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Inflation

  Nearly scale invariant

   Gaussian ⟨ζk1
ζk2

ζk3
⟩ ≃ 0

   Very small ζ ≃ ∼ 10−5

≃ 0.97

(Slow-roll) suppressed 
tensor-to-scalar ratio r = 16ϵ ≃ 8MPl ( V′￼

V )
2

𝒫ζ(k) = 𝒫ζ(k0)( k
k0 )

ns−1

ζ = super-horizon 
curvature perturbation

Single-field slow-roll inflation is 
compatible with all current observations 

?

[A. Guth, Phys. Rev. D 23 (1981) 347.]  
[K. Sato, Mon. Not. Roy. Astron. Soc. 195 (1981) 467. ]  
[A.D. Linde, Adv. Ser. Astrophys. Cosmol. 3 (1987) 149.]  
…



Beyond single-field slow-roll inflation
Why going beyond the “simple” single-field model?



Slide from Alejandro Jenkins’s presentation:

Why going beyond the “simple” single-field model?

Beyond single-field slow-roll inflation



1. Fundamental motivation (Up  Bottom):→

Λ → Λ̃ M2
Pl

ΔV′￼′￼

V
∼

M2
Pl

Λ̃2
≫ 1⇒

 UV sensitivity: flatness of slow-roll potential is hard to control.  

cutof

Hints for some extra symmetry new physics

Two avenues:

1.1)

Deviations from slow-roll 1.2)

Beyond single-field slow-roll inflation



1. Fundamental motivation (Up  Bottom):→

2. Phenomenological motivation (Bottom  Up):→

 UV sensitivity: slow-roll potential is hard to control  

Can we learn more about inflation from the data?

Example: non-Gaussianity

Interacting theory

non-Gaussianity

ϕ, ψ, Aμ

δρ
ρ

CMB LSS 

Beyond single-field slow-roll inflation



1. Fundamental motivation (Up  Bottom):→

2. Phenomenological motivation (Bottom  Up):→

 UV sensitivity: slow-roll potential is hard to control  

?

Inflation generates fluctuations at scales  smaller than CMB scales∼ e40

What is the physics of inflation at 
scales  ?λ ≪ λCMB

Beyond single-field slow-roll inflation



Thanks to gravitational waves interferometers, we 
now have an observational windows on these scales

What is the physics of inflation at scales  ?λ ≪ λCMB

Inflation generates fluctuations at scales  smaller than CMB scales∼ e40

Inflation at small scales

?



For sizeable effect, however:

ζ ∼ 10−1 − 10−2

nonlinear/non-perturbative physics?

Thanks to gravitational waves interferometers, we 
now have an observational windows on these scales

𝒫ζ ∼ 10−2 − 10−4

What is the physics of inflation at scales  ?λ ≪ λCMB

(See ongoing debate on loops)

Inflation generates fluctuations at scales  smaller than CMB scales∼ e40

Inflation at small scales

≫ 𝒫ζ,CMB ∼ 10−9

?
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• Lattice simulations: known tool to study non-perturbative cosmological phenomena.

My goal: Develop lattice techniques for inflation

Lattice simulations of inflation

Examples: reheating, cosmological phase transitions

Public code:                           InflationEasy: A C++ Lattice Code for Inflation

[AC  2506.11797]  



Put the continuous inflationary universe on a discrete cubic lattice:

ϕi(t)ϕ( ⃗x, t)

ϕ( ⃗x, t) = ϕ̄(t) + δϕ( ⃗x, t)

& perturbation 
theory on δϕ

Nonlinear evolution of   ϕi

∂ℒ
∂ϕi

=
d
dt ( ∂ℒ

∂ ·ϕi )
Numerically solve the classical eqs:

Lattice simulations



Start with quantum fluctuations on sub-horizon box:

(aH)−1

Lattice simulations of inflation
[AC  2506.11797]  



Start with quantum fluctuations on sub-horizon box:

(aH )−1

Lattice simulations of inflation

̂ϕ( ⃗n) = ∑⃗
m

[ ̂a ⃗m u( ⃗κ ⃗m ) ei 2π
N ⃗n⋅ ⃗m + ̂a†

⃗m
 u†( ⃗κ ⃗m ) e−i 2π

N ⃗n⋅ ⃗m]

̂a ⃗m = ei2π ̂Y ⃗m −ln(X̂ ⃗m )/2,

 uniform randoms between 0 and 1: “stochastic” approximation of quantum noiseX̂ ⃗m , ̂Y ⃗m

u( ⃗κ) =
L3/2

a 2ω ⃗κ
e−iω ⃗κτ

[AC+  2102.06378]  

“Discrete 
Bunch Davies”

[AC  2506.11797]  



Lattice approach: evolution

Solve numerically for all lattice points:

d2a
dτ2

=
1
6 (⟨ρ⟩ − 3⟨p⟩) a3+ Friedmann equation for scale factor

ϕ′￼′￼( ⃗n) + 2Hϕ′￼( ⃗n) − ∇2ϕ( ⃗n) + a2 ∂V
∂ϕ

( ⃗n) = 0

[AC  2506.11797]  



Solve numerically for all lattice points:

d2a
dτ2

=
1
6 (⟨ρ⟩ − 3⟨p⟩) a3+ Friedmann equation for scale factor

Lattice approach: evolution

∙

∙

     (spatially flat gauge)δgij ≡ 0

0, known as  “decoupling limit” of gravity δg0μ ∝ ϵ = −
·H

H2
=

1
2

·ϕ2

M2
PlH2

→ MPl → ∞

ds2 = a2(−dτ2 + d ⃗x2)Assuming unperturbed metric  because:

P. Creminelli et al. [2401.10212]
S. R. Behbahani et al. [1111.3373]
C. Cheung et al.  [0709.0293]

ϕ′￼′￼( ⃗n) + 2Hϕ′￼( ⃗n) − ∇2ϕ( ⃗n) + a2 ∂V
∂ϕ

( ⃗n) = 0

…

[AC  2506.11797]  



“sub-horizon” box
“super-horizon” box

(frozen)

Nonlinear 
evolution

(aH)−1

Lattice simulations of Inflation
[AC  2506.11797]  



“sub-horizon” box
“super-horizon” box

(frozen)

Nonlinear 
evolution

(aH)−1

Lattice simulations of Inflation

Key point: non-perturbative    ϕ( ⃗x, t) ≠ ϕ̄(t) + δϕ( ⃗x, t)

Assumptions: 1) Neglect gravitational interaction    fixed metric ds2 = a(τ)(−dτ2 + d ⃗x2)
2) Semi-classical approach  (neglect quantum tunneling, interference, etc…)

∙

∙

[AC  2506.11797]  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What is the physics of inflation at scales  ?λ ≪ λCMB

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

The early Universe at small scales

?
Inflation generates fluctuations at scales  smaller than CMB scales∼ e40

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



W(ϕ) =
1
4 (1 + tanh ( ϕ − ϕ0

f )) (1 + tanh ( ϕ0 − ϕ + Δϕ
f ))

Slow-roll potential Localised oscillation

V(ϕ) = Vsr(ϕ) + Λ4W(ϕ)[cos ( ϕ − ϕ0

f ) − 1]

Toy model: a small-scale modification of the inflaton potential 

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Inflation on small scales
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



W(ϕ) =
1
4 (1 + tanh ( ϕ − ϕ0

f )) (1 + tanh ( ϕ0 − ϕ + Δϕ
f ))

Slow-roll potential Localised oscillation

V(ϕ) = Vsr(ϕ) + Λ4W(ϕ)[cos ( ϕ − ϕ0

f ) − 1]

oscillation parametric 
resonance 

exponential growth 
of perturbations 

Oscillatory potential
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

observable!

Toy model: a small-scale modification of the inflaton potential 



V(ϕ) = Vsr(ϕ) + Λ4W(ϕ)[cos ( ϕ − ϕ0

f ) − 1]

Let’s consider the following three cases:

Oscillatory potential
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



The feature induces a growth of the power spectrum:

Case 1: Pζ ≃ 10−5

Case 2: Pζ ≃ 10−2

Case 3: Pζ ≃ 10−2

Pζ

Oscillatory potential
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

V(ϕ) = Vsr(ϕ) + Λ4W(ϕ)[cos ( ϕ − ϕ0

f ) − 1]

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Linear prediction:



Case 1: Pζ ≃ 10−5

Case 2: Pζ ≃ 10−2

Case 3: Pζ ≃ 10−2

[K. Inomata, M. Braglia, X. Chen, 
S. Renaux-Petel 2211.02586]

Pζ,1−loop ≳ Pζ,tree

In case 3 and 2, but not 1

Oscillatory potential
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Pζ

V(ϕ) = Vsr(ϕ) + Λ4W(ϕ)[cos ( ϕ − ϕ0

f ) − 1]

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

The feature induces a growth of the power spectrum:
Linear prediction:



Case 1 is perturbative 

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 1.  ( )Pζ ∼ 10−5
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



Case 1 is perturbative 

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 1.  ( )Pζ ∼ 10−5
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FIG. 1. (Left) 2D slices of the 3D lattice simulation at di↵erent times N = log(a/a0). (Right) One-point PDF of the inflaton
field value at di↵erent times, as given by the colorbar in the top-right corner. The PDFs ranges from N = 0.1 to N = 5.03
and are equally spaced by �N = 0.29. They are shown together with the potential (green). Animations of the snapshots and
relative PDFs can be found at the following link: [link].

V (�) = Vsr(�) + ⇤4
W(�)

h
cos

✓
�� �0

f

◆
� 1

i
, (1)

where � is the inflaton, Vsr is the slow-roll potential
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ton reaches the feature. �0 is a free parameter, determin-
ing which scales are amplified by the feature. Throughout
this study, we set ✏0 = 10�6 as a fiducial value. The os-
cillation frequency is ! = �̇0/f ⌘ ↵H0, where H0 is the

Hubble parameter at �0, and ↵ quantifies the number of
oscillations per Hubble time.
The oscillation induces a parametric resonance, lead-

ing to an exponential growth of inflationary fluctua-
tions. This mechanism has been extensively studied in
the regime of small-amplitude oscillation with b̃ ⌧ 1
[Refs], and more recently with b̃ ⇠ 1 [15], correspond-
ing to an oscillation amplitude comparable to the kinetic
energy of the inflaton on its slow-roll potential. In this
paper we consider the b̃ ⇠ 1 case, mainly focusing on
three parameter choices: a perturbative case, a highly
non-perturbative case and a non-perturbative case, which
are defined respectively by the following parameters2:⇣
b̃, ↵,

��
↵f

⌘
= (1.14, 10, 2.13), (1.218, 25, 1), (1.32, 10, 2).

According to perturbation theory, in all these cases,
the homogeneous part of the inflaton escapes the local

2
These cases are the same considered in Ref. [15].
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Case 2 is highly non-perturbative: 

Inflaton is stuck inside the oscillatory potential

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 2.  ( )Pζ ∼ 10−2
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



Case 2: Inflaton is stuck inside the oscillatory potential

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 2.  ( )Pζ ∼ 10−2
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Let’s look at the energy:

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 2.  ( )Pζ ∼ 10−2
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



Case 3: Only some patches are stuck in the resonant potential!
The rest continues slow-rolling

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 3.  ( )Pζ ∼ 10−2
AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 



Case 3: Only some patches are stuck in the resonant potential!
The rest continues slow-rolling

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Case 3.  ( )Pζ ∼ 10−2
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Case 3:

Their fate is analogous to false vacuum trapping.

False vacua

True vacuum
(reheated regions)

(forever inflating)

What happens to the trapped regions at the end of inflation?
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Case 3:

Their fate is analogous to false vacuum trapping.
What happens to the trapped regions at the end of inflation?

Figure credit:

The trapped regions become PBHs at the end of inflation! (in the form of baby universes)

[J. Garriga, A. Vilenkin, J. Zhang arXiv:1512.01819]
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Case 3:
The trapped regions become PBHs at the end of inflation!

How many PBHs?

500 lattice 
simulations in 
this plot

4

P�

k/(a0H0)

FIG. 2. Plot of the power spectrum of � at N = 5, when all
the modes are super-horizon. The solid lines are the lattice
results, while the dashed and dotted lines are respectively the
tree-level and 1-loop corrected power spectra, as computed in
[15] using standard perturbation theory.

We conclude that, due to backreaction, the Universe
gets stuck in a de Sitter state. In addition to the results
shown in fig. 1, we have confirmed the following behav-
iors in the lattice simulations.[KI: I added this sentence
because the following sentences cannot be read from the
figure.] After the trapping has occurred at N ' 1.5, the
simulation shows that regions in the least populated lo-
cal minimum (red in fig. 1) are progressively shrinking.
However, the finite grid size does not allow to determine
their final size in a way that is insensitive to the UV res-
olution. Understanding the long-term behaviour of the
false-vacuum trapped Universe would require a detailed
study of this system using small-scale simulations, which
is beyond the scope of this work. Note that quantum
tunneling might be relevant for the long-term dynamics.
The validity of lattice simulations in studying vacuum
decay processes has been addressed in recent literature
[30–42].

As expected, fig. 2 shows that the lattice power spec-
trum is far from the perturbative result. In particular,
we notice that the lattice result has a lower amplitude
and it is overall less peaked. [KI: Should we comment
something on possible reasons for this if we have them in
mind?]

3. Non-perturbative case

We now consider the last case, which has the same
frequency of the oscillatory feature as the perturbative
case but a larger amplitude. Here, only some patches of
the Universe are trapped in the oscillatory region of the
potential. These patches are shown in red in the final
simulation snapshot at N ' 5 in the lower part of fig. 1.
The rest of the Universe keeps inflating in a slow-roll
fashion, as shown by the PDF in the lower-right corner

Trapped volume fraction Ft

oscillation amplitude b̃ oscillation frequency ↵

FIG. 3. Volume fraction of the trapped regions at the end
of the simulation Ft as a function of the dimensionless pa-
rameters b̃ (left) and ↵ (right). The non-perturbative case of
section IV is highlighted by a green cross in the top-right cor-
ner of each plot. All other points represent individual lattice
simulations with di↵erent b̃ and ↵, while keeping the other pa-
rameters fixed. Red and blue correspond to di↵erent lattice
resolutions, given respectively by (Npts, L a0H0) = (512, 12),
(256, 10). [AC: For the moment I removed the fit]

of fig. 1. Most of the trapped patches are stuck in the
last-encountered local minimum and a very small (but
non-negligible) fraction of points is stuck in the previous
one.
From fig. 1, we see that the seed for the formation

of [KI: remove “the formation of”?] the false-trapped
bubbles is already present at N = 2.9: although bubbles
have not formed yet at this time, the position of the red
spots correspond to the final ones. Once formed, the
sizes of the trapped patches are approximately preserved
in comoving space. The typical size of structures is larger
than in the highly non-perturbative case because of the
smaller value of ↵.
In the slow-roll inflating regions, non-Gaussianity is

large and manifests as an exponential tail with striking
superimposed oscillations in the high-density part of the
distribution, corresponding to negative values of ��h�i.
We speculate that this may have a similar origin as the
oscillations on the tail recently identified in a similar con-
text in Ref. [43]. In fig. 2, we show that the lattice power
spectrum is much larger than the perturbative expecta-
tion, and it is less peaked.

V. TRAPPED REGIONS AS BLACK HOLES

As the first case considered in section IV does not show
significant deviation from the perturbative expectation,
and the second case exhibits global trapping, ruling out
this parameter choice, we now focus on the phenomenol-
ogy of the last case, the non-perturbative case.
In this case, only some patches are stuck inside the

oscillatory region of the potential. From the point of
view of an observer outside these trapped regions, these
look as PBHs after the end of inflation. This is similar

= Vtrapped /Vtotal

Mass fraction in 
PBHs at the time of 
formation

≃ β
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“Can the Flap of a Butterfly’s Wings in Brazil Set Off a 
Tornado in Texas?” [1]

AC, S. Renaux-Petel,  K. Inomata  [2403.12811] 

Inflationary Butterfly Effect

Lorenz (1972):

Can tiny, small-scale quantum fluctuations affect the 
dynamics of the entire Universe?

[1]: E. N. Lorenz, American Association for the Advancement of Science (1972). 
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Non-perturbative physics at small scales can have drastic 
effects on the inflationary dynamics when 𝒫ζ ∼ 10−2

Main lesson:

2
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FIG. 1. (Left) 2D slices of the 3D lattice simulation at di↵erent times. (Right) Normalized histograms of inflaton values across
the lattice simulation. The upper line shows results for case A, while the lower line for case B. In case A, inflation is stuck in
a de Sitter state characterized by two separate inflaton background (red and blue in the rightmost snapshot). In case B, only
the red regions are stuck in the resonant potential.

III. LATTICE SIMULATION

To study the dynamics of this model in a nonlinear
way, we employ the lattice simulation developed in Refs.
[27–30] (and in particular Ref. [27]), to which we refer
for details regarding the lattice computation.

The lattice simulation allows to numerically solve the
following nonlinear equation of motion for the inflaton:

�00 + 2H�0
�r

2�+ a2
@V

@�
= 0, (3)

where r
2 is the Laplacian operator, a the scale factor,

H = a0/a and the prime 0 denotes derivative with respect
to conformal time ⌧ . This is done by discretizing the
inflaton field and its velocity on a 3D grid of N3 values,
translating the partial di↵erential eq. (3) into a set of N3

ordinary di↵erential equations coupled by the gradient
term.

The scale factor a is evolved using the average energy-
density and pressure in the lattice, assuming a perfect
Friedmann-Lemeitre-Robinson-Walker (FLRW) metric,
and neglecting the role of metric perturbations in the evo-
lution of the inflaton field. These corrections are slow-roll
suppressed, and are expected to not play an important
role as long as the inflaton has small spatial fluctuations
�� h�i ⌧ h�i, and if the energy budget of the Universe
is dominated by the potential energy of the inflaton field.
Both these assumptions remain satisfied for all the cases
considered in this work.

The initial conditions for the lattice are set pertur-
batively, initializing the background inflaton �̄ on the
slow-roll trajectory and the full inflaton on the box as
� = �̄ + ��. We choose the initial comoving box size to
be L . aH, so that the initial field fluctuations �� can
be set to match the Bunch-Davies spectrum.

IV. RESULTS

We now show the results of the lattice simulation for
case A, B and C introduced in section II. All the re-
sults in this section are obtained using a lattice with
N3 = 5123 number of points. We start the simulation
when h�i = 0.0935, corresponding to Ne ' 0.56 e-folds
before the system hits the feature, and set the initial
scale factor to ai ' 0.57, so that a = 1 when h�i = �0.
The comoving length of the box is set to L = 12 ai/

p
V0,

making all the initial modes sub-horizon at the beginning
of the simulation. We run the simulation for Ne ' 6 e-
folds, which makes all the modes super-horizon at the
final time.

A.

As expected, case A is highly non-perturbative. Due to
backreaction of the perturbations on the background, the
inflaton gets stuck in the resonant region of the potential,
as shown in fig. 2. In this region, the inflaton settles
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Inflationary Butterfly Effect
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first quantitative comparison between full nonlinear, tree-level and 1-loop
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Loop effects

In the perturbative setup (case 1),

Pϕ

k
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Loop effects

IR rescattering!

first quantitative comparison between full nonlinear, tree-level and 1-loop

Pϕ

k
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In the perturbative setup (case 1),
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Loop effects

Beyond 1-loop?? Other corrections?

first quantitative comparison between full nonlinear, tree-level and 1-loop

Pϕ

k
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In the perturbative setup (case 1),
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A well-known mechanism to enhance density fluctuations is an inflection point
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Ultra-Slow-Roll inflation

Fluctuations amplified via a 
deceleration of the inflaton 

ϵH = −
·H

H2
≪ 1

So-called “ultra slow-roll” phase

Figure credit: Philippa Cole

|ηH | =
·ϵH

HϵH
∼ 1
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Ultra-Slow-Roll inflation

A systematic study of USR potentials:

Case 1 Case 2 Case 3

∂3V(ϕ)
∂ϕ3

∼ 0
∂3V(ϕ)

∂ϕ3
> 0

∂3V(ϕ)
∂ϕ3

< 0
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Ultra-Slow-Roll inflation

A systematic study of USR potentials:

AC, G. Franciolini, S. Renaux-Petel,   [2506.11795] 

0

1

2

3

4

-2 0 2 4 6

10-9

10-6

10-3

AC, G. Franciolini, S. Renaux-Petel,   [2410.23942] 
AC, G. Franciolini, S. Renaux-Petel,   [2506.11795] 



AC, G. Franciolini, S. Renaux-Petel,   [2410.23942] 

Ultra-Slow-Roll inflation

  is the leading self-interaction of the inflaton:
∂3V(ϕ)

∂ϕ3
V(ϕ̄ + δϕ) = ∑

n

δϕn

n!
∂nV(ϕ)

∂ϕn ϕ̄

Case 1 Case 2 Case 3

∂3V(ϕ)
∂ϕ3

∼ 0
∂3V(ϕ)

∂ϕ3
> 0

∂3V(ϕ)
∂ϕ3

< 0

Free theory
Aka “Wands duality”

Repulsive 

self-interaction

Attractive 

self-interaction
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Ultra-Slow-Roll inflation

Wands duality: [D. Wands (1998)]
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Evolution of scalar field perturbation is invariant (dual) under the transformation 
of the background:

η → 3 − η

Our potential in case 1 is constructed so 
that  , so the theory is 
approximately free

ηUSR = 3 − ηSR,2
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Ultra-Slow-Roll inflation

Result #1:

We find backreaction, i.e. an effect of fluctuations on the background evolution

This is a new effect!

Lattice
Tree-level
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Ultra-Slow-Roll inflation

Result #1:

We find backreaction, i.e. an effect of fluctuations on the background evolution

Backreaction follows a simple fitting formula:
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Ultra-Slow-Roll inflation

Result #2:

How nonlinearity affects inflaton fluctuations
Attention: ζ ≡ − H

δϕ
·ϕ

= ζlin

Lattice
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Ultra-Slow-Roll inflation
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How nonlinearity affects inflaton fluctuations
Attention: ζ ≡ − H
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Lattice
Tree-level
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Ultra-Slow-Roll inflation

Result #2:

How nonlinearity affects inflaton fluctuations

repulsive/attractive nature
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Ultra-Slow-Roll inflation
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Self-interactions matter:
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Ultra-Slow-Roll inflation

So far, we only looked at ζlin = − H
δϕ

·ϕ

We calculate  in a fully nonlinear way using a  technique applied to simulation dataζ δN
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1
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What goes wrong with the log relation: nonlinear  nonperturbative≠

The notion of a unique background is lost 
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Lattice simulations of inflation are a new technique, 
made publicly available

We can finally know what happens when perturbation theory breaks 
down during inflation.


Extremely relevant for probing the small scale physics of inflation, but there are 
a lot of other applications! (See axion inflation)

Summary

What’s next?  
 
Develop techniques to calculate measurable quantities 
directly from the simulation (e.g GW spectrum). 


Stay tuned for more!



Thank you for the attention! 



Backup slides



Lattice simulation: initial conditions
[AC  2209.13616]  

̂ϕ( ⃗n) = ∑⃗
m

[ ̂a ⃗m u( ⃗κ ⃗m ) ei 2π
N ⃗n⋅ ⃗m + ̂a†

⃗m
 u†( ⃗κ ⃗m ) e−i 2π

N ⃗n⋅ ⃗m]

⃗n = lattice site, ni, mi ∈ 1,...,N .

u( ⃗κ) =
L3/2

a 2ω ⃗κ
e−iω ⃗κτ, ω2

⃗κ = k2
eff  

⃗κ ⃗m =
2π
L

⃗m

[AC+  2102.06378]  

(discrete dispersion relation)

Discrete Bunch-Davies spectrum: 

Stochastic approximation:

̂a ⃗m = ei2π ̂Y ⃗m −ln(X̂ ⃗m )/2,

∙

∙

∙

 uniform randoms between 0 and 1X̂ ⃗m , ̂Y ⃗m
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Energy contributions in oscillatory potentials
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Energy contributions in USR
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