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History of the early universe

(cold) 
INFLATION? ··a > 0

H2 ≃
1

3m2
p

Vinf(ϕ)

INITIAL 
CONDITIONS: 

Vacuum energy

−
·H

H2
= 1
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History of the early universe

(cold) 
INFLATION REHEATING? ··a > 0 a(t) ∼ tq

H2 ≃
1

3m2
p

Vinf(ϕ)

INITIAL 
CONDITIONS: 

Vacuum energy

−
·H

H2
= 1

FINAL CONDITIONS: 
Thermal equilibrium, Trh
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History of the early universe

(cold) 
INFLATION REHEATING? ··a > 0 a(t) ∼ tq

H2 ≃
1

3m2
p

Vinf(ϕ)

HOT BIG BANG
a(t) ∼ t1/2

INITIAL 
CONDITIONS: 

Vacuum energy

BBN
T ∼ 1MeV

−
·H

H2
= 1

FINAL CONDITIONS: 
Thermal equilibrium, Trh
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Reheating

ℒ = ℒ(ϕ, φi, ψj, Aμ, hμν, …)?? 

➤ REHEATING must guarantee a complete energy transfer from the inflaton to a 
thermal distribution of SM Particles before BBN.

WHEN DOES THE UNIVERSE BECOME RADIATION DOMINATED?

➤ PREHEATING (field instabilities due to non-perturbative effects) may dominate 
the initial post-inflationary dynamics and lead to inflaton fragmentation.

➤ Characterizing the equation of state during (p)reheating is crucial to determine 
inflationary CMB observables and the redshift of SGWBs from the early 
universe.
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Inflationary potentials

Nk=50

Nk=60

Planck results 
(2018)

Nk: number e-folds from the horizon crossing of the 
pivot scale (k*=0.05 Mpc-1) till the end of inflation
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α-attractor T-model

V(ϕ) =
Λ4

2
tanh2 ( |ϕ |

M )

• CMB constraints: r0.05 < 0.036 M ≲ 10mp
Planck (2018)
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α-attractor T-model

V(ϕ) =
Λ4

2
tanh2 ( |ϕ |

M )
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M → ∞
M < ∞

V(ϕ) =
1
2

Λ4

M2
|ϕ |2 + 𝒪( |ϕ |4 )…

quadratic 
approximation

{
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α-attractor T-model

ϕ* =
1
2

Marcsinh ( 8mpl /M)• End of inflation: ϵV(ϕ*) ≡ 1

Monomial approximation valid if: ϕi > ϕ* M ≳ 1.6mpl

• Inflection point: ϕi = M arcsinh ( 1/2)V,ϕϕ(ϕi) ≡ 0

V(ϕ) =
Λ4

2
tanh2 ( |ϕ |

M )

V(ϕ) =
1
2

Λ4

M2
|ϕ |2 + 𝒪( |ϕ |4 )…{quadratic 

approximation
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Potential

V(ϕ, X) =
Λ4

2
tanh2 ( ϕ

M ) X daughter field

ϕ inflaton

The need to reheat the universe naturally implies the necessity of 
interactions between the inflaton and other fields:

perturbative decay 
+ preheating effects

+
1
2

hϕX2 +
1
2

g2ϕ2X2

only preheating effects

+
1
4

λX4

necessary to stabilize 
the potential for h>0
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Inflaton fragmentation

V(ϕ, X) =
Λ4

2
tanh2 ( ϕ

M ) +
1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4

M ≲ 0.1mp

Inflaton oscillates over the 
plateau region of the 

potential: inflaton 
fragments into oscillons

Amin et al (2011),   
Zhou et al (2013),   
Antusch et al (2017),  
Lozanov & Amin (2019) 
…



12

Inflaton fragmentation

In the presence of inflaton 
interactions to other fields, oscillons 

may form and survive (or not) 
depending on the coupling strength

V(ϕ, X) =
Λ4

2
tanh2 ( ϕ

M ) +
1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4

M ≲ 0.1mp

Antusch & Orani (2015) 
Shafi, Copeland, Mahbub, Mishra, Basak (2024) 
Li, Yamaguchi, Zhang (2025)

see S.S. Mishra talk!



13

Inflaton fragmentation

inflaton oscillations take place in the 
quadratic part of the potential,  and 

oscillons do not form

M ≳ mp

we take the monomial 
approximation from now on

V(ϕ, X) =
Λ4

2
tanh2 ( ϕ

M ) +
1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4
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Inflaton fragmentation

V(ϕ, X) =
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4

inflaton oscillations take place in the 
quadratic part of the potential,  and 

oscillons do not form

M ≳ mp

we take the monomial 
approximation from now on
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Inflaton fragmentation

V(ϕ, X) =
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4

In the absence of interactions, the inflaton 
survives as an oscillating homogeneous 
condensate with a decaying amplitude. 

 
The universe behaves as matter-dominated.

ϕ(t) ∼
ϕ*

a3/2
cos(mϕt)

w̄hom ≡
⟨pϕ⟩osc

⟨ρϕ⟩osc
= 0



ϕ(c) X(c)
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Inflaton fragmentation

V(ϕ, X) =
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
2

g2ϕ2X2 +
1
4

λX4

The inflaton fragments by resonant effects 
for sufficiently strong interactions
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Inflaton fragmentation

How does the equation of state evolve after inflaton fragmentation?

Dufaux, Felder, Kofman, Peloso, Podolsky  (2006):

w̄

1
2

g2ϕ2X2 +
1
4

λX4

w̄

1
2

hϕX2 +
1
4

λX4

Antusch, Figueroa, Marschall, F. T. (2020, 2021) 
Antusch, Marschall, F. T. (2022)

w̄ → 0 at late times  at late times?w̄
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later (non-linear) evolution

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Inflationary CMB observables

Antusch, Marschall & F. T.   
(2507.13465)
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later (non-linear) evolution

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Infl

Antusch, Marschall & F. T.   
(2507.13465)



➤ EQUATIONS OF MOTION:

φ′￼′￼− a−2 ∇2
⃗yφ + (1 + F(u)) φ +

1
2

q̃(h) χ2 = 0

χ′￼′￼− a−2 ∇2
⃗y χ + (q̃(h)φ + q̃(λ) χ2 + F(u)) χ = 0

q̃(h)(a) ≡ q(h)
* a−3/2 ; q(h)

* ≡
hϕ*

m2
ϕ

q̃(λ)(a) ≡ q(λ)
* a−3 ; q(λ)

* ≡
λϕ2

*

m2
ϕ

COUPLING 
PARAMETERS:

F(u) ≡ −
3
4 ( a′￼

a )
2

−
3
2

a′￼′￼

a

Inflaton:

Daughter  field:
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Preheating: natural variables

➤ Let us define (dimensionless) natural variables:

ϕ* :• Fields: φ ≡
1
ϕ*

a3/2ϕ ; χ ≡
1
ϕ*

a3/2X Inflaton amplitude at 
the end of inflation

• Time and space: u ≡ mϕ ∫
t

t*

dt′￼; ⃗y ≡ mϕ ⃗x Oscillation frequency 
at the end of inflation

mϕ :

∼ u−2



➤ EQUATIONS OF MOTION:

φ′￼′￼− a−2 ∇2
⃗yφ + φ +

1
2

q̃(h) χ2 = 0

χ′￼′￼− a−2 ∇2
⃗y χ + (q̃(h)φ + q̃(λ) χ2) χ = 0

q̃(h)(a) ≡ q(h)
* a−3/2 ; q(h)

* ≡
hϕ*

m2
ϕ

q̃(λ)(a) ≡ q(λ)
* a−3 ; q(λ)

* ≡
λϕ2

*

m2
ϕ

COUPLING 
PARAMETERS:

F(u) ≡ −
3
4 ( a′￼

a )
2

−
3
2

a′￼′￼

a

Inflaton:

Daughter  field:
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Preheating: natural variables

➤ Let us define (dimensionless) natural variables:

ϕ* :• Fields: φ ≡
1
ϕ*

a3/2ϕ ; χ ≡
1
ϕ*

a3/2X Inflaton amplitude at 
the end of inflation

• Time and space: u ≡ mϕ ∫
t

t*

dt′￼; ⃗y ≡ mϕ ⃗x Oscillation frequency 
at the end of inflation

mϕ :

∼ u−2
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Preheating: linearized analysis

➤ Linear decomposition:
φ( ⃗y, u) ≡ φ̄(u) + δφ( ⃗y, u)
χ( ⃗y, u) ≡ δχ( ⃗y, u)

δχ′￼′￼
k + ω̃2

k,χδχk ≃ 0; ω̃k,χ ≡ κ̃2(a)+q̃(h)(a)φ̄ κ̃(a) ≡
k

amϕ
• Order 1:

➤ Equations of motion (ignoring quartic self-interaction):

φ̄′￼′￼+ φ̄ = 0• Order 0: φ̄ ≃ cos(u)

{

During half of each oscillation,              , and the fluctuations get excited 
through tachyonic resonance.

φ̄ < 0



23

Preheating: linearized analysis

0.

0.5

1.0

1.5

2.0

2.5

δχ′￼′￼
k + ω̃2

k,χδχk ≃ 0; ω̃k,χ ≡ κ̃2(a)+q̃(h)(a)φ̄ |χk |2 ∼ e2νκ(q̃(h))u

κ̃ < q̃(h)
➤ Modes                 line mostly excited 

by tachyonic resonance.

➤ Few modes                 excited due to 
parametric resonance  
(much weaker!)

κ̃ > q̃(h)

[ω̃′￼k,χ ≫ ω̃k,χ
2]

Tachyonic resonance ends when:

q̃(h)(a) ≡ q(h)
* a−3/2 <

1
6
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Preheating: linearized analysis

➤ Tachyonic resonance leads to an amplification of field fluctuations.  
 

If tachyonic resonance survives long enough, the inflaton fragments, and the 
EoS deviates from w=0.

φ̄′￼′￼+ φ̄+
1
2

q̃(h)⟨χ2⟩ = 0

δχ′￼′￼
k + (κ̃2 + q̃(h)φ̄+3q̃(λ)⟨χ2⟩)δχk = 0

+ Friedmann eqs.

{
➤ We can incorporate the quartic self-interaction by solving the field mode 

equations in the Hartree-Fock approximation:

For which values of    
                      
 

does the inflaton fragment?
{q(h)

* , q(λ)
* }
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Preheating: linearized analysis

10.-9

10.-8

10.-7

10.-6

10.-5

10.-4

10.-3

10.-2

q(h)
* ≲ 10 : Tachyonic resonance ends before the inflaton fragments:  

 

Fluctuations remain subdominant.  
 

EoS remains               until perturbative reheating.w̄ = 0

⟨χ2⟩end ≪ 1

Daughter field variance 
when tachyonic 
resonance ends
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Preheating: linearized analysis

≪ 1

q(h)
* ≳ 10 : Daughter field variance grows tachyonically until:

⟨χ2⟩end ≈
q̃(h)

3q̃(λ)
∼

q(h)
*

3q(λ)
*

a3/2
end

10.-9

10.-8

10.-7

10.-6

10.-5

10.-4

10.-3

10.-2
Daughter field variance 

when tachyonic 
resonance ends



27

Preheating: linearized analysis

1 5 10 50 100 500 1000
10-5

10-4

10-3

10-2

10-1

1

⟨χ2⟩end ≈
q(h)

*

3q(λ)
*

a3/2
end

Further (slower) growth at 
later times for all self-
interaction strengths

:

Fraction of energy stored in 
the daughter field

⟨χ2⟩(u → ∞) > ⟨χ2⟩end

q(h)
* ≳ 10.

The inflaton fragments for 
all self-interaction 

strenghts, as long as
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later (non-linear) evolution

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Infl

Antusch, Marschall & F. T.   
(2507.13465)



we set                   .
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Our set-up

M = 5mp

➤ In order to fully capture the non-linearities of the system, we simulate the 
following potential with Cosmo𝓛attice in 2+1 dimensions:

V(ϕ, X) ≃
Λ4

2
tanh2 ( ϕ

M ) +
1
2

hϕX2 +
1
4

λX4

{ εk ≡ εφ
k + εχ

k
εg ≡ εφ

g + εχ
g

εp ≡ εφ
p + εχ

p + εi

Kinetic:

Gradient:

Potential:

➤ We characterize the equation of state evolution for ~10 e-folds:

w ≡
p
ρ

= εk −
1
3

εg − εp

: Fraction of energy density in each componentεα



Lattice simulations of preheating

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

100

1. 2. 3. 4. 5. 6. 7. 8. 9. q(h)
* = 50

q(λ)
* = 2500

100 101 102 103 104 105 106
-1.

-0.5

0.

0.5

1.
0.3 1. 2. 3. 4. 5. 6. 7. 8.

Daughter field fluctuations 
amplified resonantly.

Inflaton fluctuations amplified 
through backreaction effects.

w̄ ≈ 0



100 101 102 103 104 105 106
-1.

-0.5

0.

0.5

1.
0.3 1. 2. 3. 4. 5. 6. 7. 8.
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Lattice simulations of preheating

w̄ ≈ 0.25
plateau at

εχ
g ↑ : self-resonance of daughter   

field due to             term          ∝ X4

εg ≡ εφ
g + εχ

g ≈ const

εφ
g ↓ : tachyonic resonance has  

ended        

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

100

1. 2. 3. 4. 5. 6. 7. 8. 9. q(h)
* = 50

q(λ)
* = 2500
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Lattice simulations of preheating

q̃(h), q̃(λ) ≪ 1
w̄ → 0

Resonant effects finished. 
 

Fluctuations dilute as radiation. 
 

Inflaton homogeneous mode 
dilutes as matter.   

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

100

1. 2. 3. 4. 5. 6. 7. 8. 9.

100 101 102 103 104 105 106
-1.

-0.5

0.

0.5

1.
0.3 1. 2. 3. 4. 5. 6. 7. 8.

q(h)
* = 50

q(λ)
* = 2500
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Lattice simulations of preheating

100 101 102 103 104 105 106
10-6

10-5

10-4

10-3

10-2

10-1

1

1. 2. 3. 4. 5. 6. 7. 8.

100 101 102 103 104 105 106
-1.

-0.5

0.

0.5

1.
0.3 1. 2. 3. 4. 5. 6. 7. 8.

q(h)
* = 50

q(λ)
* = 50000

For stronger self-interactions, 
there is no plateau in the EoS 

evolution.

w̄ → 0
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Lattice simulations of preheating

10.-9

10.-8

10.-7

10.-6

10.-5

10.-4

10.-3

10.-2
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Lattice simulations of preheating

➤ Preheating never achieves a radiation-dominated universe.

➤ After preheating ends, we recover a matter-dominated universe dominated 
by the homogeneous inflaton.
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later (non-linear) evolution

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Infl

Antusch, Marschall & F. T.   
(2507.13465)



37

Perturbative reheating

➤ The trilinear introduction introduces a perturbative decay channel  
with the following decay rate:

Γϕ =
h2

32πmϕ
;

·ρφ + 3Hρφ + Γϕρφ = 0
·ρχ + 4Hρχ − Γϕρφ = 0

H2 =
1

3m2
pl

(ρφ + ρχ)

{
➤ We solve the Boltzmann equations from the end of the lattice simulation 

until the completion of perturbative reheating:

ϕ → XX

which becomes effective when H ≈ Γϕ

with 

Mathematica!!
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Equation of state (lattice + boltzmann)

2 4 6 8 10 12 14 16 18 20 22
0.

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14 16 18 20 22
0.

0.1

0.2

0.3

0.4

Γϕ ≈ H Γϕ ≈ H

Radiation-domination is achieved 14 - 21 e-folds after the end of inflation 
(for the considered coupling strenghts)
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later non-linear dynamics

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Infl

Antusch, Marschall & F. T.   
(2507.13465)
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Gravitational waves from preheating

Ω(f)
gw(k, uf) ≡

1
ρc

dρgw

d log k
(k, uf)

➤ We can compute the GW spectrum at the time       when GW production 
ends (with e.g. 3+1 lattice simulations):

uf

fgw ≃ 4 ⋅ 1010ϵ1/4
f

k
afHf ( Hf

mp )
1/2

Hz ; h2
0Ωgw ≃ 1.6 ⋅ 10−5 ϵf Ω(f)

gw

➤ In order to compute the frequencies and amplitudes of the GW spectrum 
measured today, we need to redshift it:

{< 1
= 1
> 1

if MD
if RD
if KD

ϵf ≡ ( af

ard )
1−3w̄f

where       is the “suppression factor” from time       until radiation-domination:ϵf uf

af = a(uf)
ard = a(urd)
w̄f : average e.o.s
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GW suppression factor

◆ ◆ ◆

◆
◆

◆
◆

◆
◆

◆
◆

●
●

● ● ●
●

●
●

●

●
●

◆ ◆ ◆

◆
◆

◆
◆

◆
◆

◆
◆

●
●

● ● ●
●

●
●

●

●
●

◆
●

5 10 50 100
10-9

10-8

10-7

10-6

10-5

10-4

➤ GW suppression factors as a function of the coupling strength, from the 
end of inflation until radiation domination:

ϵi ≡ ( aend

af )
1−3w̄i

∼ 0.1ϵrd ≡ ( aend

ard )
1−3w̄rd

= ϵi ⋅ ϵf ;NOTE: with

[ [

“Preheating-less” limit
(w=0 until  

perturbative decay)
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GW suppression factor

◆ ◆ ◆

◆
◆

◆
◆

◆
◆

◆
◆

●
●

● ● ●
●

●
●

●

●
●

◆ ◆ ◆

◆
◆

◆
◆

◆
◆

◆
◆

●
●

● ● ●
●

●
●

●

●
●

◆
●

5 10 50 100
10-9

10-8

10-7

10-6

10-5

10-4

ϵi ≡ ( aend

af )
1−3w̄i

∼ 0.1ϵrd ≡ ( aend

ard )
1−3w̄rd

= ϵi ⋅ ϵf ;

➤ GW suppression factors as a function of the coupling strength, from the 
end of inflation until radiation domination:

ϵrd ≃ (8.4 ± 0.1) ⋅ 10−8 (
q(h)

*

10 )
2.60±0.01

ϵrd ≃ (3.8 ± 0.3) ⋅ 10−9 (
q(h)

*

10 )
3.01±0.03

Set A:

Set B:

NOTE: with

[ [
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Gravitational waves from preheating

fgw ≃ (1.0 ± 0.1) ⋅ 108 ϵ1/4
f (

q(h)
*

10 )
0.52±0.04

Hz ; h2
0Ω(0)

gw ≃ (2.67 ± 0.5) ⋅ 10−9 ϵf (
q(h)

*

10 )
−0.43±0.07

➤ 3+1-dimensional lattice simulations have been used to parametrize the main peak 
of the GW spectrum (Cosme, Figueroa & Loayza, JCAP 05 (2023) 023):

� � �� �� ���
��-��
��-��
��-��
��-�
��-�
�����

��� � � �� �� ���
��-��
��-��
��-��
��-�
��-�
�����
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Gravitational waves from preheating

fgw ≃ (3.2 ± 0.4) ⋅ 106 (
q(h)

*

10 )
1.14±0.04

Hz h2
0Ω(0)

gw ≃ (2.8 ± 0.9) ⋅ 10−15 (
q(h)

*

10 )
2.05±0.09

➤ Combining their results with our parametrization for      , we get:ϵf

The signal gets suppressed up to six orders of magnitude 
and shifted to the IR by one-two orders of magnitude.

fgw ≃ (1.0 ± 0.1) ⋅ 108 ϵ1/4
f (

q(h)
*

10 )
0.52±0.04

Hz ; h2
0Ω(0)

gw ≃ (2.67 ± 0.5) ⋅ 10−9 ϵf (
q(h)

*

10 )
−0.43±0.07

➤ 3+1-dimensional lattice simulations have been used to parametrize the main peak 
of the GW spectrum (Cosme, Figueroa & Loayza, JCAP 05 (2023) 023):
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EoS during preheating with trilinear interactions

1. Equation of state characterization

a) Linearized analysis

b) Lattice simulations 

V(ϕ, X) ≃
1
2

m2
ϕϕ2 +

1
2

hϕX2 +
1
4

λX4

Initial (linear) preheating

Later non-linear dynamics

2. Observational implications

a) Gravitational waves from preheating

c) Boltzmann equations Final perturbative decay

b) Inflationary CMB observables

Antusch, Marschall & F. T.   
(2507.13465)
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Inflationary CMB observables

➤ Inflationary predictions depend on Nk: number e-folds from the horizon 
crossing of the pivot scale (kCMB=0.05 Mpc-1) till the end of inflation

kCMB

a0H0
=

akHk

a0H0
= e−Nk

aend

ard

ard

aeq

aeq

a0

Hk

H0

➤ Its value can be determined with knowledge of the post-inflationary EoS:

Nk ≡ ln
aend

ak
≃

1
m2

pl ∫
ϕend

ϕk

V
V,ϕ

|dϕ|

Nk ≃ 61.5 +
1
4

ln
V2(ϕk)
m4

plρend
−

1 − 3w̄rd

4
Nrd −

1
12

ln gth

ard

aeq
= ( ρrd

ρeq )
−1/4

a0

aeq
= (1 + zeq) ≃ 3387

ρeq = 6Ωm,0m2
plH

2
0(1 + zeq)3

w̄rd =
1

Nrd ∫
Nrd

0
dN′￼w(N′￼)
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Inflationary CMB observables

Theoretical predictions for inflationary observables (ns and r) depend 
on the post-inflationary evolution of the equation of state

Nk=50

Nk=60

Planck results 
(2018)

Nk ≃ 61.5 +
1
4

ln
V2(ϕk)
m4

plρend
−

1 − 3w̄rd

4
Nrd −

1
12

ln gth
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Inflationary CMB observables
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Inflationary CMB observables
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Nk ≃ 61.5 +
1
4

ln
V 2(ϕk)
m4

plρend
−

1 − 3w̄rd
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Nrd −

1
12
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Conclusions

➤ If your inflationary potential has a quadratic minimum , the equation of 
state is expected to return to                after preheating ends.w̄ → 0

➤ This may potentially led to a severe suppression of any SGWB produced 
during inflation or (p)reheating.

CHECK YOUR EQUATION OF STATE!

➤ The characterization of the equation of state until radiation domination 
also allows to accurately compute inflationary CMB observables.



Thank you!



Backup slides
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Comparison of 2+1 and 3+1 simulations
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Post-inflationary oscillations

TWO REGIMES:

0 10 20 30 40 50

0.0

0.5

1.0

ϕ

ϕ
(M

p
)

M=∞ (chaotic inflation)
M=1Mp
M=0.1Mp
M=0.01Mp

mφ(t-ti)

M ≳ Mp

M ≲ Mp

ϕi ≡ ϕ(ti)

V′￼′￼( |ϕi | ) < 0
V′￼′￼( |ϕi | ) > 0

for M ≳Mp, we can approximate the 
potential with a power-law form

inflaton amplitude 
at the end of inflation

Ω2
osc ≈ ω2

* (t/ti)2−4/p , ω2
* ≡

p
Mp

Λ4ϕp−2
i

Frequency of oscillations:
(M ≳Mp)
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Inflationary predictions for alpha-att. T-model
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