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The SM
• It allows for non-trivial field configurations (which play a role in  violation)U(1)B

near the crest of the ridge between vacua as the wall arrives, and estimate the extent to

which their velocity in configuration space is modified by the operator O during the passage

of the wall. If the wall is thick, it turns out that the velocity of motion in configuration

space is not affected. The asymmetry arises because O affects the potential energy surface

in configuration space during the passage of the wall. If the wall is thin, as we assume in

this paper, there is no significant time during which the potential energy surface is affected,

but the configuration space velocities are affected asymmetrically. We show how to estimate

the quantities entering the final result in the thin wall limit correctly. Nevertheless, we

argue that difficulties of the kind encountered in Section III also apply to the method of

Section IV, rendering the estimate for the BAU more of an upper bound than an estimate.

Thus, it seems to us that neither approach can be pushed far enough to obtain a convincing

semi-analytical estimate of the BAU produced by local electroweak baryogenesis in the thin

wall limit, and a large scale numerical simulation is called for.

II. RELEVANT PROPERTIES OF THE STANDARD ELECTROWEAK THEORY

In this section we examine certain properties of the standard model which are important

for the arguments of Section III. Although our motivation is to set the stage for the next

section, we have also endeavoured to write this section in such a way that it is independent of

the rest of this paper. The relevant dynamics take place in the bosonic sector. We consider

fermion production in the background of the evolving Higgs and gauge fields. We do not

take into account the back-reaction of the fermions on the bosonic fields. Thus, we begin

by looking at the purely bosonic part of the standard model where, for simplicity, we ignore

the U(1) hypercharge gauge field.

L = →
1

2
Tr(FµνF

µν)→
1

2
Tr(DµΦ)†DµΦ→

λ

4

[

Tr(Φ†Φ)→ v2
]2

, (2.1)

where

Fµν = ∂µAν → ∂νAµ → ig[Aµ, Aν ]

DµΦ = (∂µ → igAµ)Φ (2.2)
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SU(2) only for simplicity

with Aµ = Aa
µτ

a/2 where τa are the three Pauli matrices. The standard Higgs doublet

ϕ = (ϕ1,ϕ2) is related to the matrix Φ by

Φ(x, t) =
(

ϕ→
2 ϕ1

→ϕ→
1 ϕ2

)

. (2.3)

Here v = 247GeV and g = 0.65. The gauge boson mass is mW = 1
2gv and the Higgs boson

mass is mH =
√
2λv.

Note that

Φ†Φ = (ϕ→
1ϕ1 + ϕ→

2ϕ2)
(

1 0
0 1

)

, (2.4)

so that we can write

Φ =
σ√
2
U , (2.5)

where σ2 = 2 (ϕ→
1ϕ1 + ϕ→

2ϕ2) = TrΦ†Φ, and U is an SU(2) valued field which is uniquely

defined at any spacetime point where σ does not vanish. Without loss of generality we

impose the condition that at all times

lim
|x|→∞

σ(x, t) = v , (2.6)

lim
|x|→∞

U(x, t) =
(

1 0
0 1

)

. (2.7)

In A0 = 0 gauge, a vacuum configuration is of the form

Φ =
v√
2
U

Aj =
1

ig
∂jUU † . (2.8)

At any time t when σ(x, t) #= 0 for all x we have that U(x, t) is a map from R3 with the

points at infinity identified, that is S3, into SU(2) and therefore U(x, t) can be associated

with an integer-valued winding

NH(t) = w[U ] =
1

24π2

∫

d3x ϕijkTr[U †∂iUU †∂jUU †∂kU ] , (2.9)
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Higgs doublet

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω

→ !B = !L = Nf !NCS. (12)

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω , !B = !L = Nf !NCS. (13)

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ϑCP

”2
ϖ†ϖNf

g2

32ε2
WµωW̃ µω . (14)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive !NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive !NCS

while making more di"cult the corresponding winding up that would lead to a negative !NCS, whereas
without CP violation the winding up for initial textures with NW ↑ NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB ↑ n
B̄

s
= nB

s
↓ 10→3

v2

”2
ϑCP, (15)

to be compared with the value inferred from cosmological observations, nB/s ↓ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (16)

#(x, t) = U(x, t)#0, #0 = v
↔

2
· 12↑2 (17)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϱ(x, t)
↔

2
· 12↑2, ϱ2 = Tr (#†#) (18)

#(x, t) = U(x, t)ϱ(x, t), ϱ2 = Tr (#†#) (19)

ϱ2 = v2 = const. ϱ2 = 0 (20)

# = v
↔

2
U, Aµ = 1

ig
U †ωµU (21)

Esph = mW

ςw

B(φ/g2), (22)
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The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
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while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. (15)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.
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In vacuum: U ∈ SU(2)



The SM
• Higgs winding number:

with Aµ = Aa
µτ

a/2 where τa are the three Pauli matrices. The standard Higgs doublet

ϕ = (ϕ1,ϕ2) is related to the matrix Φ by

Φ(x, t) =
(

ϕ→
2 ϕ1

→ϕ→
1 ϕ2

)

. (2.3)

Here v = 247GeV and g = 0.65. The gauge boson mass is mW = 1
2gv and the Higgs boson

mass is mH =
√
2λv.

Note that

Φ†Φ = (ϕ→
1ϕ1 + ϕ→

2ϕ2)
(

1 0
0 1

)

, (2.4)

so that we can write

Φ =
σ√
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U , (2.5)

where σ2 = 2 (ϕ→
1ϕ1 + ϕ→

2ϕ2) = TrΦ†Φ, and U is an SU(2) valued field which is uniquely

defined at any spacetime point where σ does not vanish. Without loss of generality we

impose the condition that at all times

lim
|x|→∞

σ(x, t) = v , (2.6)

lim
|x|→∞

U(x, t) =
(

1 0
0 1

)

. (2.7)

In A0 = 0 gauge, a vacuum configuration is of the form

Φ =
v√
2
U

Aj =
1

ig
∂jUU † . (2.8)

At any time t when σ(x, t) #= 0 for all x we have that U(x, t) is a map from R3 with the

points at infinity identified, that is S3, into SU(2) and therefore U(x, t) can be associated

with an integer-valued winding

NH(t) = w[U ] =
1

24π2

∫

d3x ϕijkTr[U †∂iUU †∂jUU †∂kU ] , (2.9)

7 defined iff U(x, t) σ ≠ 0  with  at NH(t) ∈ ℕ U → 12×2 r = ∞

• On the vacuum manifold                 the topological charge is conserved
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The SM
• Chern-Simons number:

the Higgs winding number. If Φ(x, t) evolves continuously in t then NH(t) can change only

at times when there is a zero of σ at some point in space. At such times, NH is not defined;

at all other times, it is integer-valued. Note that the Higgs winding number of a vacuum

configuration (2.8) is equal to its Chern-Simons number

NCS(t) =
g2

32π2

∫

d3x εijkTr
(

Ai∂jAk +
2

3
igAiAjAk

)

. (2.10)

For a general non-vacuum configuration the Chern-Simons number is not integer-valued.

A. Topologically Interesting Configurations

In this section we are interested in the dynamics of nonzero energy configurations with

nonzero Higgs winding. A simple example is

Φ(x) =
v→
2
U[1](x)

Aµ(x) = 0 , (2.11)

where U[1](x) is a winding number one map, say,

U[1](x) = exp (iη(r)τ · x̂) , (2.12)

with η(0) = −π and η(∞) = 0. The configuration (2.11) has no potential energy but does

carry gradient energy because the covariant derivatives DiΦ do not vanish. This configura-

tion has NH = 1. If the configuration (2.11) were released from rest it would radiate away

its energy and relax towards a vacuum configuration. There are two very different ways for

this to occur [6]. If the characteristic size of U[1] is large compared to m→1
W , then the gauge

field will evolve until it lines up with the Higgs field making the covariant derivatives zero,

and at late times NH will still be one. If the characteristic size is small the configuration

will shrink, the Higgs field σ will go through a zero, and at late times NH will be zero. This

dynamics is the subject of the next section.

Note that NH is not invariant under large gauge transformations. However, the change

in Higgs winding, ∆NH , is gauge invariant and the two distinct relaxation processes are

8

•  gauge invariant, related to non-conservation of  :ΔNCS = NCS(t) − NCS(0) U(1)B

 away from the vacuumNCS(t) ∉ ℕ

be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
→ SU(2). (6)

The orientation changes with space as dictated by ϑ(r). When one takes ϑ(0) = 0 and ϑ(↑) = ϖ one
obtains the winding number of the texture to be ↓1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϖ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↓
1

24ϖ2

∫
d3xeijk Tr

[
ϱi!†ϱj!ϱk!†!

]
, Nw = 1

ϖ
[ϑ(r = 0) ↓ ϑ(r = ↑)] . (7)

The size of the texture is given by the scale over which the function ϑ changes, e.g. one can take
ϑ(r) = ϖ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↓NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↓ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↔ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↗ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↓ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↓ NCS(0) ↘= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϖ
≃

2B
ε

g
= mW

ςw

B(φ/g3), (8)

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ϱµjµ

B
= ϱµjµ

L
= Nf

g2

W

32ϖ2
WµϑW̃ µϑ

⇐ ”B = ”L = Nf ”NCS. (9)

ϱµjµ

B
= ϱµjµ

L
= Nf

g2

W

32ϖ2
WµϑW̃ µϑ , ”B = ”L = Nf ”NCS. (10)
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The SM
•  is gauge invariant, in terms of Goldstone-Wilczek current:δN = NH(t) − NCS(t)

• In the vacuum,  and one trivially has DμΦ = 0 δN = 0

Example: pure gauge

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive ”NCS

while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. ϖ2 = 0 (15)

# = v
↓

2
U, Aµ = 1

ig
U †ϱµU (16)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.
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with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:
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= Nf

g2

W

32ε2
WµωW̃ µω

→ !B = !L = Nf !NCS. (12)
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L
= Nf

g2

W
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OCP = ϑCP

”2
ϖ†ϖNf

g2

32ε2
WµωW̃ µω . (14)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive !NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive !NCS

while making more di"cult the corresponding winding up that would lead to a negative !NCS, whereas
without CP violation the winding up for initial textures with NW ↑ NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB ↑ n
B̄

s
= nB

s
↓ 10→3

v2

”2
ϑCP, (15)

to be compared with the value inferred from cosmological observations, nB/s ↓ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (16)

#(x, t) = U(x, t)#0, #0 = v
↔

2
· 12↑2 (17)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϱ(x, t)
↔

2
· 12↑2, ϱ2 = Tr (#†#) (18)

ϱ2 = v2 = const. ϱ2 = 0 (19)

# = v
↔

2
U, Aµ = 1

ig
U †ωµU (20)

Esph = mW

ςw

B(φ/g2), (21)

ϑN = 1
24ε2

∫
d3x ↼ijk Tr

[
U †DiU U †DjU U †DkU + 3

2 ig U †FijDkU
]

(22)
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The SM
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configuration: 

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive ”NCS

while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. ϖ2 = 0 (15)

# = v
↓

2
U, Aµ = 1

ig
U †ϱµU (16)

Esph = mW

ςw

B(φ/g2), (17)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.
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Figure 1: In standard EW baryogenesis, baryon number violation occurs via high temperature
induced sphaleron transitions, along the “vacua” line NH = NCS . In contrast, in cold baryogen-
esis, sphaleron transitions are switched off and baryon number violation takes place in a two-step
process via the production and decay of textures (configurations having NH →= NCS). First, large
kinetic energy stored in the scalar sector induces Higgs winding transitions. Second, these winding
configurations can decay by changing Chern-Simons number, thus producing baryon number.

changing NH while ωN > 0 configurations have a slight preference to unwind by changing
NCS. The imbalance between a change in winding number and a change in Chern-Simons
can then generate a net baryon number under out of equilibrium conditions.

A common source of CP violation employed in this context is the higher dimensional
operator1

OCPV =
1

M2
φ†φF̃F, (9)

which acts as a chemical potential for Chern-Simons number and yields the required bias
towards baryon number generation. A major advantage of an operator of the form (9) is
that the observed baryon asymmetry can be explained without conflicting with constraints
from electric dipole moments.

Because of the non-perturbative nature of the phenomenon, it is difficult to derive re-
liable analytical estimates for the baryon asymmetry. However, a nice feature of cold EW
baryogenesis is that most of the process can be simulated on a computer lattice (from the
very early to the very late stages) [39, 34, 35, 22–24]. In particular, the behavior of winding
and Chern-Simons number can be explicitly observed [26].

A crucial ingredient for a successful baryogenesis mechanism is to prevent washout of
the baryon asymmetry which is possible if the tachyonic transition takes place in a cold
universe. This is generally achieved by engineering a low scale inflaton coupled to the Higgs.
Our goal in this paper is to show that there is another natural and well-motivated route for
implementing cold baryogenesis: a nearly conformal phase transition at the TeV scale.

To conclude this section, we point out that an earlier proposal for local EW baryogene-
sis (in which B and CP occur together in space and time) based on the decay of textures

1Operators obtained by integrating out the SM fermions [40–43] have also been advocated as efficient
CP violating sources for cold EW baryogenesis [44, 45]. However, the validity of the approach can been
questioned due to the role of hard modes in the generation of winding number (i.e. harder than the charm
or strange quark mass which is the inverse of the expansion parameter in [43]). Furthermore, the operators
of [43] could not be reproduced using different techniques [46, 47].
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Texture dynamics
• Collapse of a spherical texture with  and no gauge fields NH = 1 (g = 0)

be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
→ SU(2). (6)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
→ SU(2) (7)

The orientation changes with space as dictated by ϑ(r). When one takes ϑ(0) = 0 and ϑ(↑) = ϖ one
obtains the winding number of the texture to be ↓1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϖ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↓
1

24ϖ2

∫
d3xeijk Tr

[
ϱi!†ϱj!ϱk!†!

]
, Nw = 1

ϖ
[ϑ(r = 0) ↓ ϑ(r = ↑)] . (8)

The size of the texture is given by the scale over which the function ϑ changes, e.g. one can take
ϑ(r) = ϖ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↓NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↓ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↔ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↗ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↓ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↓ NCS(0) ↘= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϖ
≃

2B
ε

g
= mW

ςw

B(φ/g3), (9)

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ϱµjµ

B
= ϱµjµ

L
= Nf

g2

W

32ϖ2
WµϑW̃ µϑ

⇐ ”B = ”L = Nf ”NCS. (10)
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The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive ”NCS

while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. ϖ2 = 0 (15)

# = v
↓

2
U, Aµ = 1

ig
U †ϱµU (16)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.
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Field always within the vacuum manifold, but non-zero 
energy due to scalar field gradients:  ET ∼ c ⋅ 4πv2R

Initial conditions (t = 0)

      = 1

be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
→ SU(2). (6)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
→ SU(2) (7)

The orientation changes with space as dictated by ϑ(r). When one takes ϑ(0) = 0 and ϑ(↑) = ϖ one
obtains the winding number of the texture to be ↓1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϖ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↓
1

24ϖ2

∫
d3xeijk Tr

[
ϱi!†ϱj!ϱk!†!

]
, NH = 1

ϖ
[ϑ(r = 0) ↓ ϑ(r = ↑)] . (8)

The size of the texture is given by the scale over which the function ϑ changes, e.g. one can take
ϑ(r) = ϖ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↓NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↓ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↔ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↗ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↓ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↓ NCS(0) ↘= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϖ
≃

2B
ε

g
= mW

ςw

B(φ/g3), (9)

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ϱµjµ

B
= ϱµjµ

L
= Nf

g2

W

32ϖ2
WµϑW̃ µϑ

⇐ ”B = ”L = Nf ”NCS. (10)
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be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
→ SU(2). (6)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
→ SU(2) (7)

The orientation changes with space as dictated by ϑ(r). When one takes ϑ(0) = 0 and ϑ(↑) = ϖ one
obtains the winding number of the texture to be ↓1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϖ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↓
1

24ϖ2

∫
d3xeijk Tr

[
ϱi!†ϱj!ϱk!†!

]
, NH = 1

ϖ
[ϑ(r = 0) ↓ ϑ(r = ↑)] . (8)

For instance
ϑ(r) = ϖ

[
1 ↓ tan→1(r/R)

]
(9)

The size of the texture is given by the scale over which the function ϑ changes, e.g. one can take
ϑ(r) = ϖ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↓NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↓ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↔ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↗ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↓ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↓ NCS(0) ↘= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϖ
≃

2B
ε

g
= mW

ςw

B(φ/g3), (10)
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Texture dynamics

R

Initial conditions (t = 0)

General param. for subsequent evolution:

be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

!(r, t) =
(

µ(r, t) + xiωi

r
ϑ(r, t)

)
!0, µ2 + ϑ2

→= 1 (6)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
↑ SU(2). (7)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
↑ SU(2) (8)

The orientation changes with space as dictated by ϖ(r). When one takes ϖ(0) = 0 and ϖ(↓) = ϱ one
obtains the winding number of the texture to be ↔1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϱ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↔
1

24ϱ2

∫
d3xeijk Tr

[
ςi!†ςj!ςk!†!

]
, NH = 1

ϱ
[ϖ(r = 0) ↔ ϖ(r = ↓)] . (9)

For instance
ϖ(r) = ϱ

[
1 ↔ tan→1(r/R)

]
(10)

The size of the texture is given by the scale over which the function ϖ changes, e.g. one can take
ϖ(r) = ϱ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↔NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↔ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↗ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↘ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↔ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↔ NCS(0) →= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϱ
≃

2B
ε

g
= mW

φw

B(↼/g3), (11)
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• Collapse of a spherical texture with  and no gauge fields NH = 1 (g = 0)

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ωCP

!2
ε†εNf

g2

32ϑ2
WµωW̃ µω . (10)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive ”NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive ”NCS

while making more di"cult the corresponding winding up that would lead to a negative ”NCS, whereas
without CP violation the winding up for initial textures with NW → NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB → n
B̄

s
= nB

s
↑ 10→3

v2

!2
ωCP, (11)

to be compared with the value inferred from cosmological observations, nB/s ↑ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (12)

#(x, t) = U(x, t)#0, #0 = v
↓

2
· 12↑2 (13)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϖ(x, t)
↓

2
· 12↑2, ϖ2 = Tr (#†#) (14)

ϖ2 = v2 = const. ϖ2 = 0 (15)

# = v
↓

2
U, Aµ = 1

ig
U †ϱµU (16)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.
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be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
→ SU(2). (6)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
→ SU(2) (7)

The orientation changes with space as dictated by ϑ(r). When one takes ϑ(0) = 0 and ϑ(↑) = ϖ one
obtains the winding number of the texture to be ↓1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϖ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↓
1

24ϖ2

∫
d3xeijk Tr

[
ϱi!†ϱj!ϱk!†!

]
, Nw = 1

ϖ
[ϑ(r = 0) ↓ ϑ(r = ↑)] . (8)

The size of the texture is given by the scale over which the function ϑ changes, e.g. one can take
ϑ(r) = ϖ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↓NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↓ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↔ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↗ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↓ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↓ NCS(0) ↘= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϖ
≃

2B
ε

g
= mW

ςw

B(φ/g3), (9)

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ϱµjµ

B
= ϱµjµ

L
= Nf

g2

W

32ϖ2
WµϑW̃ µϑ

⇐ ”B = ”L = Nf ”NCS. (10)

26

Simone Blasi, “Cold baryogenesis revisited”

Field always within the vacuum manifold, but non-zero 
energy due to scalar field gradients:  ET ∼ c ⋅ 4πv2R
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be neglected as the corrections from the non–zero Weinberg angle are found to be perturbatively small):

h =
(

h0(r, t) + xiωi

r
hω(r, t)

)
ε0, (5)

!(r, t) =
(

µ(r, t) + xiωi

r
ϑ(r, t)

)
!0, µ2 + ϑ2

→= 1 (6)

where ε0 is a direction in the O(3) manifold constraining the four real Higgs components to be in the
vacuum, and can be taken to be ε0 = (0, v). The initial texture configuration lies in the vacuum manifold,
and one can actually write

h(x) = U(x)ε0, U(x) = e→iε(r)xiωi/r
↑ SU(2). (7)

!(x) = U(x)!0, U(x) = e→iε(r)xiωi/r
↑ SU(2) (8)

The orientation changes with space as dictated by ϖ(r). When one takes ϖ(0) = 0 and ϖ(↓) = ϱ one
obtains the winding number of the texture to be ↔1 (the opposite choice would give one). Indeed, one
can see that U(x) in this case belongs to a non–trivial element of the third homotopy group, ϱ3[SU(2)].
This can be seen by evaluating the winding as

Nw = ↔
1

24ϱ2

∫
d3xeijk Tr

[
ςi!†ςj!ςk!†!

]
, NH = 1

ϱ
[ϖ(r = 0) ↔ ϖ(r = ↓)] . (9)

For instance
ϖ(r) = ϱ

[
1 ↔ tan→1(r/R)

]
(10)

The size of the texture is given by the scale over which the function ϖ changes, e.g. one can take
ϖ(r) = ϱ tanh(r/L), with L the size of the texture. For any size L, a scalar texture is doomed to collapse
as it decreases its energy by shrinking. When its size approaches the scale set by the Higgs mass, the
texture is allowed to leave the vacuum manifold and simply unwind. The final field configuration will have
Nw = 0, with the energy of the texture decaying into Goldstone radiation and massive modes.

The situation is however di!erent in a gauge theory, as the gradients corresponding to the texture
configuration could be compensated by a suitable gauge field configuration such that the field covariant
derivative vanishes. In fact, one can show that the least energy configuration will possess Nw = NCS , with
the latter being the SU(2) Chern–Simons number (notice that in this case only the combination NW ↔NCS

is invariant under large gauge transformations).
The texture has an interesting behavior depending on the size: small textures collapse into Higgs waves

and imply a change only on the Higgs winding, which is zero in the end, while the Chern–Simons number
does not change compared to the initial configuration, NCS(t) ↔ NCS(0) = 0. In fact, when the texture
has a small size compared to the inverse mass of the gauge bosons, 1/L ↗ gv = mW , one e!ectively
recovers the limit of a pure scalar theory where the texture is indeed unstable to collapse. On the other
hand, for 1/L ↘ gv = mW the dynamics of the gauge field becomes important. Indeed, the gauge field
has enough time to grow during the texture collapse if the time scale of the collapse, given by L itself,
is larger than the mW mass. In this case the gauge field "winds up", namely the vacuum configuration
with NW ↔ NCS = 0 is attained with a change in time of the CS number, NCS(t) ↔ NCS(0) →= 0. One
can also see that a small texture cannot imply a change of the CS number as there is not enough energy
on the Higgs field to overcome the sphaleron barrier. The energy of the sphaleron, namely the static field
configuration of the SU(2)–Higgs theory that controls the size of the barrier for CS violating transitions, is
in fact

Esph = 4ϱ
≃

2B
ε

g
= mW

φw

B(↼/g3), (11)
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Texture dynamics
• Collapse of a spherical texture with  and gauge fields δN = 1 (g ≠ 0)

δN = 1
 


+ Higgs and massive 
gauge radiation

δN = 0

“Unwinding” : 
ΔNH = − 1, ΔNCS = 0

I : R < Rc

“Dressing” : 
ΔNH = 0, ΔNCS = − 1

II : R > Rc
Rc ∼ m−1

W

Gauge fields turn on and 
cancel Dμ = ∂μ − igAμ
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• Determination of the critical size (bifurcation scale) and impact of CP violation

Texture dynamics

48 4

�

N . Turok , J. Zadrozny / E l ec t roweak ba r yogenes i s

t ,1 t t 11n

�

S

�

1 t 1 i 11 t 1

�

1

�

1 1 1 s Ls1~

�

t

10 100

7

F i g . 6 . The b i f ur ca t i on sca l e L 13 d i scussed i n t he t ex t , p l o t t ed as a f unc t i on o f t he H i ggs qua r t i c
coup l i ng (g i ven i n un i t s o f g ' , t he squa r e o f t he gauge coup l i ng ) . The so l i d l i ne ma r ks t he d i v i s i on
be t ween co l l apse ( i . e . N i l chang i ng ) and bounce (N( . s chang i ng ) . F l app i ng t akes p l ace i n t he r eg i on

be t ween t he so l i d and dashed l i nes . Leng t hs a r e g i ven i n un i t s such t ha t g7 l = 1 .

bu t wen t back t o t he or i g i na l N , , = 0 . Th i s i s no t uncommon behav i our f or
evo l u t i ons w i t h sma l l H i ggs se l f - coup l i ngs ; i t i s no t ve r y cos t l y ene rge t i ca l l y t o c ross
t he po t en t i a l ba r r i e r (or t o come back ) . I n pr i nc i p l e , any numbe r o f " f l aps " may
occur be f or e t he H i ggs f i e l ds f i na l l y se t t l e i n t o a f i na l w i nd i ng s t a t e , t hough i n
pr ac t i ce we see t h i s behav i our on l y when nea r t he b i f ur ca t i on sca l e .

I n a l l cases , t he ene rgy dens i t y moves away f rom t he or i g i n i n a sphe r i ca l she l l
a f t e r co l l apse or bounce .

I n f i g . 6 we have t r aced t he b i f ur ca t i on l eng t h sca l e L B f or gene r a l A ( so l i d l i ne ) .
The e r ror ba r s i nd i ca t e a r eg i on o f unce r t a i n t y nea r b i f ur ca t i on . I n t h i s r eg i on ,
pa r a l l e l evo l u t i ons o f t he same i n i t i a l con f i gur a t i on i n t he t wo d i f f e r en t (H i ggs -
and gauge - wound ) gauges d i sagr eed . The r e a r e t wo i n t e r es t i ng l i m i t s appa r en t : as
A grows t o i n f i n i t y t he b i f ur ca t i on sca l e dec r eases , and approaches t he l i m i t
L B = 21g - q , t he NLSM va l ue . For sma l l A , L B approaches = 4 / g - g . Th i s be -
hav i our i s r easonab l e : a l a rge H i ggs se l f - coup l i ng shou l d make unw i nd i ng t he
H i ggs f i e l d mor e d i f f i cu l t . The r e l a t i ve i nsens i t i v i t y o f L B t o A i s r em i n i scen t o f t he
behav i our o f t he spha l e ron mass : L B i s rough l y g i ven by mV and depends on l y
weak l y on t he H i ggs mass . " F l app i ng " occur s i n t he r eg i on be t ween t he uppe r and
l owe r l i nes* .

*The gr aph o f L « vs . A g i ven i n our r ecen t l e t t e r ( I I cor r esponds t o t he uppe r l i ne i n f i g . 6 . We d i d
no t cons i de r " f l app i ng " t he r e .
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We evo l ved t he equa t i ons o f mo t i on (4 . 1) j us t as i n sec t . 3 , bu t t h i s t i me we
va r i ed t he s t r eng t h o f t he CP- v i o l a t i ng t e rm . We kep t t he H i ggs se l f coup l i ng
A = g 2 . F i g . 7 shows a p l o t o f t he b i f ur ca t i on sca l e L B(~) ve r sus ~. To t he l e f t o f
t he l i ne , t he SN = - 1 i n i t i a l con f i gur a t i on r e l axes t hrough 4NH = - 1 , bu t t o t he
r i gh t t hrough ANcs = + 1 . Aga i n , t he e r ror ba r s ma r k t he r eg i on nea r L B whe r e
t he gauge - and H i ggs - wound gauges we r e no t i n agr eemen t . I n any t heor y , t he

va l ue o f C i n t he bubb l e wa l l s i s f i xed : bu t t he CP- con j uga t e con f i gur a t i ons w i t h
SN = + 1 w i l l f ee l an e f f ec t o f a ~ t e rm o f exac t l y t he oppos i t e s i gn . Thus f or
con f i gur a t i ons o f s i ze nea r L B(0) , pos i t i ve SN con f i gur a t i ons " bounce " , so ANcs
= + 1 , wh i l e nega t i ve SN con f i gur a t i ons " co l l apse " so dNcs = 0. A ne t pos i t i ve
change i n Ncs r esu l t s . Cons i s t en t w i t h wha t we f i nd , i n t he t he rma l s i mu l a t i ons
pe r f ormed i n 1 + 1 d i mens i ons i n r e f . [191 i t was f ound t ha t t he ex t r a CP- v i o l a t i ng
t e rm produces a pos i t i ve dr i f t i n Ncs .

The l i ne i s approx i ma t e l y cons i s t en t w i t h t he r e l a t i on L B(~) = L B(0) (1 + C) , so
t he f r ac t i ona l change i n t he b i f ur ca t i on sca l e i s o f orde r C . For sma l l C , on l y
t ex t ur es whose l eng t h sca l es l i e be t ween (1 + ~ )L B and (1 - ~ )L B w i l l be d i s t i n -
gu i shed by t he CP- v i o l a t i ng t e rm . SN = - 1 r eg i ons w i l l r e l ax v i a t he gauge f i e l ds
chang i ng w i nd i ng sec t or s and produce Nf ba r yons whe r eas SN = + 1 r eg i ons w i l l
r e l ax t hrough t he H i ggs f i e l d unw i nd i ng , and w i l l no t make an t i ba r yons . Wha t
f r ac t i on o f w i nd i ng r eg i ons l i e w i t h i n a f r ac t i on C o f L B? One expec t s t he
probab i l i t y d i s t r i bu t i on f or t he e f f ec t i ve sca l e L o f a t ex t ur e t o be a f a i r l y f l a t
t he rma l f unc t i on w i t h suppor t a round t he cor r e l a t i on l eng t h a t t he t r ans i t i on ,
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F i g . 7 . A p l o t o f L a ve r sus ~ f or t he case A = g 2 . D i s t ances a r e g i ven i n un i t s o f (g q ) - 1 . The l i nea r i t y

makes i t eas i e r t o es t i ma t e t he f r ac t i on o f t ex t ur es wh i ch pa r t i c i pa t e i n ba r yogenes i s .
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Figure 1: In standard EW baryogenesis, baryon number violation occurs via high temperature
induced sphaleron transitions, along the “vacua” line NH = NCS . In contrast, in cold baryogen-
esis, sphaleron transitions are switched off and baryon number violation takes place in a two-step
process via the production and decay of textures (configurations having NH →= NCS). First, large
kinetic energy stored in the scalar sector induces Higgs winding transitions. Second, these winding
configurations can decay by changing Chern-Simons number, thus producing baryon number.

changing NH while ωN > 0 configurations have a slight preference to unwind by changing
NCS. The imbalance between a change in winding number and a change in Chern-Simons
can then generate a net baryon number under out of equilibrium conditions.

A common source of CP violation employed in this context is the higher dimensional
operator1

OCPV =
1

M2
φ†φF̃F, (9)

which acts as a chemical potential for Chern-Simons number and yields the required bias
towards baryon number generation. A major advantage of an operator of the form (9) is
that the observed baryon asymmetry can be explained without conflicting with constraints
from electric dipole moments.

Because of the non-perturbative nature of the phenomenon, it is difficult to derive re-
liable analytical estimates for the baryon asymmetry. However, a nice feature of cold EW
baryogenesis is that most of the process can be simulated on a computer lattice (from the
very early to the very late stages) [39, 34, 35, 22–24]. In particular, the behavior of winding
and Chern-Simons number can be explicitly observed [26].

A crucial ingredient for a successful baryogenesis mechanism is to prevent washout of
the baryon asymmetry which is possible if the tachyonic transition takes place in a cold
universe. This is generally achieved by engineering a low scale inflaton coupled to the Higgs.
Our goal in this paper is to show that there is another natural and well-motivated route for
implementing cold baryogenesis: a nearly conformal phase transition at the TeV scale.

To conclude this section, we point out that an earlier proposal for local EW baryogene-
sis (in which B and CP occur together in space and time) based on the decay of textures

1Operators obtained by integrating out the SM fermions [40–43] have also been advocated as efficient
CP violating sources for cold EW baryogenesis [44, 45]. However, the validity of the approach can been
questioned due to the role of hard modes in the generation of winding number (i.e. harder than the charm
or strange quark mass which is the inverse of the expansion parameter in [43]). Furthermore, the operators
of [43] could not be reproduced using different techniques [46, 47].
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Figure 1: In standard EW baryogenesis, baryon number violation occurs via high temperature
induced sphaleron transitions, along the “vacua” line NH = NCS . In contrast, in cold baryogen-
esis, sphaleron transitions are switched off and baryon number violation takes place in a two-step
process via the production and decay of textures (configurations having NH →= NCS). First, large
kinetic energy stored in the scalar sector induces Higgs winding transitions. Second, these winding
configurations can decay by changing Chern-Simons number, thus producing baryon number.

changing NH while ωN > 0 configurations have a slight preference to unwind by changing
NCS. The imbalance between a change in winding number and a change in Chern-Simons
can then generate a net baryon number under out of equilibrium conditions.

A common source of CP violation employed in this context is the higher dimensional
operator1

OCPV =
1

M2
φ†φF̃F, (9)

which acts as a chemical potential for Chern-Simons number and yields the required bias
towards baryon number generation. A major advantage of an operator of the form (9) is
that the observed baryon asymmetry can be explained without conflicting with constraints
from electric dipole moments.

Because of the non-perturbative nature of the phenomenon, it is difficult to derive re-
liable analytical estimates for the baryon asymmetry. However, a nice feature of cold EW
baryogenesis is that most of the process can be simulated on a computer lattice (from the
very early to the very late stages) [39, 34, 35, 22–24]. In particular, the behavior of winding
and Chern-Simons number can be explicitly observed [26].

A crucial ingredient for a successful baryogenesis mechanism is to prevent washout of
the baryon asymmetry which is possible if the tachyonic transition takes place in a cold
universe. This is generally achieved by engineering a low scale inflaton coupled to the Higgs.
Our goal in this paper is to show that there is another natural and well-motivated route for
implementing cold baryogenesis: a nearly conformal phase transition at the TeV scale.

To conclude this section, we point out that an earlier proposal for local EW baryogene-
sis (in which B and CP occur together in space and time) based on the decay of textures

1Operators obtained by integrating out the SM fermions [40–43] have also been advocated as efficient
CP violating sources for cold EW baryogenesis [44, 45]. However, the validity of the approach can been
questioned due to the role of hard modes in the generation of winding number (i.e. harder than the charm
or strange quark mass which is the inverse of the expansion parameter in [43]). Furthermore, the operators
of [43] could not be reproduced using different techniques [46, 47].
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Figure 1: In standard EW baryogenesis, baryon number violation occurs via high temperature
induced sphaleron transitions, along the “vacua” line NH = NCS . In contrast, in cold baryogen-
esis, sphaleron transitions are switched off and baryon number violation takes place in a two-step
process via the production and decay of textures (configurations having NH →= NCS). First, large
kinetic energy stored in the scalar sector induces Higgs winding transitions. Second, these winding
configurations can decay by changing Chern-Simons number, thus producing baryon number.

changing NH while ωN > 0 configurations have a slight preference to unwind by changing
NCS. The imbalance between a change in winding number and a change in Chern-Simons
can then generate a net baryon number under out of equilibrium conditions.

A common source of CP violation employed in this context is the higher dimensional
operator1

OCPV =
1

M2
φ†φF̃F, (9)

which acts as a chemical potential for Chern-Simons number and yields the required bias
towards baryon number generation. A major advantage of an operator of the form (9) is
that the observed baryon asymmetry can be explained without conflicting with constraints
from electric dipole moments.

Because of the non-perturbative nature of the phenomenon, it is difficult to derive re-
liable analytical estimates for the baryon asymmetry. However, a nice feature of cold EW
baryogenesis is that most of the process can be simulated on a computer lattice (from the
very early to the very late stages) [39, 34, 35, 22–24]. In particular, the behavior of winding
and Chern-Simons number can be explicitly observed [26].

A crucial ingredient for a successful baryogenesis mechanism is to prevent washout of
the baryon asymmetry which is possible if the tachyonic transition takes place in a cold
universe. This is generally achieved by engineering a low scale inflaton coupled to the Higgs.
Our goal in this paper is to show that there is another natural and well-motivated route for
implementing cold baryogenesis: a nearly conformal phase transition at the TeV scale.

To conclude this section, we point out that an earlier proposal for local EW baryogene-
sis (in which B and CP occur together in space and time) based on the decay of textures

1Operators obtained by integrating out the SM fermions [40–43] have also been advocated as efficient
CP violating sources for cold EW baryogenesis [44, 45]. However, the validity of the approach can been
questioned due to the role of hard modes in the generation of winding number (i.e. harder than the charm
or strange quark mass which is the inverse of the expansion parameter in [43]). Furthermore, the operators
of [43] could not be reproduced using different techniques [46, 47].
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Tachyonic instability
• Higgs mass changes from positive (stable minimum) 

to negative (spinodal instability)

• IR modes experience exponential growth 
until back reaction: inhomogeneous field 

with B = O(1). In summary, CS number may be violated in the collapse of large textures, and this may
translates to baryon number violation via the ABJ anomaly in the SM:

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω

→ !B = !L = Nf !NCS. (12)

ωµjµ

B
= ωµjµ

L
= Nf

g2

W

32ε2
WµωW̃ µω , !B = !L = Nf !NCS. (13)

The actual baryon produced this way however depends on the precise nature of the CP–violating
interaction. As this needs to be communicated to the scalar/gauge sector, one typically considers dim–6
operators to the gauge bosons, like

OCP = ϑCP

”2
ϖ†ϖNf

g2

32ε2
WµωW̃ µω . (14)

The e!ect of this CP–violating terms is to slightly favor the production of a, say, positive !NCS in the
texture collapse. As this term is anyways supposed to be small compared to the other interactions coming
into play in the texture collapse, it becomes crucial for textures that are the edge of the winding/un–winding
behavior, as for those this small contribution can actually help the winding up leading to a positive !NCS

while making more di"cult the corresponding winding up that would lead to a negative !NCS, whereas
without CP violation the winding up for initial textures with NW ↑ NCS = ±1 would be equal.

Taking everything into account the final baryon asymmetry normalized to the entropy density is evalu-
ated as

nB ↑ n
B̄

s
= nB

s
↓ 10→3

v2

”2
ϑCP, (15)

to be compared with the value inferred from cosmological observations, nB/s ↓ 10→10 obtained from CMB
and BBN. We have used that there are no anti–baryons today.

Interesting future work involves the detailed of this dynamics during a first order EW PT that takes
place at very low temperatures. In this case, the collision of bubbles of broken EW symmetry where the
Higgs field will point in di!erent directions in the SU(2) manifold (as expected from the case of bubble
nucleating independently) will in general induce the formation of electroweak textures, whose dynamics can
lead to Chern–Simons transitions. The reheating following such supercooled phase transition reproduces
the qualitative features originally discussed in models of hybrid inflation. This process can be studied
quantitatively by performing field theory simulations of bubble nucleation, with the goal of determining
for the first time this unavoidable source of baryon asymmetry from bubble collisions, taking into account
di!erent potential shapes for the Higgs potential and the di!erent dynamics of the walls at collision.

Some equations:
Tr (#†#) = v2 (16)

#(x, t) = U(x, t)#0, #0 = v
↔

2
· 12↑2 (17)

#(x, t) = U(x, t)#0(x, t), #0(x, t) = ϱ(x, t)
↔

2
· 12↑2, ϱ2 = Tr (#†#) (18)

ϱ2 = v2 = const. ϱ2 = 0 (19)

# = v
↔

2
U, Aµ = 1

ig
U †ωµU (20)

Esph = mW

ςw

B(φ/g2), (21)

ϑN = 1
24ε2

∫
d3x ↼ijk Tr

[
U †DiU U †DjU U †DkU + 3

2 ig U †FijDkU
]

(22)

µ2

e!(t) = ↑µ2 + ↽ ϱ2(t) (23)
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inflaton during inflation. On the other hand, while the field slow rolls along its flat inflationary valley, it will
at some point reach a critical value where the Higgs mass turns negative, opening a new unstable direction
along the Higgs field.

This mechanism for baryogenesis mechanism crucially relies on the fact that the Universe is "cold" after
reheating, namely the scale of inflation is so low that the reheating temperature never exceeds → 170 GeV,
so that the EW symmetry is never restored in the early Universe. As we shall see, this is important to avoid
sphalerons to ever be in thermal equilibrium.

On the other hand, one still needs a certain rate for baryon number violation to reproduce to BAU.
This can be achieved very elegantly within the dynamics related to the Higgs spinodal instability around
the symmetric phase with ↑h†h↓ = 0. Indeed, on top of the homogenous (zero mode) Higgs field, the
quantum fluctuations of the IR modes with momentum lower than approximately the curvature of the
Higgs potential around the maximum will undergo exponential growth due to the tachyonic instability. The
e!ect of the additional inflaton field can be captured via a time–dependent Higgs mass. For the dynamics
around the onset of the tachyonic instability, the condensate of the Higgs is small and self–interaction may
be neglected. In addition, the inflationary Hubble is small in low–scale models H → 10→5 eV as typical
values, and the dynamics of the reheating takes place in a much shorter time scale so that the dynamics
can be approximated to take place in Minkowksi. The equations of motion in this Gaussian (free–field)
approximation are simply given by

ω2

t ε ↔ ↗
2ε + µ2

e!(t)ε = 0. (3)

Assuming for simplicity that the e!ective mass term for the Higgs field ε flips sign instantaneously at some
initial time t = 0, namely µ2

e!
(t) = +µ2 for t < 0 and ↔µ2 for t > 0, the occupation of number of the

modes with |k| < µ can be seen to grow exponentially, yielding:

↑0|εkε†
k
|0↓ = 1

2ϑk

(
nk + 1

2

)
, nk ↘ e2

≃
µ2→|k|2t, ϑk ↘

√
µ2 ↔ |k|2. (4)

This growth of these modes will be eventually cut–o! once the back-reaction from the Higgs condensate
itself becomes important, namely when ↑ε2

↓ → v2 so that Higgs–self interactions can no longer be neglected.
The time of backreaction can be estimated by evaluating the contribution of the unstable modes to ↑ε2(x)↓,
and check when the inequality 3ϖ↑ε2

↓ ⇐ µ2 is no longer satisfied (with ϖ the quartic interaction).
The out–of–equilibirum dynamics of preheating driven by tachyonic, or spinodal, instability allows

nonetheless for a fascinating intermediate stage where these IR modes with large occupation numbers
reach a local thermal equilibrium, while the more UV modes of the Higgs field are instead not excited yet.
As this temperature is distributed only in a narrow range of momenta, it can be much higher than the
reheating temperature of the SM bath after complete thermalization. By comparing the scalar occupation
numbers for the IR spectrum with those expected by a Bose–Einstein distribution, nk ⇒ Te!/ϑk ⇑ 1, one
finds typical values for Te! that are parametrically larger than the final reheating temperature by a factor
of O(few). Crucially, this allows the IR modes to reach temperatures above the sphaleron freeze out, and
given the exponential sensitivity of the sphaleron rate, allow for large enough baryon number violation in
this phase of preheating.

The actual dynamics of baryon number violation is a fascinating example of the purely SM dynamics
related to its non–trivial topology. In fact the SU(2)L ⇓ U(1) theory allows for topological configuration,
called gauged textures, which display a beatiful interplay between the Higgs winding number around its
vacuum manifold (non singular soliton), and the Chern–Simons number of the EW group. The basic
texture configuration in the SM is a configuration where the Higgs field never leaves the vacuum manifold,
namely h†h = v2, but the profile makes a winding in the SU(2) space (for this analysis, the U(1)Y may

25



Tachyonic instability
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FIG. 4. The time evolution of the inflaton energy, the
Higgs energy and the total energy. Note that the energy is
measured in units of v and time in units of v−1, see Ref. [25].

determined from µk as nk ! 1
2
exp(2µkmt). This means

that, within a few oscillations, the Higgs field reaches a
huge occupation number over a range of narrow bands
in momentum space. Therefore, the Higgs fluctuations
grow exponentially with time,

〈ω2〉 =
1

2π2

∫

dk k2
nk

ωk
!

nφ(t)

gΣ
∝ e2µmt , (8)

with µ = µeff ! 0.8. At backreaction, the Higgs ex-
pectation value is just of order its vacuum expectation
value (VEV), 〈ω2〉 <∼ m2/g2 ! v2, but continues to grow
slightly during rescattering [21,22]. With our set of pa-
rameters, this happens at times t ∼ O(1) GeV−1.
In Section IV of this paper we follow a numerical ap-

proach in (1+1) dimensions and computed the initial
state from parametric resonance and subsequent stages
like rescattering and backreaction directly through the
real time evolution of the classical equations of motion for
the bosonic modes with arbitrary k, with all the couplings
between fields properly taken into account. This way, we
have automatically included rescattering and thermaliza-
tion in the evolution.

B. Higgs coupling to W bosons

Soon after production, Higgs particles decay predom-
inantly into W bosons with a branching ratio of order
one, for m

H
= 350 GeV, and a decay rate Γ ∼ 20 GeV.

One may ask whether the Higgs oscillations may induce
a resonant production of gauge bosons. It turns out that
the corresponding resonance is very narrow and insuf-
ficient (q

W
m

H
= g2

W
Φ2/4m

H
! 0.3GeV & Γ, where

g2
W

= 4πα
W

is the SU(2) gauge coupling and Φ ! v/10
is the amplitude of the Higgs oscillations during the first
resonance stage, see Fig. 9) for the coherent decay of the
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FIG. 5. The time evolution of the effective temperature,
in units of v. We have averaged the Higgs power spectrum
over different low-momentum regions, and we obtain several
effective temperatures that show different time behavior.

Higgs into gauge bosons. It is therefore appropriate to
use perturbation theory to calculate the Higgs decay into
the W bosons.
Since the rate of growth of the energy density of the

Higgs field,

ρφ =
1

2π2

∫

dk k2nkωk ! nφ(t)hΣ ∝ e2µmt , (9)

is larger than its decay rate into W bosons, i.e. 2µm !
2Γ ∼ 40 GeV, we do not expect a significant depletion of
the energy density of the Higgs field during preheating,
while the energy density of the gauge bosons grows expo-
nentially at the same rate, ρ

W
∝ exp(2µmt). Therefore,

soon after rescattering, most of the energy density is in
the form of Higgs and gauge fields with essentially zero
momentum. It is these long-wavelength gauge configu-
rations that will play an important role in inducing the
sphaleron transitions, and the subsequent baryon pro-
duction.
One of the most fascinating properties of rescatter-

ing after preheating is that the long-wavelength part of
the spectrum soon reaches some kind of local equilib-
rium [21,22], while the energy density is drained, through
rescattering and excitations, into the higher frequency
modes. Therefore, initially the low energy modes reach
“thermalization” at a higher effective “temperature” [5],
while the high energy modes remain unpopulated, and
the system is still far from true thermal equilibrium:

nk =
1

exp(ωk/T )≃ 1
≈

Teff

ωk
) 1 . (10)

It is possible to estimate the effective “temperature” Teff

from the conservation of energy during preheating. The
energy per (long wavelength) mode is nk ωk ≈ Teff , or
effectively equipartitioned. Since only the modes in the

5

• Higgs IR modes reach local thermal 
equilibrium at high temperature:

• Full thermalization takes much longer: 
out of equilibrium dynamics
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FIG. 2. The growth parameter µk as a function of mo-
menta k, in units of m, for a Higgs mass m

H
= 350 GeV. The

occupation numbers for each mode k can be obtained from
nk = exp(2µkmt)/2.

cay rate of the inflaton, and particles did not interact
with each other until the rate of expansion dropped be-
low the decay rate. In our case, the opposite is true: the
rate of expansion H ∼ 10−5 eV is much smaller than
the typical gauge field decay rate into fermions, and the
universe thermalizes quickly. Since the masses are much
greater than the rate of expansion, many oscillations (of
order 1015) occur in one Hubble time [20]. It is, there-
fore, possible to approximate the particle production by
that in a flat Minkowski space-time [23].
The evolution equation for the Fourier component of

the Higgs field that is subject to parametric resonance is
approximately given by

ω̈k + [k2 −M2 + 3λ〈ω2〉+ g2σ2(t)]ωk = 0 . (5)

Note that this equation applies only in the case λ % g2,
where we have ignored the non-linear effect of the inflaton
field σ, and in particular the cross-terms g2ωkσk, which
do not contribute significantly before backreaction [20].
We will only use this equation for qualitative arguments,
since our quantitative results will be fully non-linear and
non-perturbative, based on numerical simulations, see
Section IV. As the inflaton oscillates around σ = 0 with
amplitude Σ = σc = M/g in the effective potential of
Fig. 1, its coupling to the Higgs will induce the paramet-
ric resonance with a q parameter [24], characterizing the
strength of the resonance, and given by

q &
g2Σ2

4m2
=

λ

4g2
% 1 . (6)

Since we can neglect the rate of expansion, the ampli-
tude of oscillations Σ does not decrease, and the reso-
nance is extremely long-lived. For generic values of the
couplings, g2 ∼ 10−2 − 10−3, it is, in fact, a broad res-
onance, q % 1. Higgs particle production occurs at the
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FIG. 3. The evolution of the Higgs spectrum nk ωk, in
units of v = 246 GeV, from time 0 to 104 v−1, as a function of
momentum, k/m. The initial spectrum is set by preheating,
and contains a set of narrow bands (solid line). The subse-
quent evolution of the system leads to a redistribution of en-
ergy between different modes. Note how rapidly a “thermal”
equidistribution is reached for the long-wavelength modes.
However, the whole Higgs spectrum approaches thermaliza-
tion already in the middle of resonance (see Fig. 4 below).

instants when σ(t) = 0, and continues until backreac-
tion becomes important, either for the inflaton oscilla-
tions (〈ω2〉 & m2/g2) [21,22,4] or for the effective Higgs
mass (3λ〈ω2〉 & M2 − k2∗ + 4m2≃q) [4]. Which of the
two effects back-reacts first depends on the coupling g.
Here k∗ =

≃
2mq1/4 is the typical momentum of the res-

onance band. For g > 0.08 backreaction on the inflaton
mass occurs before the λ-term in (5) is relevant. We have
chosen g = 0.1 for definiteness, and computed the power
spectrum of the Higgs field. For a smaller coupling g, the
resonance spectrum would be different, but the qualita-
tive behavior would be similar. In fact, it does not matter
how many bands the parametric resonance populates be-
cause after rescattering all those bands smooth out and
reach “thermalization” over a finite region in momentum
space [21,22]. In Fig. 2 we show the growth parameter µk

as a function of k. The typical momentum contributing
to the power spectrum, k2|ωk|2, is

k ∼ k∗/2 = mq1/4/
≃
2 ≈ 2m, (7)

where the growth factor has a large value, µmax & 0.9.
This unusually large number is due to the fact that what
drives the Higgs production in this model is not the usual
parametric resonance from oscillations around the min-
imum of the potential [20], but the spinodal instability
responsible for the breaking of the electroweak symme-
try. In the language of Mathieu equations [24], this cor-
responds to a large and negative A = (k2 − M2)/4m2

parameter, which induces large growth factors µ. On the
other hand, the occupation number of a given mode is

4

µ2

e!(t) = →µ2 + ω ε2(t) (23)

nkϑk (24)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

• The dynamics of this tachyonic or spinodal transition: can just be described in the Gaussian limit
with an instantaneous quenching, namely flipping the sign of the Higgs field all of a sudden. There
is the growth of occupation number starting from vacuum initial conditions for modes with |k| < µ,
one finds nk ↑ exp(2

√
µ2 → |k|2t), ofc until back–reaction becomes e!ective and the ↓ϖ2

↔ can no
longer be neglected (one estimate is to look at µ2 vs 3ϱ↓ϖ2

↔, the latter induced by the tachyonic
growth.

• One way to see what happens is that these modes thermalize among themselves at some temperature
which is higher than the final reheating temperature achieved at full thermalization. So from nk =
1/(eωk/Te! → 1) ↗ Te!/ϑk one in the ends obtains Te!/Trh ↗ 5, which is crucial because can be
above sphaleron freeze out (important because at intermediate temperature the rate is exponentially
suppressed.

• Detailed studies of this dynamics have shown how Chern–Simons transition are dominantly induced
by localized objects related to the EW textures in the SM, which are topological defects associated to
the non trivial third homotopy group of ς3[SU(2)xU(1)/U(1)] (for practical purposes one can study
the SU(2) dynamics with the Weinberg angle set to zero, as this introduces only small corrections).

• Initial configuration is given by h = U(x)(0, v), with U ↘ SU(2), and then you let evolve, U =
e→iε(r)xiϑi/r with φ(≃) = 0 and φ(0) = ς. One can check that this has winding number equal
to one. Discuss what happens for large/small textures, also in relation at the sphaleron energy,
Esph ↗ mW /↼W B(ϱ2/g2) and the initial energy configuration of the texture, E ↗ 4ς↽2L where L

is where the φ changes appreciably. In the end one obtains mW L ⇐ 1 for the texture to wind up
the gauge field.

• Clearly the CS violation is related to the baryon number via the ABJ anomaly in the SM: !B =
Nf !NCS, or in terms of currents ⇀µjµ

B
= Nf

g
2

32ϖ2 WW̃ .

• We need some CP violation, this will bias the dynamics of textures close the boundary mW L ↗ 1 to
preferably wind up the gauge field if say NW = 1, and at the same time slightly disfavor those for
which NW = →1, while in the absence of CP violation these processes would have the same outcome.
This sources a net asymmetry.
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µ2

e!(t) = →µ2 + ω ε2(t) (23)

nkϑk k/m (24)
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• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

• The dynamics of this tachyonic or spinodal transition: can just be described in the Gaussian limit
with an instantaneous quenching, namely flipping the sign of the Higgs field all of a sudden. There
is the growth of occupation number starting from vacuum initial conditions for modes with |k| < µ,
one finds nk ↑ exp(2

√
µ2 → |k|2t), ofc until back–reaction becomes e!ective and the ↓ϖ2

↔ can no
longer be neglected (one estimate is to look at µ2 vs 3ϱ↓ϖ2

↔, the latter induced by the tachyonic
growth.

• One way to see what happens is that these modes thermalize among themselves at some temperature
which is higher than the final reheating temperature achieved at full thermalization. So from nk =
1/(eωk/Te! → 1) ↗ Te!/ϑk one in the ends obtains Te!/Trh ↗ 5, which is crucial because can be
above sphaleron freeze out (important because at intermediate temperature the rate is exponentially
suppressed.

• Detailed studies of this dynamics have shown how Chern–Simons transition are dominantly induced
by localized objects related to the EW textures in the SM, which are topological defects associated to
the non trivial third homotopy group of ς3[SU(2)xU(1)/U(1)] (for practical purposes one can study
the SU(2) dynamics with the Weinberg angle set to zero, as this introduces only small corrections).

• Initial configuration is given by h = U(x)(0, v), with U ↘ SU(2), and then you let evolve, U =
e→iε(r)xiϑi/r with φ(≃) = 0 and φ(0) = ς. One can check that this has winding number equal
to one. Discuss what happens for large/small textures, also in relation at the sphaleron energy,
Esph ↗ mW /↼W B(ϱ2/g2) and the initial energy configuration of the texture, E ↗ 4ς↽2L where L

is where the φ changes appreciably. In the end one obtains mW L ⇐ 1 for the texture to wind up
the gauge field.

• Clearly the CS violation is related to the baryon number via the ABJ anomaly in the SM: !B =
Nf !NCS, or in terms of currents ⇀µjµ

B
= Nf

g
2

32ϖ2 WW̃ .

• We need some CP violation, this will bias the dynamics of textures close the boundary mW L ↗ 1 to
preferably wind up the gauge field if say NW = 1, and at the same time slightly disfavor those for
which NW = →1, while in the absence of CP violation these processes would have the same outcome.
This sources a net asymmetry.
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Tachyonic instability
• Formation of Higgs and CS windings 

depending on the “quench speed”

Figure 12: The winding number density at time mHt = 1 of the same run as used before. The
blob that we consider in this section is indicated by the arrow.

 25  30  35  40  45  50  5  10 15 20 25 30

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

ρ2/v2

x
z  25  30  35  40  45  50  5  10 15 20 25 30

-0.002 0
 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

nw

x
z

Figure 13: Left the Higgs length (vertical) at time mHt = 2 is plotted at the position of the blob,
as function of the x and z coordinates (a vertical slice). Right the winding number density at time
mHt = 2 is plotted for the same slice through the blob.
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CHAPTER 5. QUENCHED ELECTROWEAK PHASE TRANSITION

Figure 5.4: Plot of both the Higgs winding NW and Chern Simons number NCS plotted
against time in units of mHt.

What can be understood so far is that the system produces a change in the
Chern-Simons number !NCS between time t=0 to t=end of simulation. This is
then related to a change in Baryon number !B as in equation 3.10. We thus have
a rate of baryon number violation that can be extracted from this model. We will
look at this more closely in a later section.

5.1.1 Winding numbers and Winding blobs

Figure 5.5: 3D snapshots of the Higgs winding number density nW as density plots,
zoomed in at the location of a blob at times t = 11.5, 12, 12.5 mHt in the simulation
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µ2

e!(t) = →µ2 + ω ε2(t) (23)

nkϑk k/m vq = 1
m3

h

d

dt
µ2

e!(t)
∣∣∣∣
t=tQ

(
vSM

q ↑
TEW

MPl

)
(24)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

• The dynamics of this tachyonic or spinodal transition: can just be described in the Gaussian limit
with an instantaneous quenching, namely flipping the sign of the Higgs field all of a sudden. There
is the growth of occupation number starting from vacuum initial conditions for modes with |k| < µ,
one finds nk ↓ exp(2

√
µ2 → |k|2t), ofc until back–reaction becomes e!ective and the ↔ϖ2

↗ can no
longer be neglected (one estimate is to look at µ2 vs 3ϱ↔ϖ2

↗, the latter induced by the tachyonic
growth.

• One way to see what happens is that these modes thermalize among themselves at some temperature
which is higher than the final reheating temperature achieved at full thermalization. So from nk =
1/(eωk/Te! → 1) ↑ Te!/ϑk one in the ends obtains Te!/Trh ↑ 5, which is crucial because can be
above sphaleron freeze out (important because at intermediate temperature the rate is exponentially
suppressed.

• Detailed studies of this dynamics have shown how Chern–Simons transition are dominantly induced
by localized objects related to the EW textures in the SM, which are topological defects associated to
the non trivial third homotopy group of ς3[SU(2)xU(1)/U(1)] (for practical purposes one can study
the SU(2) dynamics with the Weinberg angle set to zero, as this introduces only small corrections).

• Initial configuration is given by h = U(x)(0, v), with U ↘ SU(2), and then you let evolve, U =
e→iε(r)xiϑi/r with φ(≃) = 0 and φ(0) = ς. One can check that this has winding number equal
to one. Discuss what happens for large/small textures, also in relation at the sphaleron energy,
Esph ↑ mW /↼W B(ϱ2/g2) and the initial energy configuration of the texture, E ↑ 4ς↽2L where L

is where the φ changes appreciably. In the end one obtains mW L ⇐ 1 for the texture to wind up
the gauge field.

• Clearly the CS violation is related to the baryon number via the ABJ anomaly in the SM: !B =
Nf !NCS, or in terms of currents ⇀µjµ

B
= Nf

g
2

32ϖ2 WW̃ .

• We need some CP violation, this will bias the dynamics of textures close the boundary mW L ↑ 1 to
preferably wind up the gauge field if say NW = 1, and at the same time slightly disfavor those for
which NW = →1, while in the absence of CP violation these processes would have the same outcome.
This sources a net asymmetry.
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Tachyonic instability
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Figure 12: Histogram of ω2(x) over the lattice for mH =
→
2mW . Colours correspond to quench

times mHtQ = 0 (black), 9 (red), 18 (green) and 36 (blue). The four graphs correspond to the first
four minima of the Higgs oscillation in each case.
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Figure 13: The final distribution of winding number for various tQ. mH = 2mW .

Kibble mechanism [27]. In the present case of O(4) symmetry in 3+1 dimensions, these

textures have integer winding number in the Higgs field, spread out over space. The density

of gauged defects can be predicted in terms of the evolution of the correlation length of the

system [28]. Numerical studies often consider thermal quenches with overdamped dynamics

through the transition. In our case, we have an underdamped system with no explicit

– 15 –

• Statistics of Higgs windings:

CHAPTER 5. QUENCHED ELECTROWEAK PHASE TRANSITION

the winding number.

Figure 5.16: Distribution of Higgs winding number NW at late times in the simulation for
the various quench speeds vq in table 5.1. ’Normalized frequency’ refers to the number
of simulations that result in a given integer winding number normalized to the total
number of simulations carried out for the respective quench speed. It is a measure of the
probability of obtaining a certain value of NW for each quench speed. (Black lines are
illustrative to bring attention to the spread).

The slowest quenches considered, namely, those with quench speed vq = 0.01, 0.02

the red and cyan lines in figure 5.16, sharply peak at 0, and are unlikely to pro-
duce a large winding number indicated by the very low frequencies at the tail ends
of the distribution. The faster quenches however, seem to distribute themselves
more evenly across the values of winding number. In fact, it seems to mirror the
fact that the higher speeds produce almost the same rate, i.e. they also seem to
produce similar winding number distributions. This is similar to what is found
in figure 13 of the work [16], where instead they use mH = 2mW and we use the
established Higgs mass.

We showed that during a quenched electroweak phase transition of the SU(2)
Higgs, the variance of the Chern-Simons number produced during the transition
was non-zero for a su!ciently large quench speed, and the variance was shown to
have a dependence on the speed of the quench. In the work [16], figure 3 plots
→N2

CS↑ ↓ →NCS↑
2, which is similar to what is plotted in this work in figure 5.14,

modulo the normalization factor. We see that the trend is the same and there is a
clear contrast in the distribution for quench speeds which are "fast" and "slow".

46

µ2

e!(t) = →µ2 + ω ε2(t) (23)

nkϑk k/m vQ = d

dt
µe!(t)

∣∣∣∣
t=tQ

(
vSM

q ↑
TEW

MPl

)
(24)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

• The dynamics of this tachyonic or spinodal transition: can just be described in the Gaussian limit
with an instantaneous quenching, namely flipping the sign of the Higgs field all of a sudden. There
is the growth of occupation number starting from vacuum initial conditions for modes with |k| < µ,
one finds nk ↓ exp(2

√
µ2 → |k|2t), ofc until back–reaction becomes e!ective and the ↔ϖ2

↗ can no
longer be neglected (one estimate is to look at µ2 vs 3ϱ↔ϖ2

↗, the latter induced by the tachyonic
growth.

• One way to see what happens is that these modes thermalize among themselves at some temperature
which is higher than the final reheating temperature achieved at full thermalization. So from nk =
1/(eωk/Te! → 1) ↑ Te!/ϑk one in the ends obtains Te!/Trh ↑ 5, which is crucial because can be
above sphaleron freeze out (important because at intermediate temperature the rate is exponentially
suppressed.

• Detailed studies of this dynamics have shown how Chern–Simons transition are dominantly induced
by localized objects related to the EW textures in the SM, which are topological defects associated to
the non trivial third homotopy group of ς3[SU(2)xU(1)/U(1)] (for practical purposes one can study
the SU(2) dynamics with the Weinberg angle set to zero, as this introduces only small corrections).

• Initial configuration is given by h = U(x)(0, v), with U ↘ SU(2), and then you let evolve, U =
e→iε(r)xiϑi/r with φ(≃) = 0 and φ(0) = ς. One can check that this has winding number equal
to one. Discuss what happens for large/small textures, also in relation at the sphaleron energy,
Esph ↑ mW /↼W B(ϱ2/g2) and the initial energy configuration of the texture, E ↑ 4ς↽2L where L

is where the φ changes appreciably. In the end one obtains mW L ⇐ 1 for the texture to wind up
the gauge field.

• Clearly the CS violation is related to the baryon number via the ABJ anomaly in the SM: !B =
Nf !NCS, or in terms of currents ⇀µjµ

B
= Nf

g
2

32ϖ2 WW̃ .

• We need some CP violation, this will bias the dynamics of textures close the boundary mW L ↑ 1 to
preferably wind up the gauge field if say NW = 1, and at the same time slightly disfavor those for
which NW = →1, while in the absence of CP violation these processes would have the same outcome.
This sources a net asymmetry.
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[hep-ph/0610096] JHEP Fig. from N. Bhusal master thesis (2024)
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Tachyonic instability
• Chern-Simons variance:

The time component of this is the Chern–Simons number density

nCS → j0CS =
g2

16ω2
εijk Tr

[
WiWjk +

2

3
igWiWjWk

]
. (89)

Using that
∫
d3x ϑijiCS = 0 under periodic boundary conditions (or assuming jiCS vanishes at

spatial infinity), the Chern–Simons number in Eq. (70) indeed reduces to

NCS(t) =

∫
d3xnCS(t, x) . (90)

We calculate NCS by integrating nCS in space as above. Using Wi =
i

2g dx(Ui↑U †
i )+O(dx) and

Wij in Eq. (75), the latter is calculated from the link and plaquette fields as

nCS =
g2

64ω2dx3
εijk Tr

[
(Ui ↑ U †

i )

(
(Ujk ↑ U †

jk)↑
1

3
(Uj ↑ U †

j )(Uk ↑ U †
k)

)]
+O(dx3) . (91)

E!ective sphaleron rate. The sphaleron rate measures the number of transitions per unit
time and volume between vacua with di!erent Chern–Simons numbers. Formally, it is defined
by

” → lim
L,t→↑

↓N2
CS(t)↔ ↑ ↓NCS(t)↔2

L3t
, (92)

where the denominator L3t accounts for the fact that the variance of the Chern–Simons number
grows linearly with both spatial volume and time in a process that proceeds throughout all space
and persists indefinitely. The brackets represent an ensemble average. Because bubble collisions
occur over a timescale of order Rω, it is more appropriate to consider the time-dependent
sphaleron rate during this transient period:

”sph(t) → lim
L→↑

d

dt

↓N2
CS(t)↔ ↑ ↓NCS(t)↔2

L3
→ d#n2

CS

dt
. (93)

In simulations, the L ↗ ↘ limit in Eq. (93) is e!ectively realized by ensuring Rω ≃ L. We
calculate the ensemble averages in Eq. (93) by averaging N2

CS and NCS over several di!erent
simulations with statistically similar initial conditions. The Chern–Simons variance #n2

CS is
computed first, followed by evaluation of its time derivative.

In presenting the results in Figure ... in the main text, the statistical errors over #n2
CS and

”sph are estimated as errors on the variance... [write how we calculate the errors]

Power spectra. The power spectrum Pε of a real field ϖ, e.g. the Chern–Simons number den-
sity nCS or a component of ϱ, is defined in analogy to Eq. (73) and satisfies ↓ϖ2↔ =

∫
log kPε(k).

We compute Pε by comparing this last equation to

↓ϖ2↔ =
∫

d3x

L3
ϖ2(x) =

∫
d3k

(2ωL)3
|ϖ̃(k)|2 , (94)

which leads to

Pϑ(|k|) =
|k|3

(2ωL)3

∫
d$k |ϖ̃(k)|2 , (95)

where d$k is the solid angle. Here, as before and in the main text, we use the notation |k| = k.2

2To perform the angular integral
∫
d!k, which reduces the three-dimensional spectrum to the one-dimensional

spectrum, the three-dimensional momenta k → 2ωn/L, with |n| ⇐ Nx/2 and |n| ⇒ (m↑ 1/2,m+ 1/2), m ⇒ N,
are grouped into one-dimensional momentum bins labeled by 2ωm/L. Momenta with Nx/2 < |n| <

⇑
3Nx/2

are not shown.
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Tachyonic instability
• Chern-Simons variance:

CHAPTER 5. QUENCHED ELECTROWEAK PHASE TRANSITION

when the curves cross 0). As was mentioned earlier, this is essentially the quench
time tQ and hence we immediately see the relation between the two measures of
quench speed.

Following the same steps as in the previous section, we extract the rate of the
various quenches. Firstly, we plot the variances in figure 5.14.

Figure 5.14: Variance of the Chern-Simons number NCS →105 as calculated in equation
5.5 for quench speeds vq = ↑, 1, 0.1, 0.05, 0.02 and 0.01 plotted against time in units
mHt

Just as before, we take the derivative of this to find the rate !NCS
for each case.

In order to make a comparison we extract the peak of the rates and show how
they vary for di!erent quenches, as seen in figure 5.15.

44
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Tachyonic instability
• Chern-Simons variance: CHAPTER 5. QUENCHED ELECTROWEAK PHASE TRANSITION

Figure 5.4: Plot of both the Higgs winding NW and Chern Simons number NCS plotted
against time in units of mHt.

What can be understood so far is that the system produces a change in the
Chern-Simons number !NCS between time t=0 to t=end of simulation. This is
then related to a change in Baryon number !B as in equation 3.10. We thus have
a rate of baryon number violation that can be extracted from this model. We will
look at this more closely in a later section.

5.1.1 Winding numbers and Winding blobs

Figure 5.5: 3D snapshots of the Higgs winding number density nW as density plots,
zoomed in at the location of a blob at times t = 11.5, 12, 12.5 mHt in the simulation
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Figure 5.4: Plot of both the Higgs winding NW and Chern Simons number NCS plotted
against time in units of mHt.

What can be understood so far is that the system produces a change in the
Chern-Simons number !NCS between time t=0 to t=end of simulation. This is
then related to a change in Baryon number !B as in equation 3.10. We thus have
a rate of baryon number violation that can be extracted from this model. We will
look at this more closely in a later section.

5.1.1 Winding numbers and Winding blobs

Figure 5.5: 3D snapshots of the Higgs winding number density nW as density plots,
zoomed in at the location of a blob at times t = 11.5, 12, 12.5 mHt in the simulation
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when the curves cross 0). As was mentioned earlier, this is essentially the quench
time tQ and hence we immediately see the relation between the two measures of
quench speed.

Following the same steps as in the previous section, we extract the rate of the
various quenches. Firstly, we plot the variances in figure 5.14.

Figure 5.14: Variance of the Chern-Simons number NCS →105 as calculated in equation
5.5 for quench speeds vq = ↑, 1, 0.1, 0.05, 0.02 and 0.01 plotted against time in units
mHt

Just as before, we take the derivative of this to find the rate !NCS
for each case.

In order to make a comparison we extract the peak of the rates and show how
they vary for di!erent quenches, as seen in figure 5.15.
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• System in the vacuum at late times:

Figures from N. Bhusal master thesis (2024)
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Realizations
• Explicit realizations of a spinodal (tachyonic) electroweak phase transition are 

mostly based on reheating after (hybrid) inflation


• Another possibility would be a first order phase transition: 1) a time-dependent 
barrier such that nucleation is basically a roll-over

Higgs
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Realizations
• Explicit realizations of a spinodal (tachyonic) electroweak phase transition are 

mostly based on reheating after (hybrid) inflation


• Another possibility would be a first order phase transition: 1) a time-dependent 
barrier such that nucleation is basically a roll-over; 2) bubble collisions and reheating

Requires fully 3d simulations of bubble 
collisions with non-abelian gauge fields 

Simone Blasi, “Cold baryogenesis revisited”
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Realizations
• Explicit realizations of a spinodal (tachyonic) electroweak phase transition are 

mostly based on reheating after (hybrid) inflation


• Another possibility would be a first order phase transition: 1) a time-dependent 
barrier such that nucleation is basically a roll-over; 2) bubble collisions and reheating
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Figure 10: CS snapshots with ω = 0.32.

A Setup and details on the numerical simulation (Marco)

We consider SU(2) as a simplified version of the SM gauge group, i.e. we set g→ = 0. The
Higgs field ε is an SU(2) doublet. We expect our main results on the sphaleron rate to remain
qualitatively unchanged when the full SU(2)→ U(1) gauge group is considered.

During the phase transition the Higgs ε and the SU(2) gauge bosons W a
µ follow their

classical equations of motion (EoM), derived from bosonic part of the SM Lagrangian:

L = ↑|Dµε|2 ↑
1

2
Tr[WµωW

µω ]↑ V (ε) , V (ε) =
m2

h

2v2

(
|ε|2 ↑ v2

2

)2

+
1

!2

(
|ε|2 ↑ v2

2

)3

+ . . . .

(61)
Here, Dµε = ϑµε↑igWµε is the SU(2)-covariant derivative with gauge coupling g, Wµ = W a

µTa

with Ta = ϖa/2, and Wµω = ϑµWω ↑ ϑωWµ ↑ ig[Wµ,Wω ] is the W boson field strength.
As a representative model that induces a first order electroweak phase transition (EWPT),

we consider a sextic potential – i.e., we retain only the terms shown in Eq. (61). The potential is
minimized at the vacuum expectation value |ε|2 = v2/2, and leads to the canonically normalized
Higgs h =

↓
2|ε| with mass mh. The mass of the W boson is mW = gv/2.

The regime of interest is characterized by a low cuto” !, i.e.,

v4

m2
h

< !2 <
3

2

v4

m2
h

, (62)

where the potential develops an additional local minimum at the origin h = 0 even at zero tem-
perature, T = 0. For ! larger than the upper limit in Eq. (62), the origin is a maximum, while
for ! smaller than the lower limit, ↔ 484GeV, the origin becomes the global minimum. The
potential’s shape depends only on the dimensionless cuto” !2m2

h/v
4. The potential di”erence

#V between vacua and parameter ω that determines the barrier height with respect to #V are

#V =
m2

hv
2

8
(1↑ 1/ϱ) , ω =

1

4
(1 + 3/ϱ)

(
2↑ 3/ϱ2

)2
, ϱ ↗ !2m2

h

v4
. (63)

ω takes value within 1 > ω > 0 for ! in Eq. (62), with ω = 1 and 0 corresponding to degenerate
vacua and no barrier, respectively. In Fig. 11 we show V for di”erent ! and related ω, as well
as !2m2

h/v
4 ↘ ≃, i.e. the SM. We will use ω or ! interchangeably according to Eq. (63).

The EWPT with the potential in Eq. (61) has been studied in several works, see e.g.
Refs. [14, 15, 16]. The finite-temperature corrections to V are non-trivial and phase transition
occurs via thermal tunneling and bubble nucleation. In principle, the transition completes only
for su$ciently large cuto”s, ! ↭ 550 GeV. The nucleation temperature in this case is relatively

18
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Chern-Simons from bubble collisions
• We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)
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• Each bubble nucleated with random SU(2) orientation of the Higgs field 


• We vary the shape of the Higgs potential, as this controls wall—wall collisions
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Chern-Simons from bubble collisions
• We simulate run-away bubbles of broken electroweak symmetry in 3+1 (and 1+1)

• Critical bubble profile according to O(4) + simultaneous nucleation


• Each bubble nucleated with random SU(2) orientation of the Higgs field 


• We vary the shape of the Higgs potential, as this controls wall—wall collisions


• We vary the size of bubbles at collision ( ) for extrapolation to the physical point


• We have tried  for the FOPT as well, but eventually used our code

γ*

𝒞osmoℒattice
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3.5 Toy model 4: Simple quartic potential

Next, we consider a more realistic potential, namely

V = av
2
�
2
� (2a+ 4) v �3 + (a+ 3)�4

, (3.16)

where the coe�cients are chosen so that V (v) = �v
4 becomes a local minimum. This

potential takes a local maximum at �/v = a/(2a + 6). We also define the degeneracy
parameter ✏ as

✏ =
(barrier height)� (false vacuum height)

(barrier height)� (true vacuum height)
=

a
3(a+ 4)

a3(a+ 4) + 16(a+ 3)3
. (3.17)

The smaller ✏ is, the smaller the false vacuum trapping becomes. In Fig. 11 we plot the
potential for ✏ = 0.1, 0.01, and 0.001. The trapping equation (2.3) predicts that � is trapped
at the false vacuum for ✏ & ✏th ' 0.214.

For the numerical simulation we use the same definition for the � factor as in Fig. 9, and
identify tcoll to be t� for a given value of �. We use 50� ⇥ vxcoll or 25� ⇥ vxcoll (both / �

2)
points for the spatial discretization for �  30 or � > 30, respectively.

In Fig. 12 we plot the time evolution of � (left panels) and �(t, x = xcoll) (right panels)
for � = 40 and ✏ = 0.5, 0.1, and 0.05 from top to bottom. The blue (red) regions in the
left panels correspond to the true (false) vacua, while the blue (red) lines in the right panels
are the actual (predicted) time evolution. As predicted by Eq. (2.3), � is trapped at the
false vacuum soon after collision for ✏ = 0.5, while it escapes for other values of ✏. Also, the
diamond-like pattern in the top-left panel can be understood as a consequence of trapping:
Once trapping occurs, the wall receives negative pressure due to the phase di↵erence across
it. The pressure eventually stops the wall motion completely and then inverts it. The
position of the turnback can be estimated by equating the energy per surface area at the
collision time (xcoll ·v

4
/3) with the work per surface area exerted on the wall from collision to

turnback (�xturnback · v
4) as �xturnback ' xcoll/3, which gives a good estimate. Note that this

diamond-like pattern has already been observed in the literature (e.g. Refs. [4,34,36,37,42]).
Fig. 13 is the result of our parameter scan. The blue (red) points are the parameter values

where � escapes from (is trapped at) the false vacuum}3. The prediction of the trapping
equation ✏ & ✏th ' 0.214 is indicated by the green line. We see that the boundary between
the blue and red points approaches the green line in the large � limit.

3.6 Toy model 5: Quartic Z2 potential

Finally, we consider a potential similar to the previous one but modified to have Z2 symmetry:

V = av
2
|�|

2
� (2a+ 4) v |�|3 + (a+ 3)|�|4. (3.18)

The potential is plotted in Fig. 14. The degeneracy parameter ✏ is defined in the same
way as before. This setup is not realistic in that a domain wall forms after di↵erent-sign

}3 The criterion for trapping is as follows. The ’energy’ at the collision point
⇥
(@t�)2/2 + V (�)

⇤
x=xcoll

decreases after collision. We numerically calculate the time when it drops to the value of the barrier height⇥
(@t�)2/2 + V (�)

⇤
x=xcoll

= V (�/v = a/(2a+ 6)), and see whether � is in the false or true vacuum side. We
use the same criterion for the quartic Z2 potential as well.
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Jinno, Konstandin, Takimoto 
[1906.02588] JCAP

Figure 11: The Higgs potential as a function of the cuto! ”. The blue, orange and green lines
correspond to ”2m2

h/v
4 = {1, 1.1, 3/2}, while the black line to the SM limit ”2m2

h/v
4 → ↑.

The corresponding values ω are also shown. A first-order phase transition at zero temperature
occurs for v4/m2

h < ”2 < (3/2)v4/m2
h, and correspondingly 1 > ω > 0, where the potential

barrier is large or small, respectively.

the Higgs vacuum manifold SU(2) ↓ S3, i.e.

εb(r) =
1↔
2
e→iωiεi(0, hc(r)) , (65)

where ϑi are three random angles, di!erent for each bubble. To a good approximation, all the
bubbles are nucleated at the same time t = 0. The scalar field associated to the initial condition
is simply the sum of single bubble configurations εb at rest. The gauge field and its derivatives
vanish, Wµ = Wµϑ = 0, consistently with the Gauss constraint (see below).

A.2 Higgs and gauge fields evolution

After nucleation, the bubble radius increase as R(t) =
√
t2 +R2

c . The wall velocity is vw = Ṙ
and its ϖ factor is ϖ = (1↗ v2w)

→1/2, so that R = ϖRc and the wall quickly becomes relativistic.
At the same time, the e!ective wall thickness dw decreases as lw = lc/ϖ, and gets smaller than
m→1

h . As the bubbles collide, the evolution turns nonlinear following the EoM from Eq. (61),

DµD
µε↗ ϱϖ→V (ε) = 0 , (66)

DϑW
µϑ = Jµ

a Ta , Jµ
a = 2gIm[ε†TaD

µε] . (67)

We solve these numerically on a cubic lattice with length L and N3
x = 5003 ↗ 15003 points,

and periodic boundary conditions. Upon redefining time and distances as (t, x) → m→1
h (t, x),

and fields as ε → vε and Wµ → mhWµ/g, Eqs. (66) and (67) depend only on ω and the ratio
m2

W/m2
h, fixed to 0.4 based on the SM parameters. Although mh/v does not enter the EoM,

we will use m2
h/v

2 = 1/2 when showing observables.
The initial conditions have nb bubbles, so that their radius at collision is approximately

Rϱ =
↑
3
2 L

(
3

4ςnb

)1/3
and correspondingly ϖϱ = Rϱ/Rc. We checked that our results are indepen-

dent of the number of bubbles nucleated as long as nb ↭ 10. The physical input parameters
ω and ϖϱ (or equivalently Rϱ). The former determines the barrier’s height; in a cosmological
context, the latter is linked to the EWPT strength via Rϱ = vw(8ς)1/3/(φ/Hϱ), with vw ↓ 1.

During the evolution we calculate the average Higgs variance ↘h2≃ ⇐ L→3
∫
d3xh2(x), as

well as the average components of the total energy density ↼tot = T00, which is conserved during
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Shape of the Higgs potential
• Bubble collision dynamics controlled by:
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Shape of the Higgs potential
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potential
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kinetic
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wall
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Figure 4: Collision of planar bubble walls for the potential (13) with λ = 1. The top (bottom)
plots use as initial wall velocity vw = 0.5 (0.98), respectively. The left (right) plots are for the
symmetric (asymmetric) potential with η = 0.2 (0.6). Light (dark) gray corresponds to the broken
(symmetric) phase. In the left case, the walls are reflected, and eventually stop expanding until the
symmetric phase collapses again. In the right case, the field cannot leave the basin of attraction
of the broken phase. The last pair of plots shows the time evolution of the fractions of the total
energy in potential energy, bubble wall energy and “kinetic” energy of the classical scalar field in
the case vw = 0.5 (see text).
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Figure 11: Quartic potential for ✏ = 0.1 (blue), 0.01 (red), and 0.001 (green).

Figure 12: Simple quartic potential. Left side: Density plot of � for ✏ = 0.5, 0.1, and 0.05 and
� = 40 from top to bottom. Note that false-vacuum trapping is predicted from Eq. (2.3) for ✏ = 0.5.
Right side: Time evolution of �(t, x = xcoll) for the parameter choice in the left panels.
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Figure 2: The path of the scalar field for the three different potentials a), b), c) discussed in the
text. “1” denotes the path in the expanding bubble walls. “2” is the path during the collision. “3”
is the path in the collided region.

over from walls to the scalar (radion and Higgs) sector. Most of the energy decays into
SM particles before it is accumulated in the scalar sector. Besides, particle production is
suppressed by the Lorenz factor ω2w of the colliding bubble walls [53].

Secondly, in the case (b) where the scalar potential has two nearly degenerate local
minima, the expanding bubble walls bounce in the potential and reflect at each other (see
Fig. 2(b)). This reestablishes a region of symmetric phase between the collided bubble
walls. The expansion of the bubble walls is counteracted by the pressure difference, such
that the bubble walls are slowed down and finally the symmetric phase collapses again
(as shown in Ref. [53] and in the left plots of Fig. 3 and Fig. 4). Each collision releases
some fraction of the wall energy into scalar waves. Most of the energy is radiated away
after a few collisions. Even though expanding bubble walls do not decay into fermions2,
thermalization occurs by production of scalar waves. The different collisions are separated
by a time of the order of the Hubble time, which is much longer than the electroweak time
scale that determines the decay rate of the classical scalar waves3. This constitutes a serious
problem for us since the process of transferring the bubble wall energy into EW scale scalar
configurations is very inefficient. On top of that, the reflections of bubble walls themselves
lead to significant particle production: a fixed fraction g2 of the energy of the colliding walls
goes into production of fermions [53], even in the limit ωw → ∞. Hence, in the case of nearly
degenerate vacua, a sizable fraction of the energy will be drained into the fermionic sector.
Therefore, it is questionable that a sizable energy fraction is present in the form of classical
kinetic energy of the Higgs field.

The potential (c) with two asymmetric minima gives different results. When two scalar
bubbles collide, the scalar field bounces and is reflected close to the symmetric phase. How-
ever, a partial loss in energy implies that the field only approaches the old minimum to a
certain extent. In Ref. [57, 58], it is shown that the walls are reflected only if the field can
reach the basin of attraction of the symmetric minimum. If not, the field bounces back close
to the symmetric minimum but remains in the basin of attraction of the broken phase. In

2This can be seen by noting that the wall profile has no time-dependence in the co-moving frame and
only a support for p2 ≤ 0 in Fourier space. Hence there is no particle production according to (11).

3Using (11) the decay rate of the classical Higgs waves is basically the one of the Higgs particle.
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Fig. 2(b)). This reestablishes a region of symmetric phase between the collided bubble
walls. The expansion of the bubble walls is counteracted by the pressure difference, such
that the bubble walls are slowed down and finally the symmetric phase collapses again
(as shown in Ref. [53] and in the left plots of Fig. 3 and Fig. 4). Each collision releases
some fraction of the wall energy into scalar waves. Most of the energy is radiated away
after a few collisions. Even though expanding bubble walls do not decay into fermions2,
thermalization occurs by production of scalar waves. The different collisions are separated
by a time of the order of the Hubble time, which is much longer than the electroweak time
scale that determines the decay rate of the classical scalar waves3. This constitutes a serious
problem for us since the process of transferring the bubble wall energy into EW scale scalar
configurations is very inefficient. On top of that, the reflections of bubble walls themselves
lead to significant particle production: a fixed fraction g2 of the energy of the colliding walls
goes into production of fermions [53], even in the limit ωw → ∞. Hence, in the case of nearly
degenerate vacua, a sizable fraction of the energy will be drained into the fermionic sector.
Therefore, it is questionable that a sizable energy fraction is present in the form of classical
kinetic energy of the Higgs field.

The potential (c) with two asymmetric minima gives different results. When two scalar
bubbles collide, the scalar field bounces and is reflected close to the symmetric phase. How-
ever, a partial loss in energy implies that the field only approaches the old minimum to a
certain extent. In Ref. [57, 58], it is shown that the walls are reflected only if the field can
reach the basin of attraction of the symmetric minimum. If not, the field bounces back close
to the symmetric minimum but remains in the basin of attraction of the broken phase. In

2This can be seen by noting that the wall profile has no time-dependence in the co-moving frame and
only a support for p2 ≤ 0 in Fourier space. Hence there is no particle production according to (11).

3Using (11) the decay rate of the classical Higgs waves is basically the one of the Higgs particle.
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Time scale and energy budget

Figure 1: Left panel: time evolution of volume-averaged Higgs doublet norm normalized by its vev,
for benchmark values of ω→w. Right panel: time evolution of the energies normalized by the initial total
energy Ein

tot. We set the number of bubbles nb = 10 and degeneracy parameter ε = 0.2. (averaged over
30 simulations). Solid lines represent our scenario, while the dashed ones a typical tachyonic transition
with instantaneous quench. Left panel: put CS variance from tachyonic instability, add y-axis on the
right.

Figure 2: Energy comparison between ω = 0.45 and ω = 0.2. Do for ω = 0.2, 0.01.
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Cross-checks 

Figure 3: Winding NW (blue line) and Chern-Simons NCS (orange line) total number production
during FOPT, for nb = 2, LmH = 50 (left panel) and nb = 3, LmH = 70 (right panel). We set ω = 0.2
(i.e.ε = 0.14). 2-bubble collision always results in NW = 0 in 3D, while for nb → 3, NW ↑= 0 and NCS

asymptotically relaxes to NW . Move to Appendix

4.1 Dependence of Chern-Simons rate on ω↓
w and ε

In this section, we study the dependence of the Chern-Simons rate !CS, produced via bubble
collisions in a FOPT with potential (6), on two phenomenological parameters of the FOPT: i)
ω→
w, the Lorentz-boost factor at collision, which is proportional to ϑ/H↑1, the duration of the

phase transition; ii) ε, parameterizing the potential shape (in particular the interplay between
the barrier height Vbarr and the deepness ”V of the true vacuum).
First, we probe the potential with ε = 0.2 and study the dependence of the CS variance on
the Lorentz-boost factor at collision ω→

w ↔ ϑ/H↑1. Note that the physical limit is given by the
Hubble volume lHmH ↗ 1016, and extrapolation is needed. Thus, we perform simulations with
nb = 10 varying the simulation volume LmH , i.e. ω→

w, with the parameters reported in Table 1.
We plot in Fig.?? the winding and CS number in one simulation with ω→

w = 4.6 (left panel) and
averaged over 30 simulations (right panel), while in Fig.4 the CS variance evolution over time
(left panel) and its asymptotic value as a function of ω→

w (right panel). After smoothing out the
CS variance we extracted from simulations, we show in the left panel the CS rate defined by
Eq.(4), and the time duration mH”t of baryon number violation in right panel in Fig.??.

LmH l→mH ω→
w Ngrid l→/”x

170 1.1 2.8 392 3
195 0.9 3.3 512 3
239 0.8 3.9 768 3
276 0.7 4.6 1024 3
300 0.6 4.9 1200 3

Table 1: Simulation parameters, with ε = 0.2 (ϖ = 0.185), RcmH = 15 and l0mH ↗ 1/0.32.

Now we turn to study the dependence of the CS production on the potential degeneracy
parameter ε. We expect that the CS production depends on both the energy di#erence be-
tween the false and true vacua ”V , and the barrier height Vbarr (and on the wideness of the
potential). Therefore, we consider di#erent potential shapes with some benchmark values for ε
and l→/”x = 3 the number of lattice points within the bubble wall. We consider the potential

9

• Convergence of Higgs winding and CS number observed also for the first order 
phase transition:
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Results 3+1

right panel for small ω. Our main conclusion is that the value of ω, which controls the dynamics
of the bubble collisions, implies a very di!erent behavior for the CS production as a function
of the bubble size at collision, or equivalently the relativistic ε→ factor associated to the wall
velocity. In particular, only values of ω for which the CS variance does not decrease with ε→ can
potentially lead to the correct baryon asymmetry, as we shall discuss in Sec. 4.3.

Compare in the text the values of ”bubble, ”tach and ”SM and cite the Guy Moore papers +
D’Onofrio 2014 paper. Also compare the three associated time scales.

Figure 5: Asymptotic value of Chern-Simons variance #n2
CS,bubble as a function of the Lorentz-

boost factor at collision, for di!erent values of ω, and normalized by the Chern-Simons variance
from tachyonic instability with instantaneous quench, #n2

CS,tach = 10↑4m3
h. Show left panel.

Figure 6: With all data points we have

We first compute, the inverse duration ϑ/H that we are simulating in Figs.4, 6. Given
that

R→ = ε→
wRc =

(8ϖ)1/3vw
ϑ/H

1

H(Treh)
, (29)

with H(Treh) → T 2
reh/MP l, we are simulating values

ϑ/H ↑ 1015 ↓ 1016 . (30)

Now, let us comment on the range of ϑ/H where our mechanism is e$cient. Both quantities
#N2

CS and ϑ/H have to be extrapolated from our results to the Hubble volume lHmH ↑ 1017.
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Results 3+1

Figure 4: Evolution of Chern-Simons variance !n2
CS,bubble → !N2

CS/L
3 and rate ”bubble

CS as a
function of ω→

w, for benchmark values ε = {0.2, 0.32, 0.45}, and nb = 10. These quantities are
normalized by the SM thermal sphaleron rate in the symmetric phase, namely ”SM

sph = 25ϑ5
wT

4
e! ,

with Te! = Treh = ( 30
ω2gω

!V )1/4, and !n2
CS,SM → ”SM

sphRε, with mean collision radius Rϑ=0.2
ε =

{42, 60, 75}m↑1
h , Rϑ=0.32

ε = {65, 80, 102}m↑1
h , Rϑ=0.45

ε = {84, 112, 140}m↑1
h .

plotted in Fig.??, with potential parameters specified in Tab.2.

ϖ l p q !V/(m2
Hv

2/4) Vbarr/(m2
Hv

2/4) RcmH l0mH ε
1.84073 7.36294 0.402133 0.5 ↑0.94 2.2↓ 10↑4 3 1/0.55 2↓ 10↑4

0.14 0.56 ↑ ↑ ↑0.15 1.7↓ 10↑3 8 1/0.3 0.01
0.168 0.67 ↑ ↑ ↑0.11 1.2↓ 10↑2 11 1/0.3 0.1
0.178 0.71 ↑ ↑ ↑0.097 1.7↓ 10↑2 13 1/0.31 0.15
0.185 0.74 ↑ ↑ ↑0.087 2.2↓ 10↑2 15 1/0.32 0.2
0.2 0.8 ↑ ↑ ↑0.067 3.2↓ 10↑2 21 1/0.35 0.32
0.213 0.85 ↑ ↑ ↑0.05 4.1↓ 10↑2 28 1/0.37 0.45

Table 2: Simulation parameters for dependence on ε.

In Fig.5 we show the CS variance produced as a function of ω→
w, for benchmark values of ε.

We identify di#erent behaviours depending on the potential shape: for small ε, i.e. ε ↔ 0.2, the
CS variance seems to decrease (maybe linearly?) as increasing the boost factor, while for large
ε, i.e. ε ↗ 0.2, it remains constant or even increase (linearly?). Notice that the limit ε ↘ 1 and
ω→
w ↗ 1 is extremely challenging to simulate, since the critical bubble radius becomes large.

In Fig.7 we show the spectrum of the Higgs field in the left panel and the CS number in the

10
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Summary and Outlook
• Bubble collisions can lead to a sizable production of Chern-Simons number 


• This provides an alternative realization of electroweak baryogenesis which does not rely 
on the existence of a thermal plasma (in the spirit of cold baryogenesis)


• A crucial role is played by the shape of the Higgs potential (controlled by )


• Implement exponential nucleation of bubbles


• Include CP violation and evaluate  (directly related to B number)


• Include scalar and gauge fluctuations around the non-trivial bubble background


• Provide an explicit realization of this dynamics (e.g. Higgs + singlet)


• Consider bubble walls with terminal velocity and interaction with SM particles


• Extract the gravitational wave spectrum

ϵ

⟨NCS⟩ ≠ 0

Simone Blasi, “Cold baryogenesis revisited”



Chern-Simons power spectraFigure 7: CS number spectra for small (left panel) and large (right panel) ω, for di!erent εω.

Figure 8: Same as fig.6, just merged in 1 plot only, and plotting the smallest and largest values
of gammas.

Figure 9: Higgs field (left panel) and CS number spectra (right panel) for small ω, for di!erent
ε→
w, where kl→/mH → 10 and kR→/mH → 0.2↑ 0.1. We keep these for ourselves

4.3 Estimate for the baryon asymmetry

The baryon number density obeys a Boltzmann equation that combines the rate of baryon–
number violation, the e!ect of CP violation in producing a net asymmetry, and washout terms:

ϑ

ϑt
nB(x, t) = ”sph (ϖ ↑AnB) , (38)

13

3+1

Figure 19: Spectrum of the scalar field (left) and gauge field (right) for benchmark values of
ω = 0.32, 0.01 and ε→

w = 32, 64. We show only right panel

Figure 20: CS variance in 1D case as a function of ω→w, for di!erent values of ε. The red-dashed line
shows the value of the CS variance obtained from tachyonic instability with instantaneous quench.
We normalize by tachyonic inst.

Figure 21: 1D case: Snapshot of 3 bubbles, with ε = 0.32(left panel), 0.01 (right panel). The unbroken
phase is represented by dark gray region, while the broken one by light gray. The CS number is shown
in blue and red instead.

[12] G. Servant Phys. Rev. Lett. 113 (2014), no. 17 171803, [arXiv:1407.0030].

[13] A. Tranberg, A. Hernandez, T. Konstandin, and M. G. Schmidt Phys. Lett. B 690 (2010) 207–212,
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k/m k/m

µ2

e!(t) = →µ2 + ω ε2(t) (23)

nkϑk k/m vq = 1
m3

h

d

dt
µ2

e!(t)
∣∣∣∣
t=tQ

(
vSM

q ↑
TEW

MPl

)
(24)

↓ñ(k)ñ(k→)↔ = (2ϖ)dϱd(k → k→) 1
kd

PCS(k) (25)

3.3.2 Scheme

• Mechanisms for the generation of the BAU typically require a hot Universe in thermal equilibrium at
temperatures larger than the EW scale (e.g. leptogenesis in minimal realizations even 109) or more
precisely the sphaleron freeze out temperature.

• Cold baryogenesis as the counter–example: the main point is the out–of–equilibrium dynamics follow-
ing the spinodal instability of the Higgs field (simple potential with negative mass term). One possible
realization: hybrid inflation with the Higgs becoming tachyonic at some values of the inflaton field.
Crucial that the Universe is cold, namely you reheat below the sphaleron freeze out temperature.

• The dynamics of this tachyonic or spinodal transition: can just be described in the Gaussian limit
with an instantaneous quenching, namely flipping the sign of the Higgs field all of a sudden. There
is the growth of occupation number starting from vacuum initial conditions for modes with |k| < µ,
one finds nk ↗ exp(2

√
µ2 → |k|2t), ofc until back–reaction becomes e!ective and the ↓ς2

↔ can no
longer be neglected (one estimate is to look at µ2 vs 3φ↓ς2

↔, the latter induced by the tachyonic
growth.

• One way to see what happens is that these modes thermalize among themselves at some temperature
which is higher than the final reheating temperature achieved at full thermalization. So from nk =
1/(eωk/Te! → 1) ↑ Te!/ϑk one in the ends obtains Te!/Trh ↑ 5, which is crucial because can be
above sphaleron freeze out (important because at intermediate temperature the rate is exponentially
suppressed.

• Detailed studies of this dynamics have shown how Chern–Simons transition are dominantly induced
by localized objects related to the EW textures in the SM, which are topological defects associated to
the non trivial third homotopy group of ϖ3[SU(2)xU(1)/U(1)] (for practical purposes one can study
the SU(2) dynamics with the Weinberg angle set to zero, as this introduces only small corrections).

• Initial configuration is given by h = U(x)(0, v), with U ↘ SU(2), and then you let evolve, U =
e↑iε(r)xiϑi/r with ↼(≃) = 0 and ↼(0) = ϖ. One can check that this has winding number equal
to one. Discuss what happens for large/small textures, also in relation at the sphaleron energy,
Esph ↑ mW /↽W B(φ2/g2) and the initial energy configuration of the texture, E ↑ 4ϖ⇀2L where L

is where the ↼ changes appreciably. In the end one obtains mW L ⇐ 1 for the texture to wind up
the gauge field.

• Clearly the CS violation is related to the baryon number via the ABJ anomaly in the SM: !B =
Nf !NCS, or in terms of currents ⇁µjµ

B
= Nf

g
2

32ϖ2 WW̃ .

• We need some CP violation, this will bias the dynamics of textures close the boundary mW L ↑ 1 to
preferably wind up the gauge field if say NW = 1, and at the same time slightly disfavor those for

28
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Results 1+1Figure 17: Total winding and CS number normalized by their maximal values and averaged
over 100 simulations, for ω→

w = 100 and ε = 0.6 (left panel), 0.01 (right panel).We keep these
for ourselves

Figure 18: CS variance normalized by vacua energy di!erence in 1D case as a function of ω→
w,

for di!erent values of ε. The red-dashed line shows the value of the CS variance obtained from
tachyonic instability with instantaneous quench.We keep these for ourselves
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Figure 19: Spectrum of the scalar field (left) and gauge field (right) for benchmark values of
ω = 0.32, 0.01 and ε→

w = 32, 64. We show only right panel

Figure 20: CS variance in 1D case as a function of ω→w, for di!erent values of ε. The red-dashed line
shows the value of the CS variance obtained from tachyonic instability with instantaneous quench.
We normalize by tachyonic inst.
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Figure 19: Spectrum of the scalar field (left) and gauge field (right) for benchmark values of
ω = 0.32, 0.01 and ε→

w = 32, 64. We show only right panel

Figure 20: CS variance in 1D case as a function of ω→w, for di!erent values of ε. The red-dashed line
shows the value of the CS variance obtained from tachyonic instability with instantaneous quench.
We normalize by tachyonic inst.
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Figure 21: 1D case: Snapshot of 3 bubbles, with ε = 0.32(left panel), 0.01 (right panel). The unbroken
phase is represented by dark gray region, while the broken one by light gray. The CS number is shown
in blue and red instead.
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