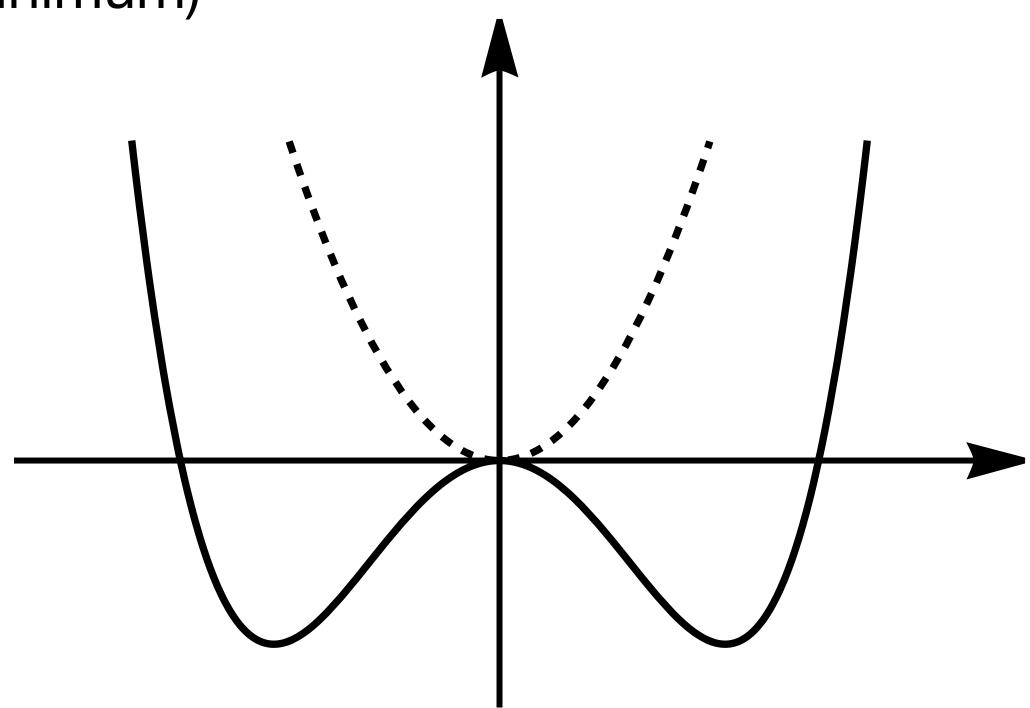
Garcia-Bellido, Grigoriev, Kusenko, Shaposhnikov, PRD 1990

Smit, Tranberg [hep-ph/0211243] JHEP 2002

 Higgs mass changes from positive (stable minimum) to negative (spinodal instability)

$$\partial_t^2 \phi - \nabla^2 \phi + \mu_{\text{eff}}^2(t) \phi = 0$$
$$\mu_{\text{eff}}^2(t) = -\mu^2 + \kappa \sigma^2(t)$$

• IR modes experience exponential growth until back reaction: inhomogeneous field



 Higgs IR modes reach local thermal equilibrium at high temperature:

$$n_k = \frac{1}{\exp(\omega_k/T) - 1} \approx \frac{T_{\text{eff}}}{\omega_k} \gg 1$$

- Full thermalization takes much longer: out of equilibrium dynamics
- To avoid wash out:

$$T_{\rm RH} < T_{\rm sph\,f.o.}$$

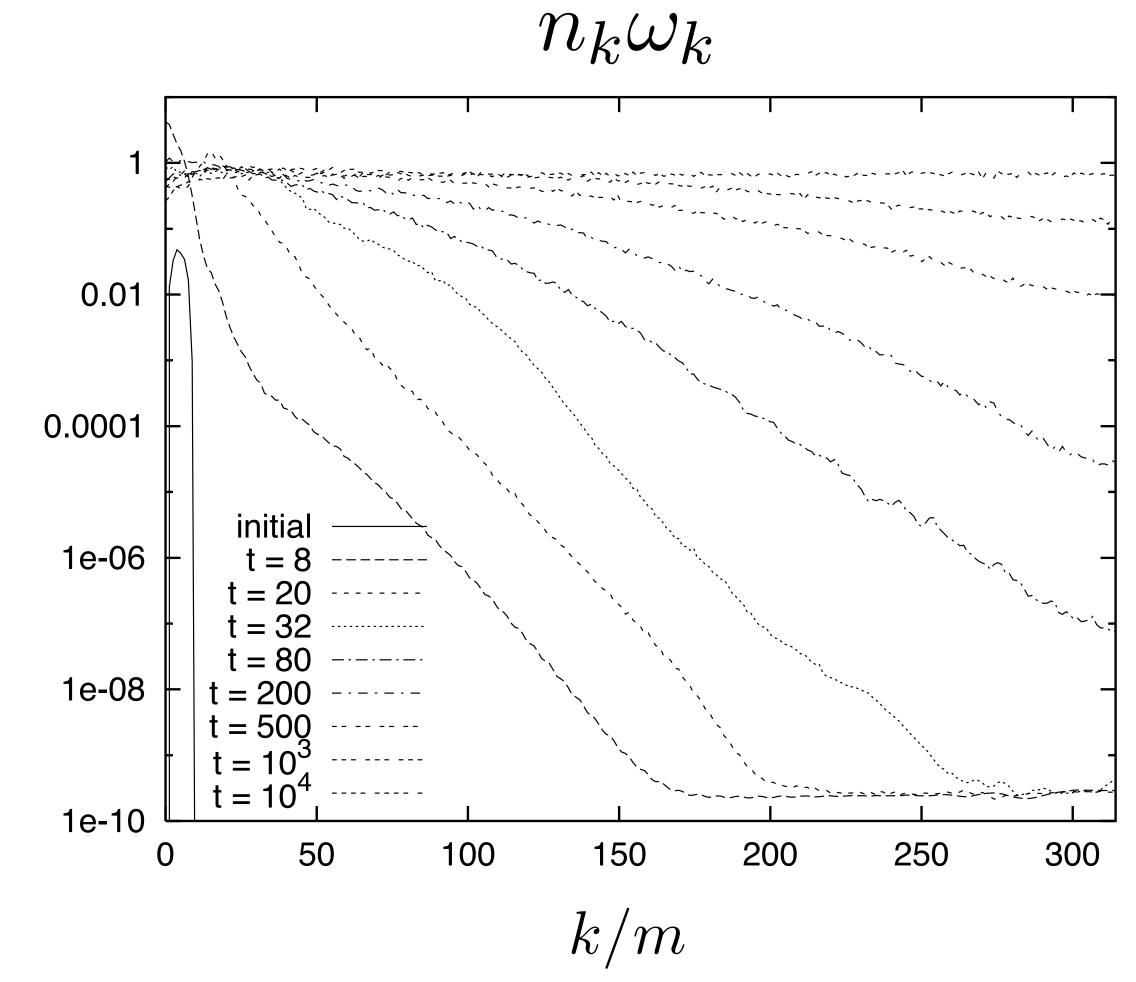
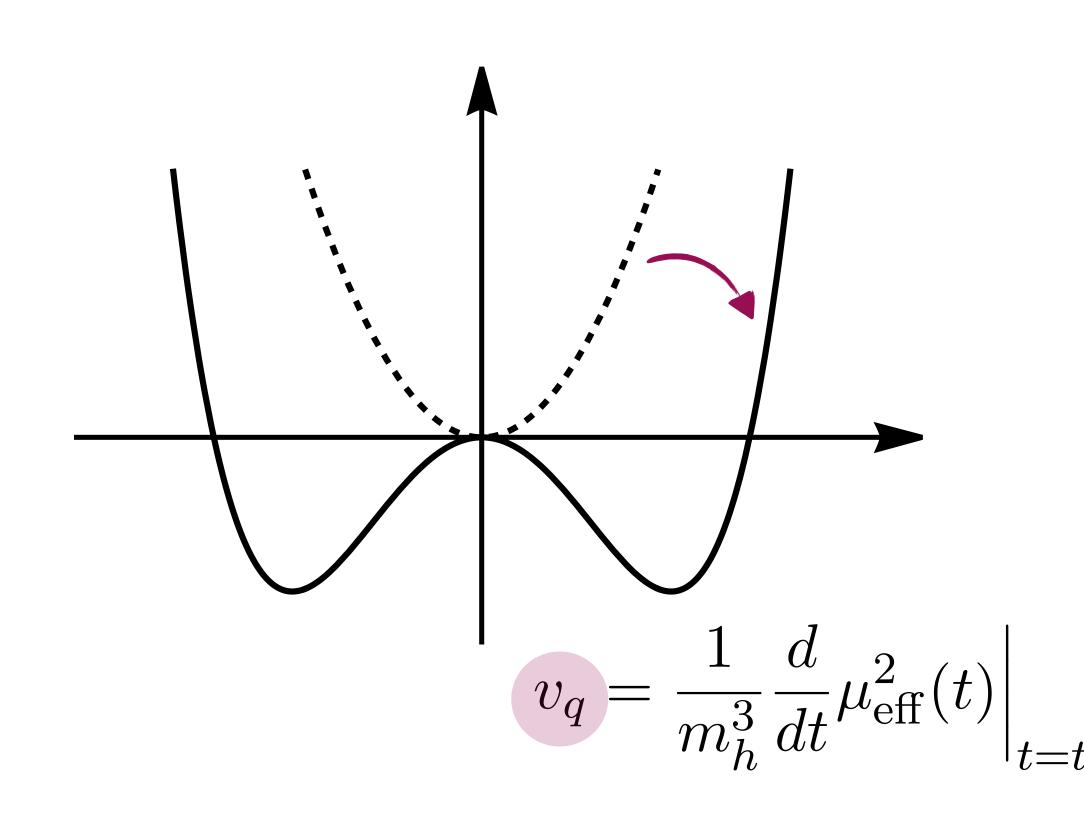


Fig. from Garcia-Bellido, Grigoriev, Kusenko, Shaposhnikov, PRD 1990

 Formation of Higgs and CS windings depending on the "quench speed"



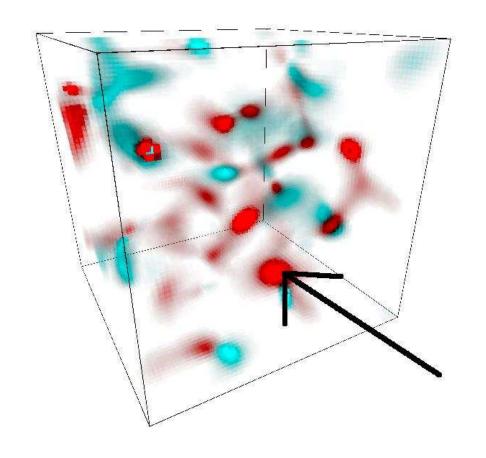
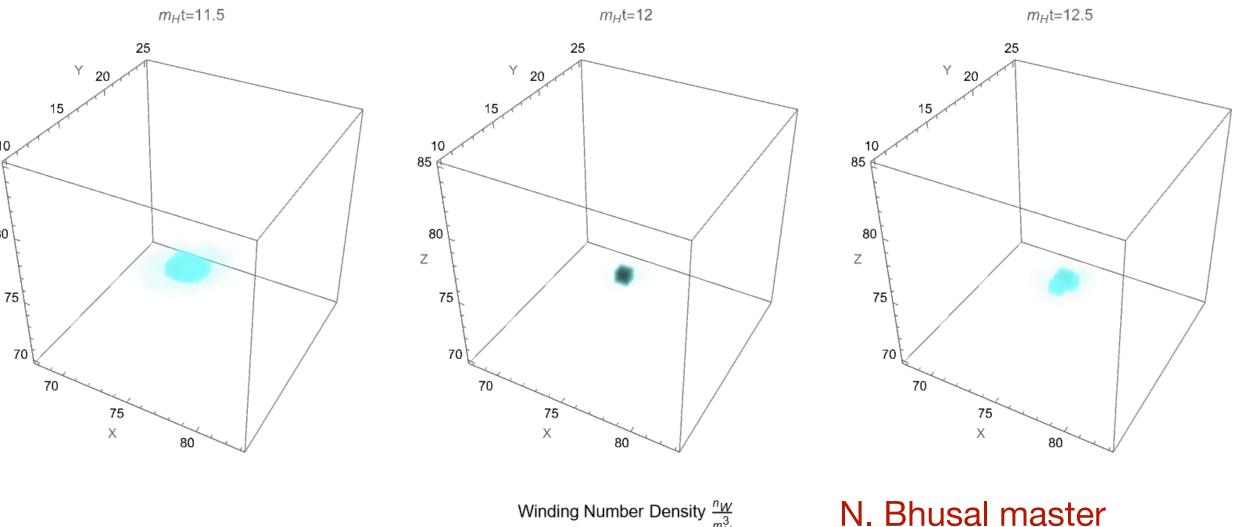


Fig. from Van der Meulen, Sexty, Smit, Tranberg [hep-ph/0511080], JHEP



- A package for simulating real time field dynamics in an - CosmoLattice

expanding Universe, including scalar and gauge interactions

+ our own code

thesis (2024)

Statistics of Higgs windings:

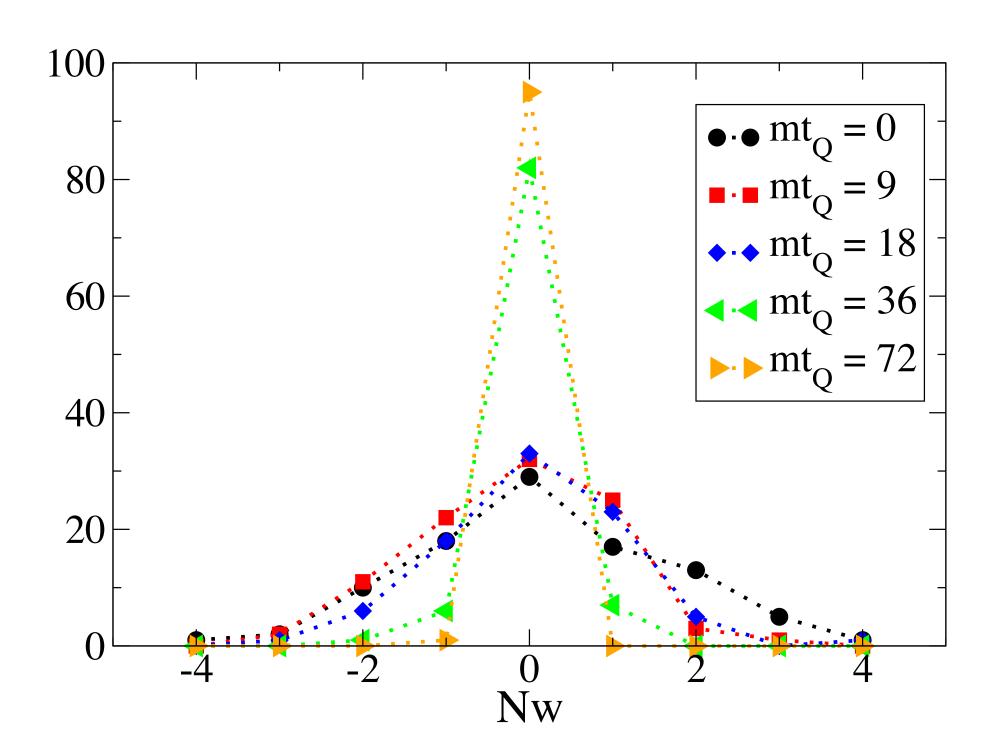


Fig. from Tranberg, Smit, Hindmarsh [hep-ph/0610096] JHEP

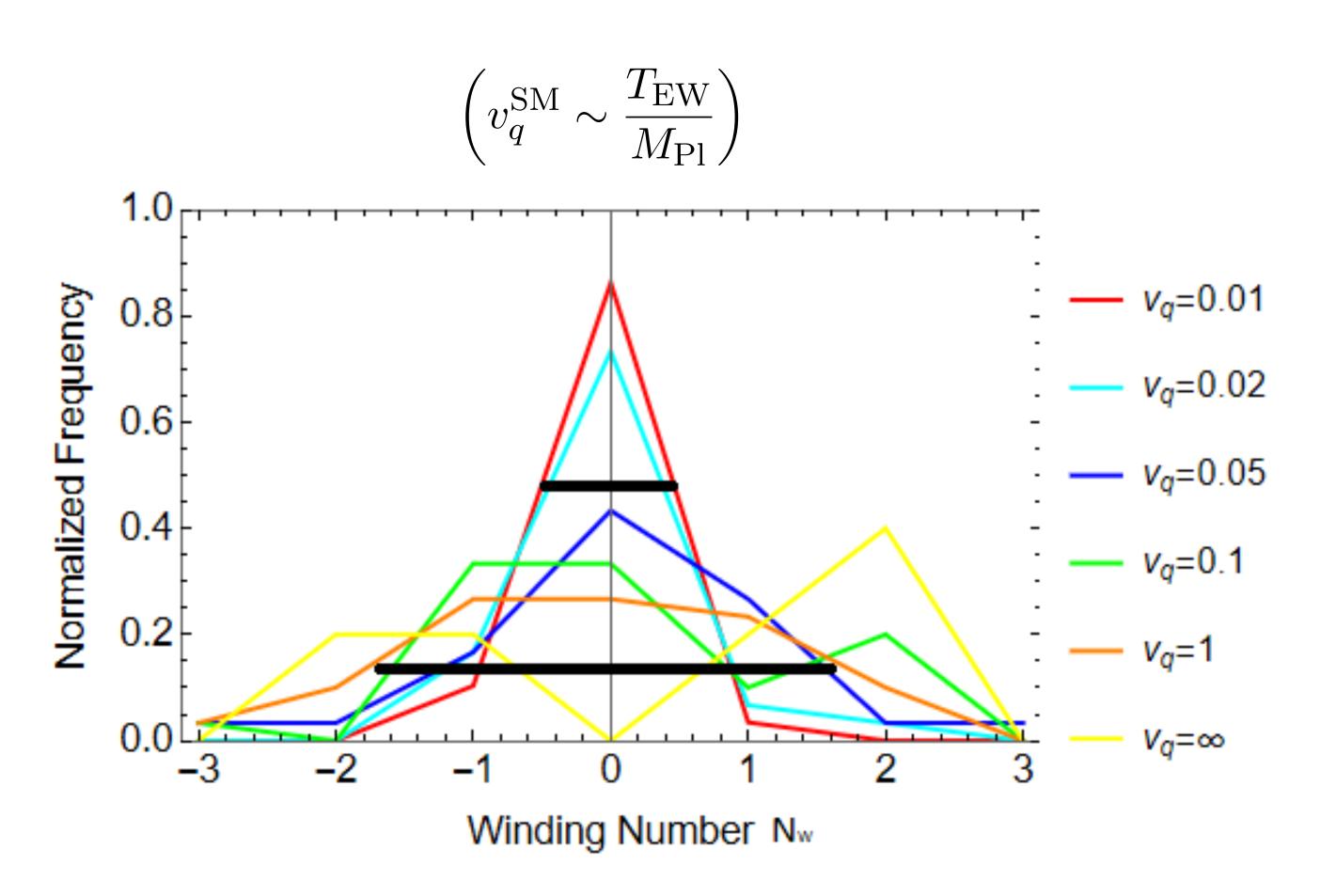


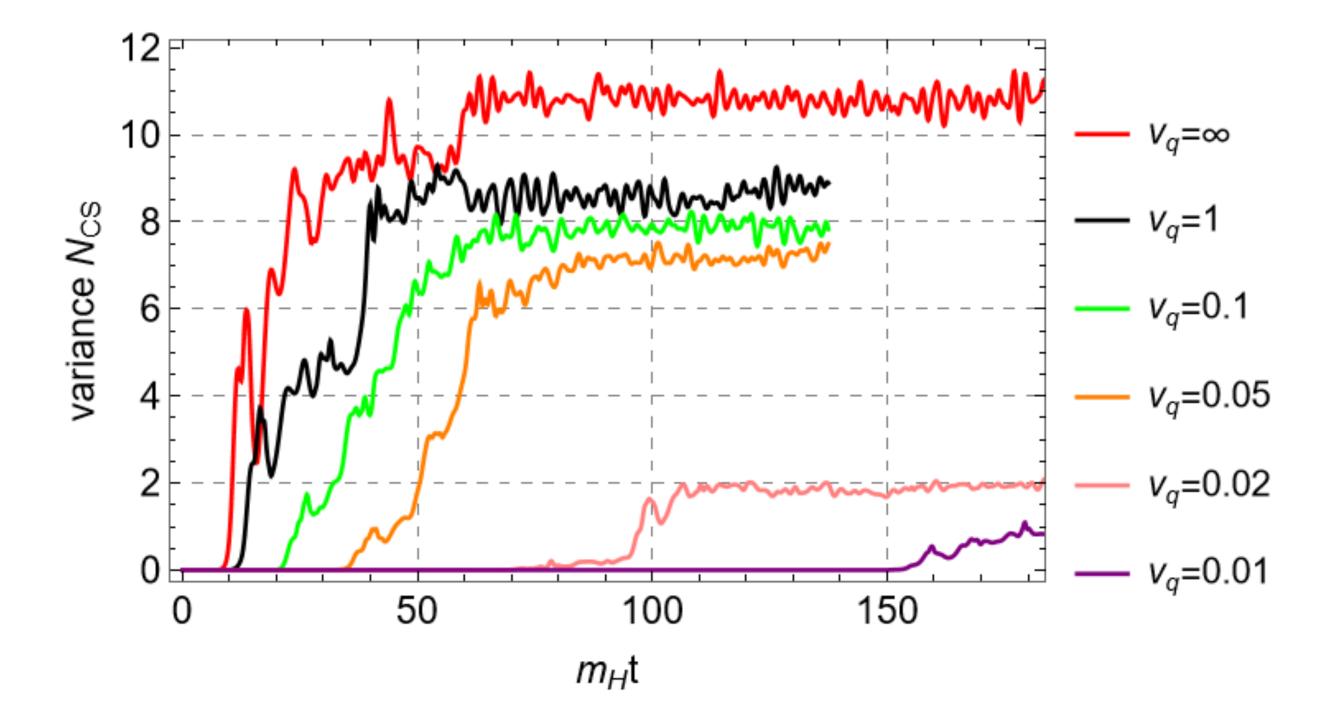
Fig. from N. Bhusal master thesis (2024)

Chern-Simons variance:

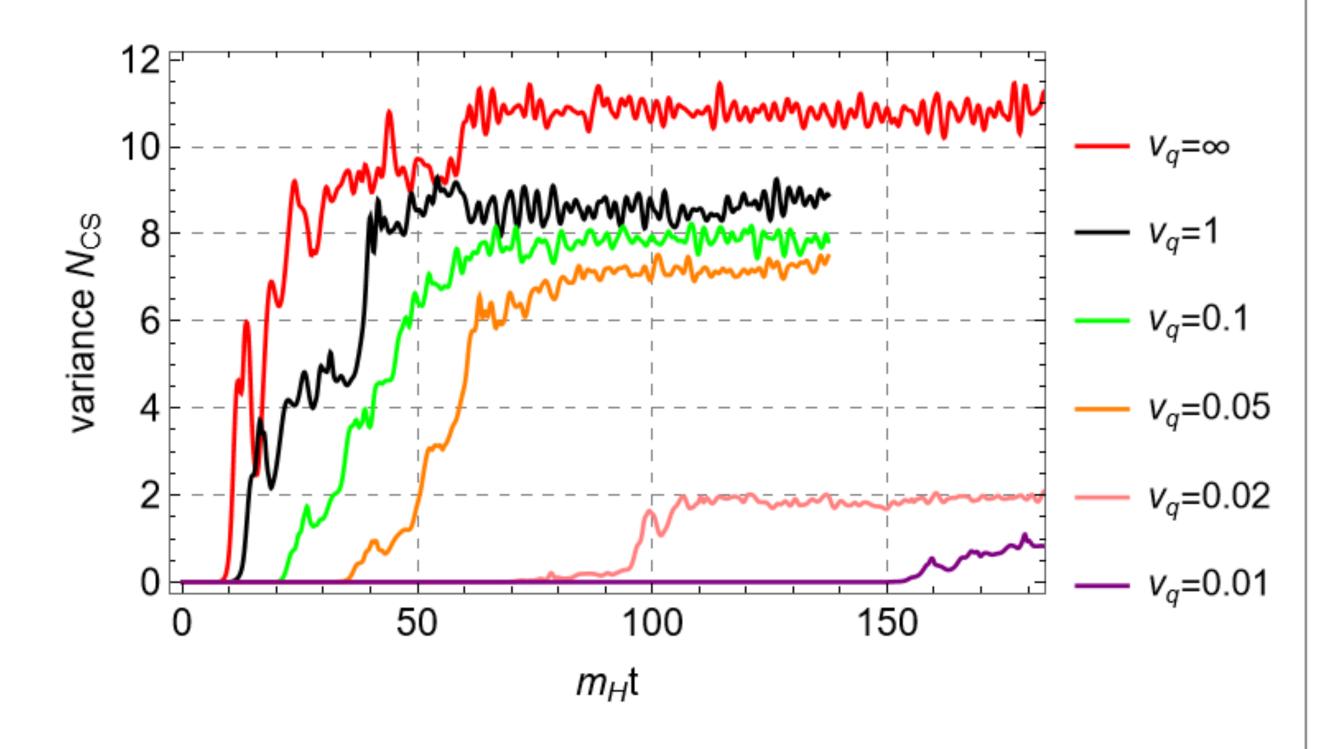
$$\Gamma \equiv \lim_{L,t\to\infty} \frac{\langle N_{\rm CS}^2(t) \rangle - \langle N_{\rm CS}(t) \rangle^2}{L^3 t}$$

CS diffusion determines effective sphaleron rate

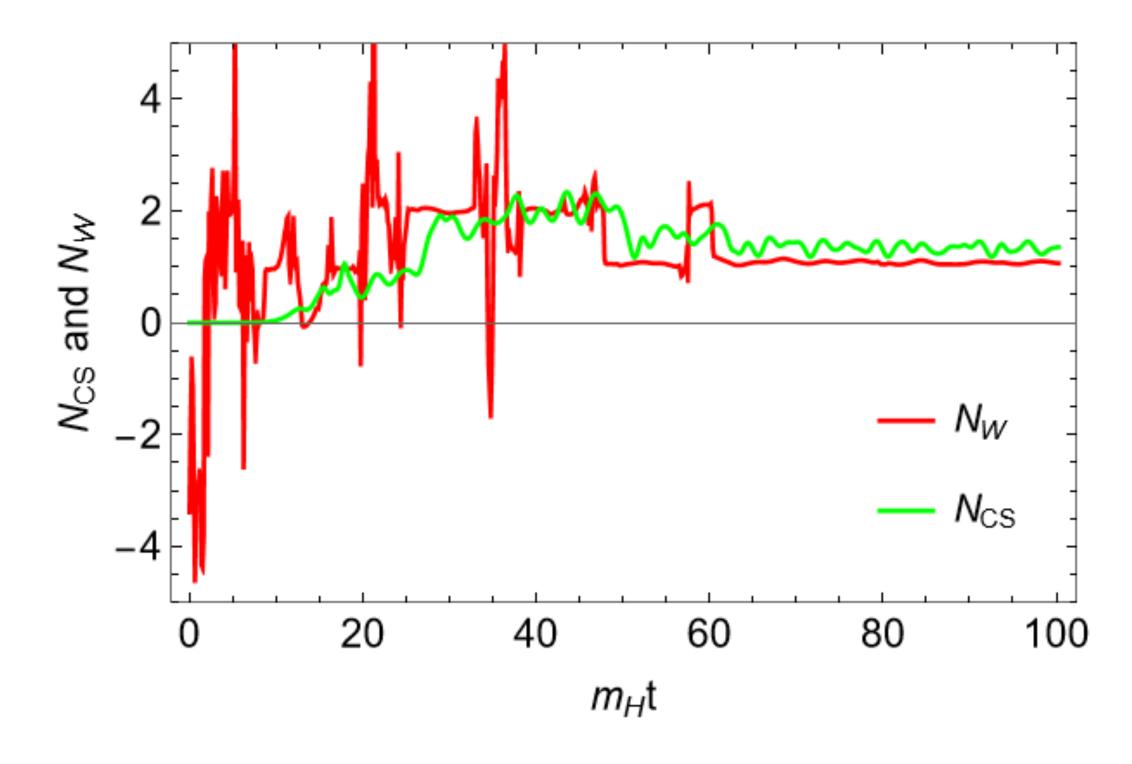
Chern-Simons variance:



Chern-Simons variance:



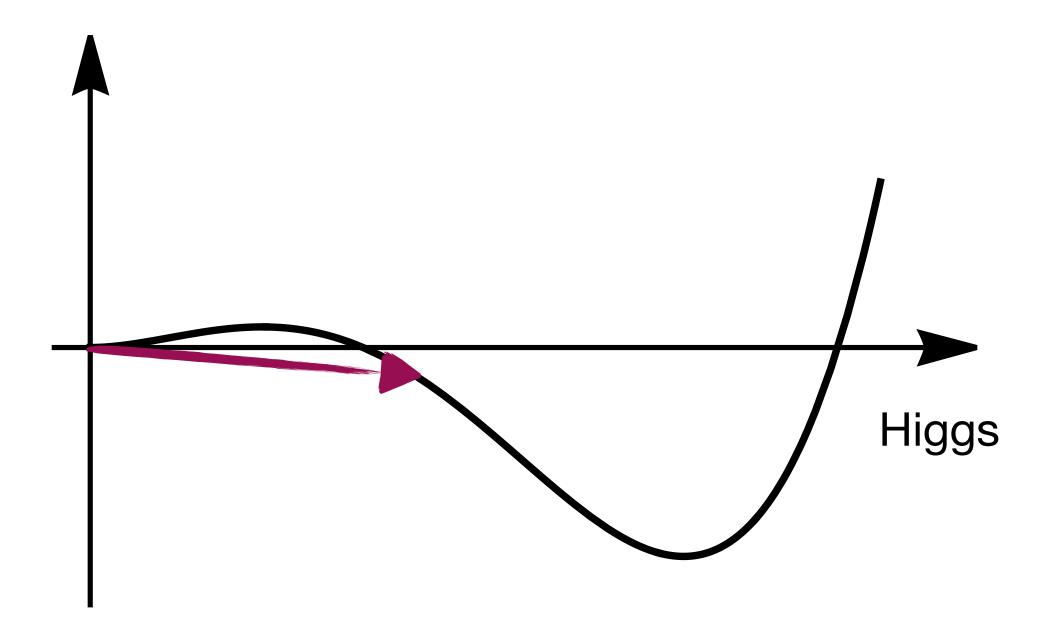
System in the vacuum at late times:



Figures from N. Bhusal master thesis (2024)

Realizations

- Explicit realizations of a spinodal (tachyonic) electroweak phase transition are mostly based on reheating after (hybrid) inflation
- Another possibility would be a first order phase transition: 1) a time-dependent barrier such that nucleation is basically a roll-over



Realizations

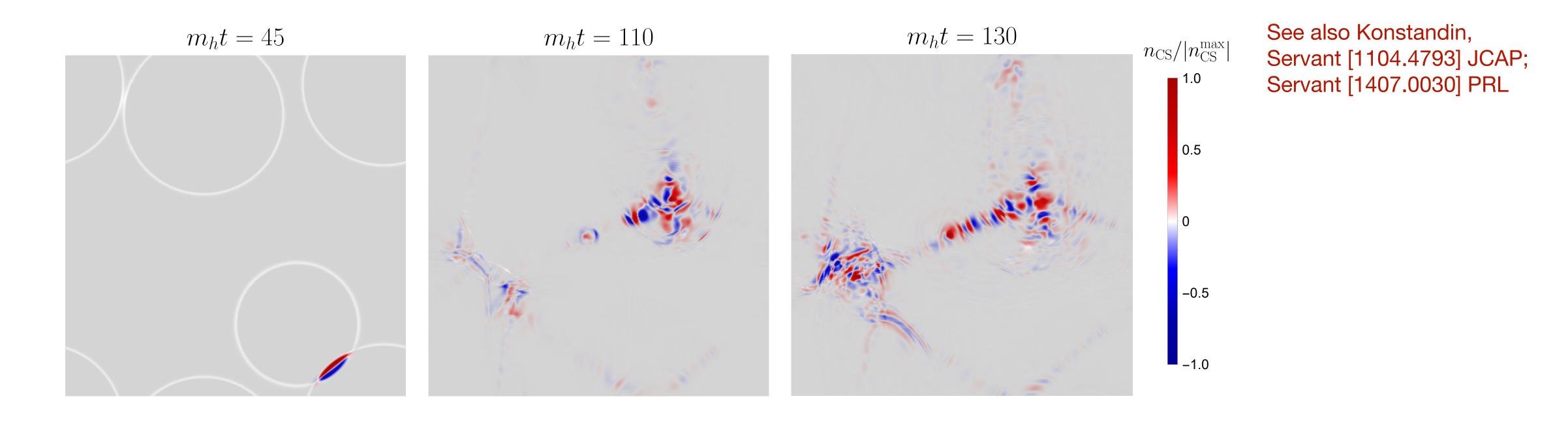
- Explicit realizations of a spinodal (tachyonic) electroweak phase transition are mostly based on reheating after (hybrid) inflation
- Another possibility would be a first order phase transition: 1) a time-dependent barrier such that nucleation is basically a roll-over; 2) bubble collisions and reheating

See also Konstandin, Servant [1104.4793] JCAP; Servant [1407.0030] PRL

Requires fully 3d simulations of bubble collisions with non-abelian gauge fields

Realizations

- Explicit realizations of a spinodal (tachyonic) electroweak phase transition are mostly based on reheating after (hybrid) inflation
- Another possibility would be a first order phase transition: 1) a time-dependent barrier such that nucleation is basically a roll-over; 2) bubble collisions and reheating



• We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)

- We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
- Critical bubble profile according to O(4) + simultaneous nucleation

- We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
- Critical bubble profile according to O(4) + simultaneous nucleation
- Each bubble nucleated with random SU(2) orientation of the Higgs field

- We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
- Critical bubble profile according to O(4) + simultaneous nucleation
- Each bubble nucleated with random SU(2) orientation of the Higgs field
- We vary the shape of the Higgs potential, as this controls wall—wall collisions

- We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
- Critical bubble profile according to O(4) + simultaneous nucleation
- Each bubble nucleated with random SU(2) orientation of the Higgs field
- We vary the shape of the Higgs potential, as this controls wall—wall collisions
- We vary the size of bubbles at collision (γ_*) for extrapolation to the physical point

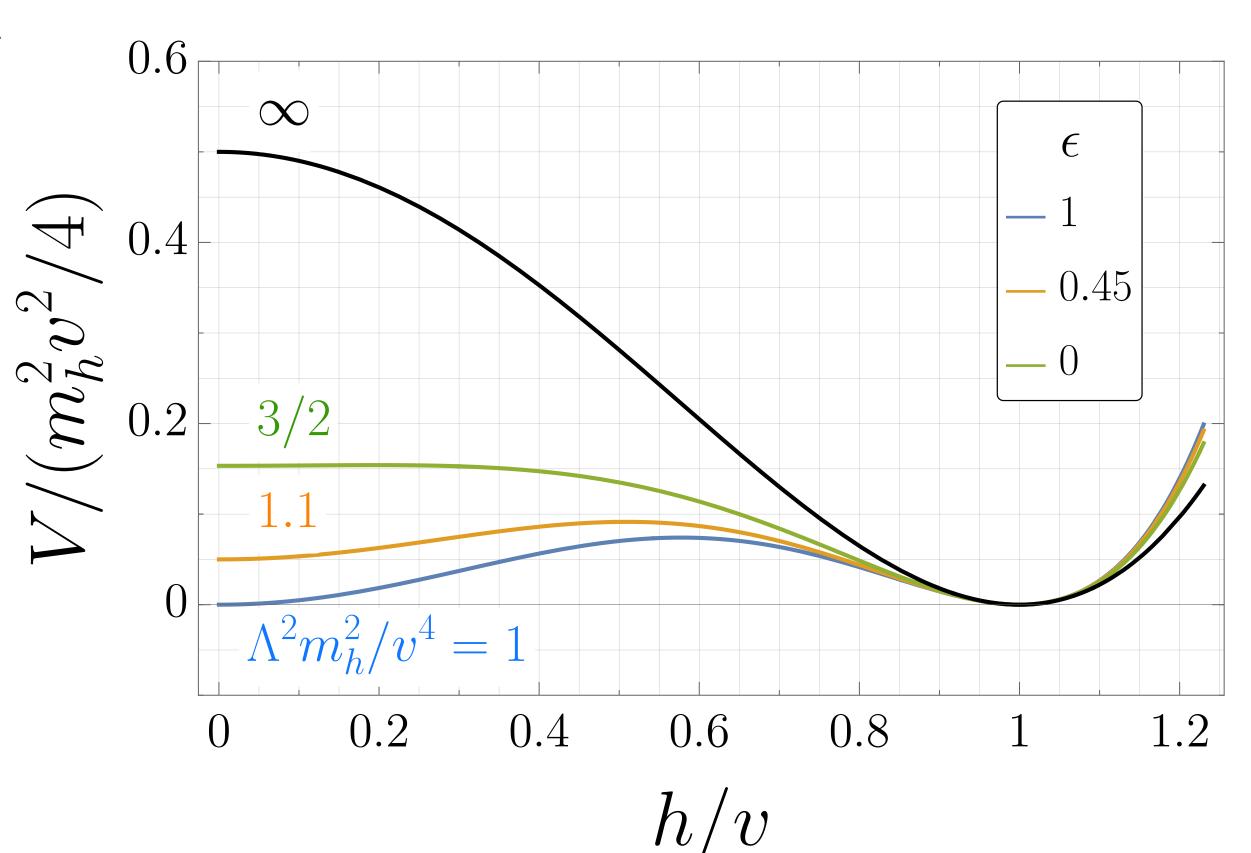
- We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
- Critical bubble profile according to O(4) + simultaneous nucleation
- Each bubble nucleated with random SU(2) orientation of the Higgs field
- We vary the shape of the Higgs potential, as this controls wall—wall collisions
- We vary the size of bubbles at collision (γ_*) for extrapolation to the physical point
- We have tried $\mathscr{C}osmo\mathscr{L}attice$ for the FOPT as well, but eventually used our code

Shape of the Higgs potential

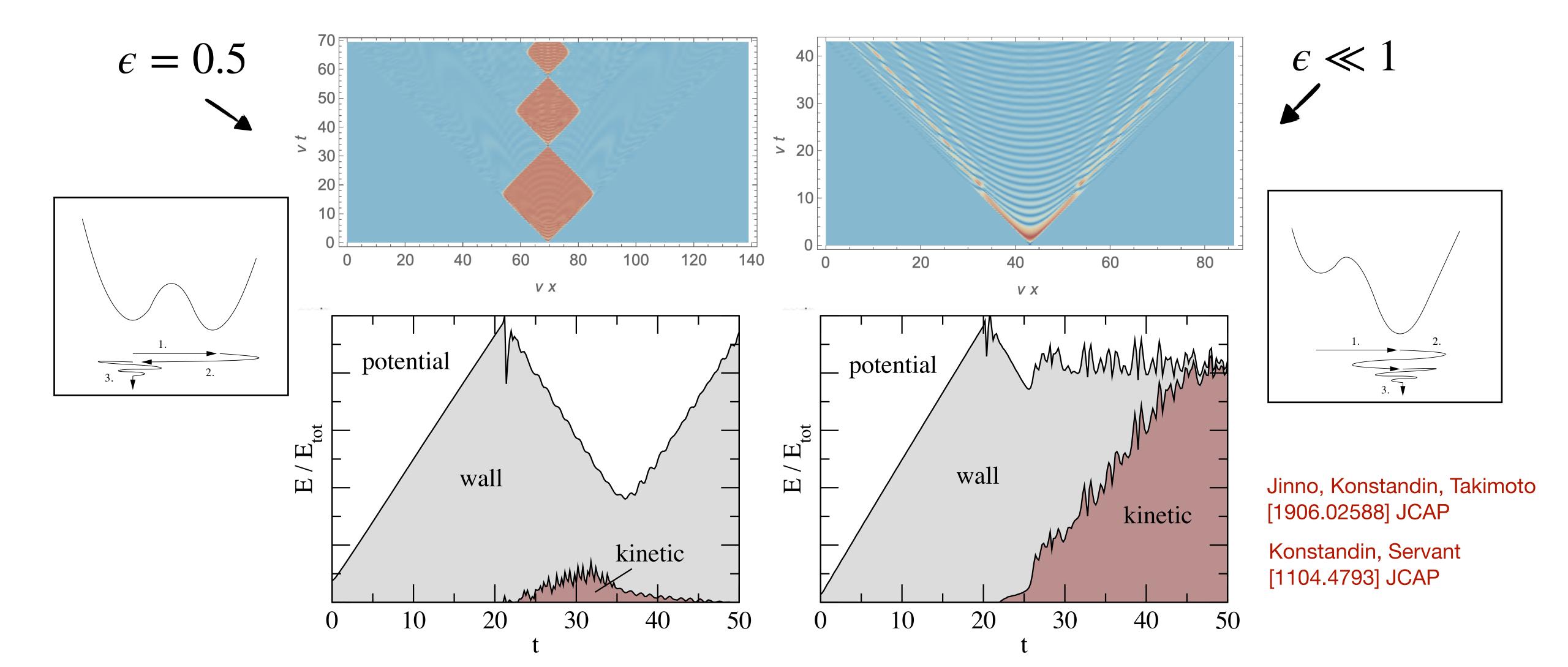
Bubble collision dynamics controlled by:

$$\epsilon = \frac{\text{(barrier height)} - \text{(false vacuum height)}}{\text{(barrier height)} - \text{(true vacuum height)}}$$

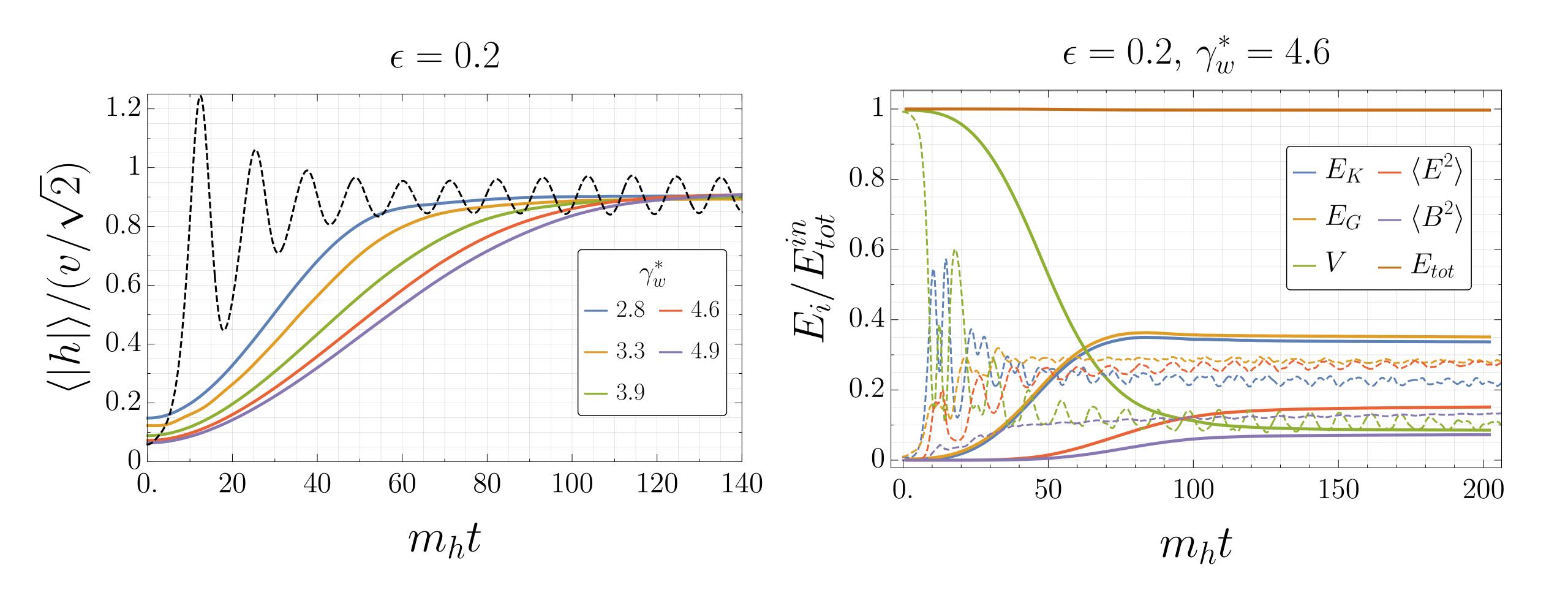
Jinno, Konstandin, Takimoto [1906.02588] JCAP



Shape of the Higgs potential

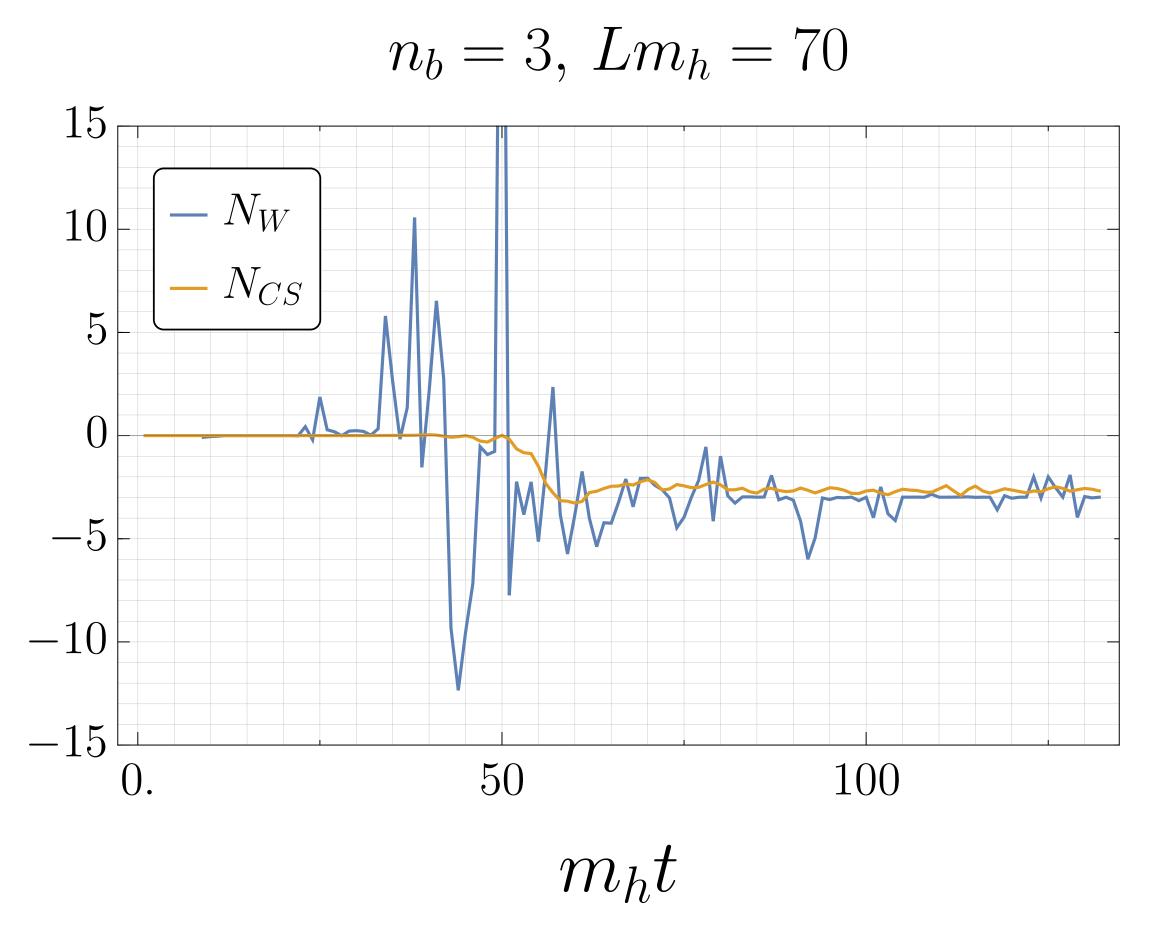


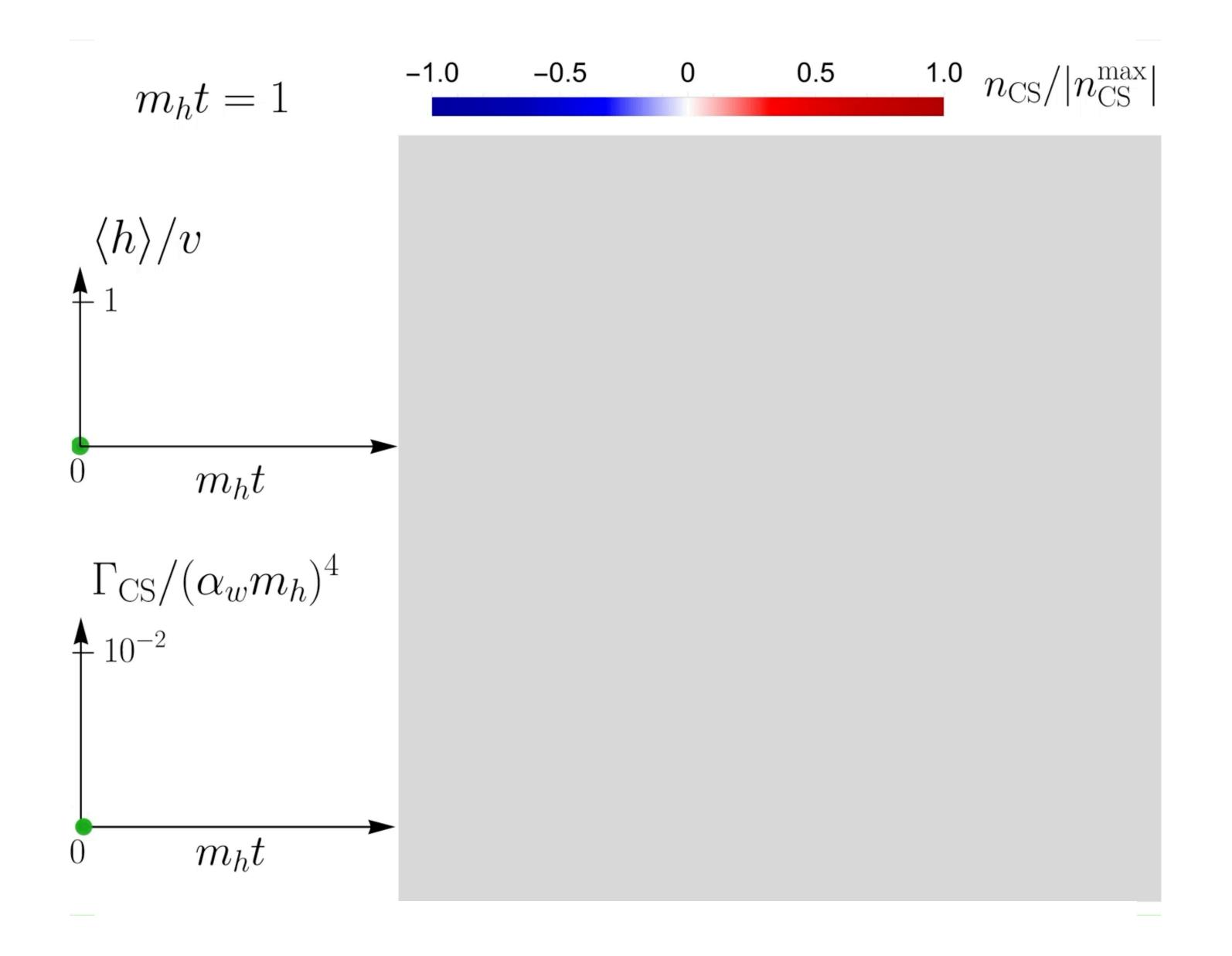
Time scale and energy budget



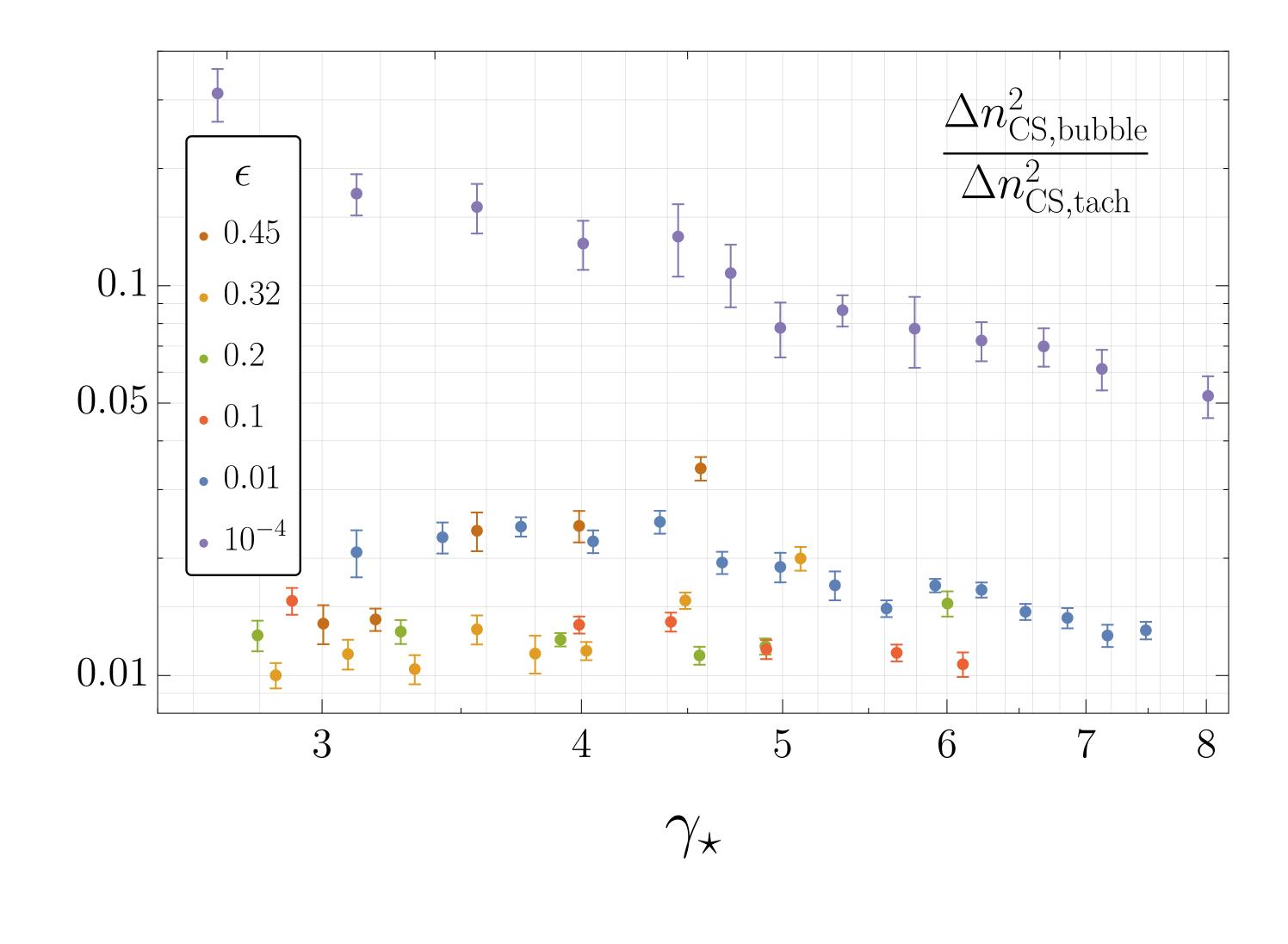
Cross-checks

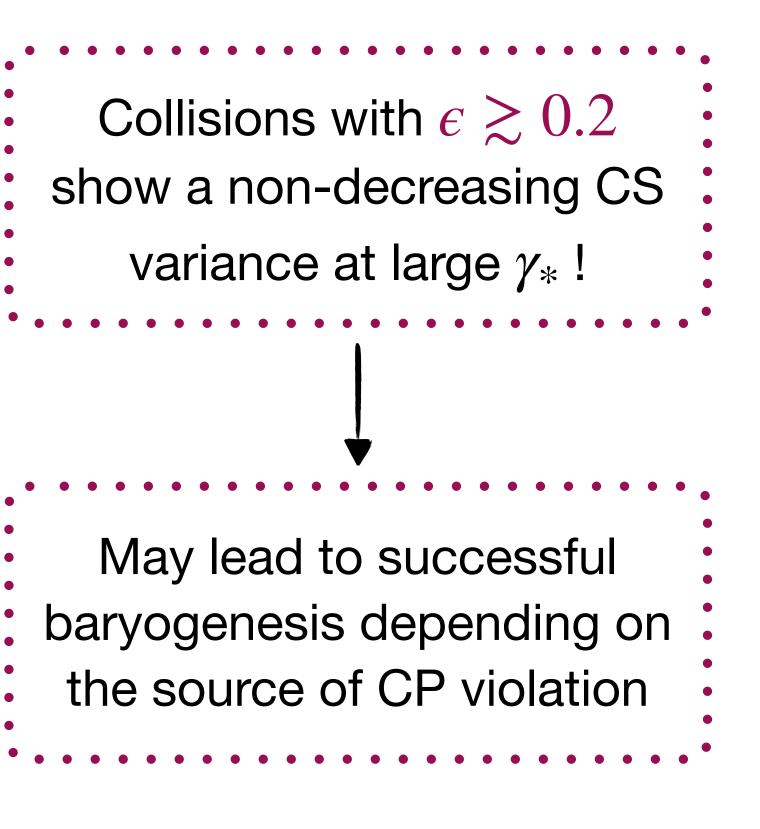
 Convergence of Higgs winding and CS number observed also for the first order phase transition:



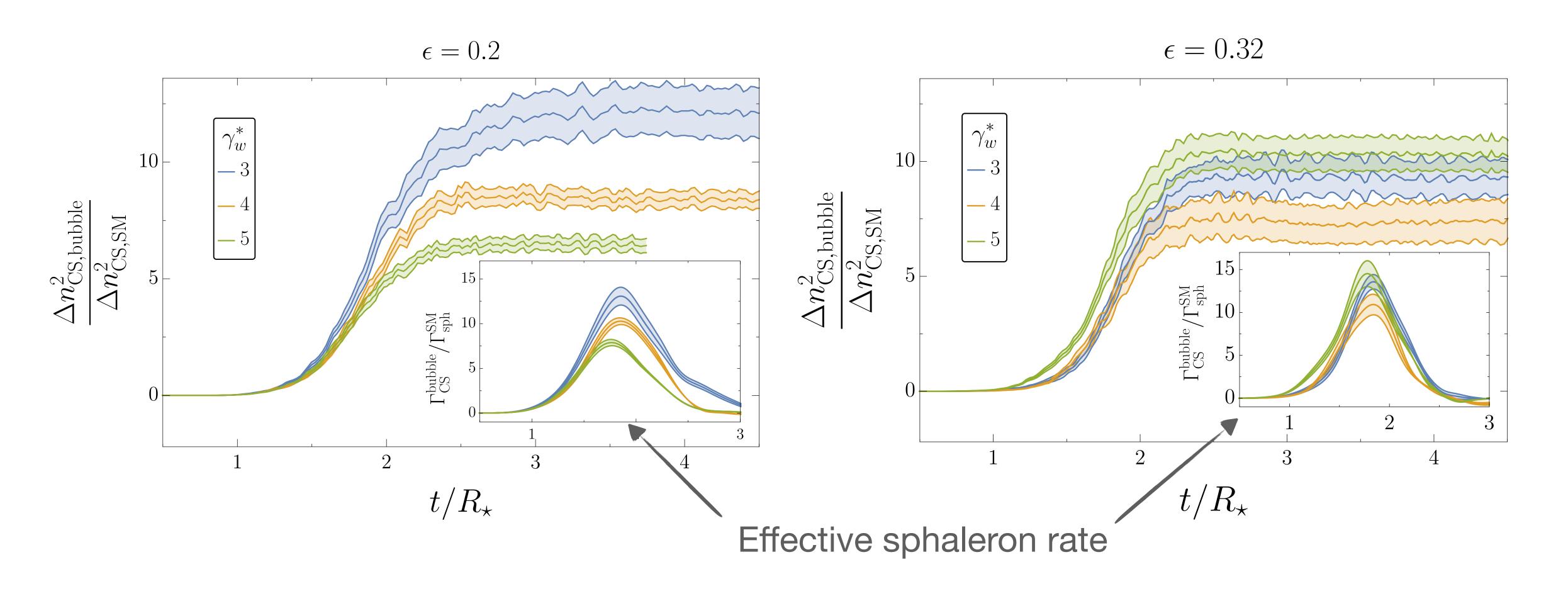


Results 3+1





Results 3+1

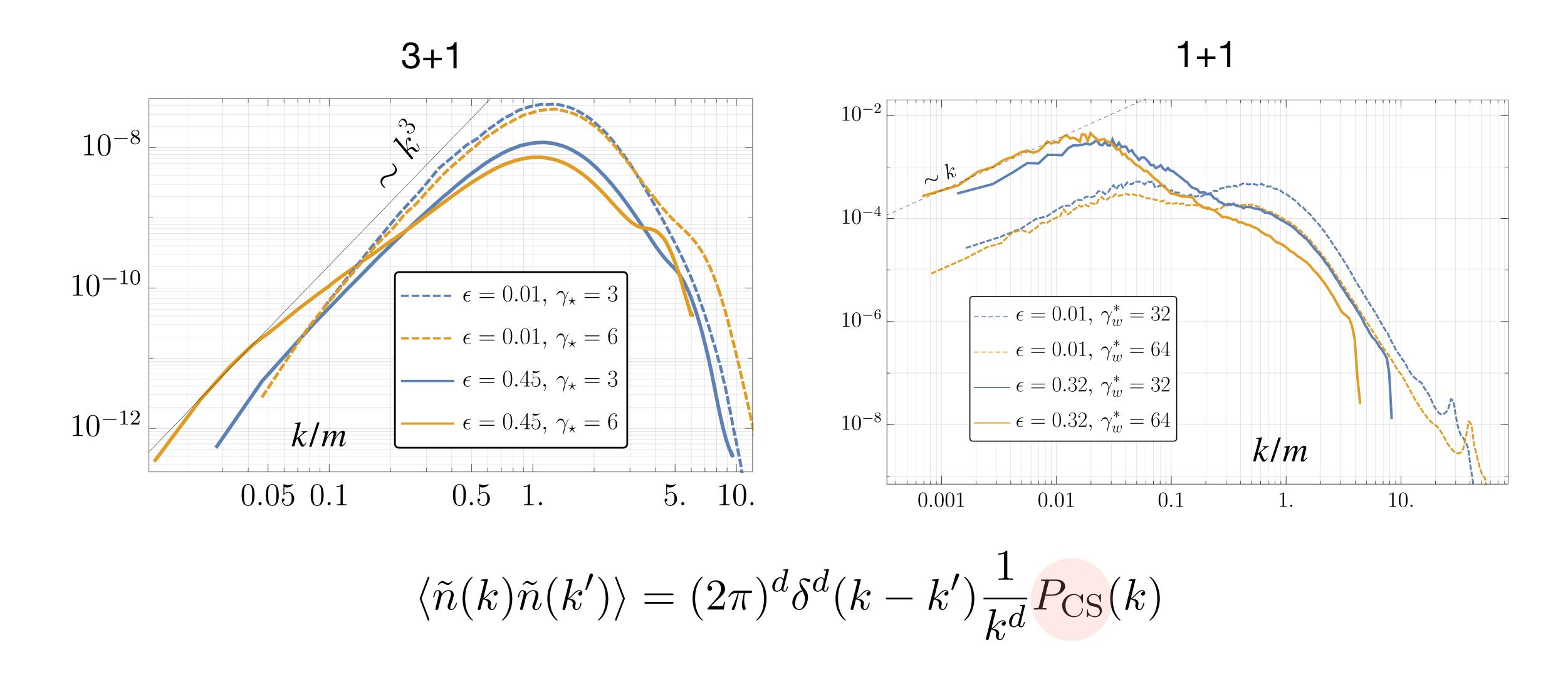


Bhusal, **SB**, Cataldi, Chatrchyan, Gorghetto, Servant, to appear

Summary and Outlook

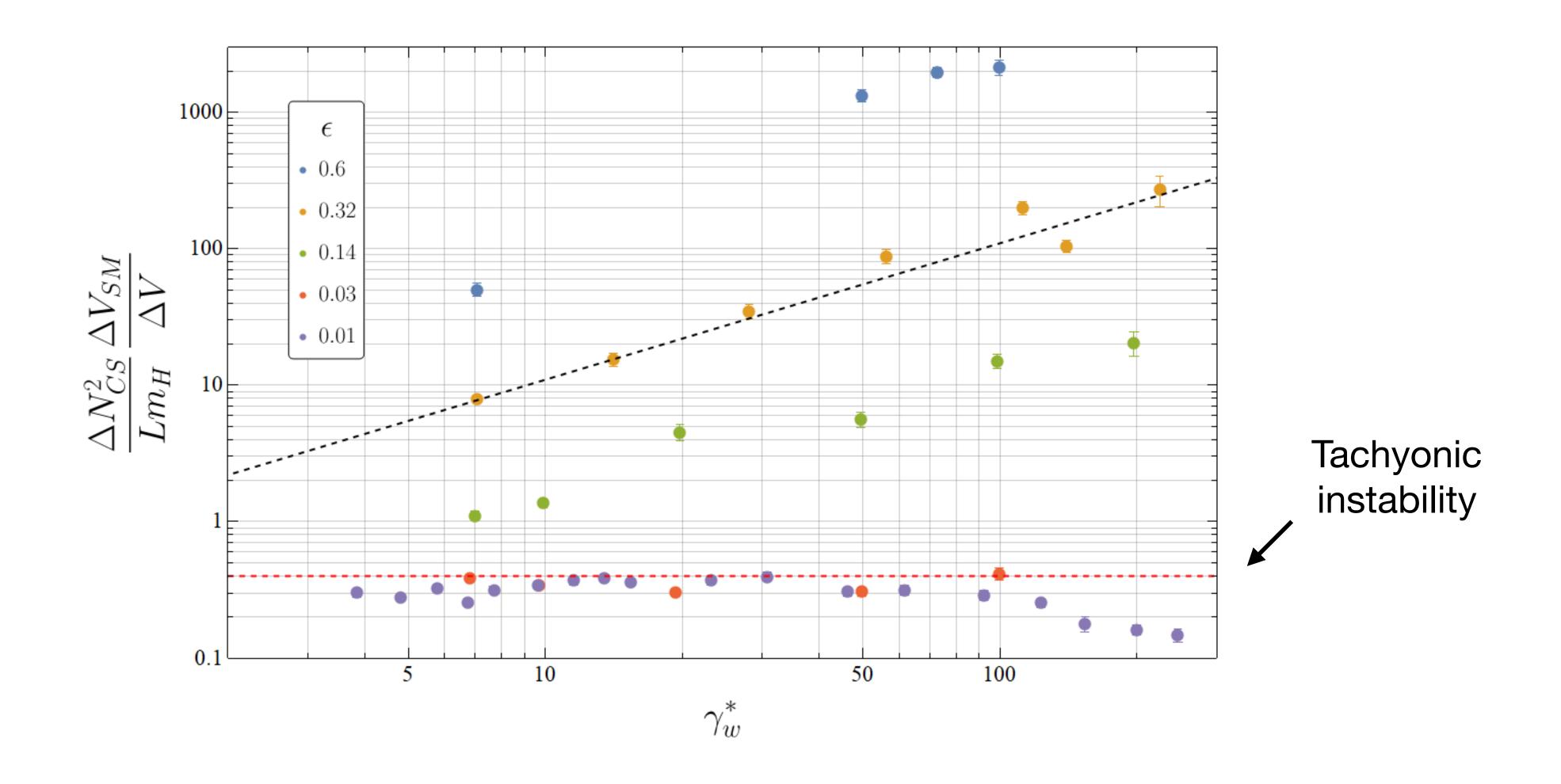
- Bubble collisions can lead to a sizable production of Chern-Simons number
- This provides an alternative realization of electroweak baryogenesis which does not rely on the existence of a thermal plasma (in the spirit of cold baryogenesis)
- A crucial role is played by the shape of the Higgs potential (controlled by ϵ)
- Implement exponential nucleation of bubbles
- Include CP violation and evaluate $\langle N_{\rm CS} \rangle \neq 0$ (directly related to B number)
- Include scalar and gauge fluctuations around the non-trivial bubble background
- Provide an explicit realization of this dynamics (e.g. Higgs + singlet)
- Consider bubble walls with terminal velocity and interaction with SM particles
- Extract the gravitational wave spectrum

Chern-Simons power spectra



Results 1+1

Chern-Simons variance:



Results 1+1

